

 -

The dBASE® Language Handbook 2 Back to CONTENTS

 -

The dBASE®

 Language Handbook

 -

The dBASE® Language Handbook 3 Back to CONTENTS

THIS PAGE LEFT INTENTIONALLY BLANK

 -

The dBASE® Language Handbook 4 Back to CONTENTS

The DATA BASED ADVISOR
®

 Series

Lance A. Leventhal., Ph.D., Series Director

The dBASE®

 Language Handbook
Quicksilver®, Clipper®, dBXL®, dBASE® III,

dBASE® III Plus, dBASE® IV, and FoxBASE+®

David M. Kalman

Editor-in-Chief, DATA BASED ADVISOR®

Microtrend™ Books

 TRADEMARKS

The dBASE® Language Handbook 5 Back to CONTENTS

TRADEMARKS

Clipper is a trademark of Nantucket Corp.

dBASE is a registered trademark of Ashton-Tate

dBXL is a trademark of WordTech Systems, Inc.

FoxBASE+ is a registered trademark of Fox Software

Quicksilver is a trademark licensed to WordTech Systems, Inc. by Quicksilver Software, Inc.

Ventura Publisher is a registered trademark of Xerox Corp.

Copyright © May 1989 David M. Kalman

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any

means, electronic or mechanical, including photocopying, recording or by any information storage

and retrieval system without written permission from the copyright holder, except for the inclusion

of brief quotes in a review.

ISBN 0-915391-30-9

Library of Congress Card Catalog Number: 89-42977

Microtrend Books

165 Vallecitos de Oro

San Marcos, CA 92069

Cover design by Lorri Maida

Interior design by Dave Morgan, Slawson Communications, Inc.,

 and DATA BASED ADVISOR®

Edited by Lance A. Leventhal, Ph.D., San Diego, CA

Printed in the United States

10 9 8 7 6 5 4 3 2 1

 CONTENTS

The dBASE® Language Handbook 6 Back to CONTENTS

CONTENTS

ABOUT THE AUTHOR David Michael Kalman

ABOUT THE SERIES EDITOR Dr. Lance A. Leventhal, Ph.D.

FOREWORD FROM C. WAYNE RATLIFF, INVENTOR OF dBASE

PREFACE

ACKNOWLEDGEMENTS

SECTION 1

 OVERVIEW OF THE DBASE LANGUAGE DIALECTS

 USING THE COMMAND AND FUNCTION REFERENCE

 dBASE LANGUAGE OPERATORS

SECTION 2 - dBASE LANGUAGE COMMANDS

SECTION 3 - dBASE LANGUAGE FUNCTIONS

APPENDICES

 1. CLIPPER SUMMER '87 RESERVED WORDS

 2. SENSING THE ENVIRONMENT

 3. SCAN CODES/ASCII CHARTS

 4. QUICKSILVER/dBXL ENVIRONMENT VARIABLES

 5. dBASE IV SYSTEM VARIABLE SUMMARY

 6. COMMANDS AND FUNCTIONS OMITTED FROM THIS EDITION

 7. dBASE LANGUAGE GLOSSARY

 ABOUT THE AUTHOR

The dBASE® Language Handbook 7 Back to CONTENTS

ABOUT THE AUTHOR

David M. Kalman is Editor-in-Chief of Data Based Advisor, the leading magazine for PC database

managment systems users. Since 1983, he has followed the evolution of the dBASE language

through its many stages and variations. He has spoken at major dBASE meetings, forums, and

conferences, and has commented on the dBASE scene in his monthly "Editor's File" column. He

has also written major dBASE applications both for resale and for use at the magazine.

Mr. Kalman also operates Kalman Communications, a sole proprietorship that provides technical

publications, information, and computer solutions to the business community. He has extensive

experience in graphic arts production, typographic design, and technical communications.

Kalman received a B.A. from the University of California, San Diego, where he specialized in

literature, language, and education.

 ABOUT THE SERIES EDITOR

The dBASE® Language Handbook 8 Back to CONTENTS

ABOUT THE SERIES EDITOR

Lance A. Leventhal is the author of 25 books, including 80386 Programming Guide, 68000

Assembly Language Programming, 6502 Assembly Language Programming, and Microcomputer

Experimentation with the IBM PC. His books have sold over 1,000,000 copies and have been

translated into many foreign languages. He has also helped develop microprocessor-based systems

and has served as a consultant for Disney, Intel, NASA, NCR, and Rockwell.

Dr. Leventhal served as Series Editor on Personal Computing for Prentice-Hall and as Technical

Editor for the Society for Computer Simulation. He has lectured throughout the United States on

microprocessors for IEEE, IEEE Computer Society, and other groups.

Dr. Leventhal's background includes affiliations with Linkabit Corporation, Intelcom Rad Tech,

Naval Electronics Laboratory Center, and Harry Diamond Laboratories. He received a B.A. degree

from Washington University (St. Louis, Missouri) and M.S. and Ph.D. degrees from the University

of California, San Diego. He is a member of the AAAI, ACM, ASEE, IEEE, IEEE Computer

Society, and SCS.

 FOREWORD

The dBASE® Language Handbook 9 Back to CONTENTS

FOREWORD

by C. Wayne Ratliff, inventor of dBASE

When David Kalman asked me to write this foreword, I thought back to 1975. That was when I

first needed a database and a language to help track statistics so that I could win the office football

pool. Not even in my wildest dreams did I imagine that one day an entire industry would grow up

around my language.

At the time, while working at the Jet Propulsion Laboratory in Pasadena, I chanced on a Univac

1108 database program called JPLDIS. As I later learned, it was based on an earlier program,

Retrieve, a middle 1960's product of Tymshare Corporation, While reading the JPLDIS manual, I

decided that a scaled-down version would fit on my IMSAI 8080, a 48K (eventually) PTDOS

computer built from a kit.

JPLDIS was a command driven, primitive language intended for interactive use on printing

terminals. It was developed long before the modern era of video displays. As I implemented its

commands, I realized that the language needed programming constructs and desperately needed

the ability to use a CRT terminal. Implementing these features was the first step on the path that

led from JPLDIS to Vulcan and finally to dBASE.

Each time that I, or a friend, wrote a Vulcan application, we found we needed more commands to

address specific requirements. Although I tried to keep the language clean and pure, syntactic

ambiguities occasionally crept in. Many of today's dBASE language problems are the result of the

Vulcan-dBASE evolutionary path.

Languages that are fully designed before implementation are low in ambiguity and often low in

value. Evolutionary languages, on the other hand, more closely match users' needs. Unfortunately,

these languages always develop some baroque features. Esperanto, for example, is a carefully

designed language that is completely regular and syntactically elegant. But it remains largely

unused, whereas English, an eclectic and diversified evolutionary language, has become the world

standard.

The emergence of many vendors was an unexpected development in the evolution of the dBASE

language. Compatible compilers and interpreters provided new features to enhance their appeal in

a competitive marketplace. The proliferation of dBASE variations accelerated the evolution of the

language tremendously. Vendors essentially campaign with new features, and the end users vote

with their dollars. The wide acceptance of dBASE as well as the need for standardization has led

to the proposed IEEE 1192 standard.

 FOREWORD

The dBASE® Language Handbook 10 Back to CONTENTS

This book is especially important in documenting current dBASE dialects. The multiplicity of

divergent implementations has created an obvious need for a comprehensive, cohesive guide.

David Kalman's book fulfills this need.

 C. Wayne Ratliff

 PREFACE

The dBASE® Language Handbook 11 Back to CONTENTS

PREFACE

WHAT IS dBASE?
In personal computing circles, programmers and application developers have given the term

"dBASE" two meanings. The first is widely known: "dBASE" refers to Ashton-Tate's dBASE II,

dBASE III, dBASE III PLUS, or dBASE IV database management systems. The second meaning

is the programming language built into Ashton-Tate's systems. This "dBASE" language lets

programmers create powerful applications for business, engineering, finance, government, the

professions, and the sciences. It has a rich vocabulary of commands and functions for handling

input/output, designing user interfaces, printing reports, and doing calculations.

The distinction between "dBASE" the product and "dBASE" the programming language is

significant because several vendors offer compatible interpreters and compilers. They are dialects

of the language, much like the many dialects of BASIC that have emerged over the years. Vendors

include Fox Software, developer of FoxBASE+ and FoxBASE+/Mac; Nantucket Corp., developer

of Clipper and McMax; and WordTech Systems, developer of Quicksilver and dBXL. Other

companies, such as VersaSoft Corp., Paperback Software International, and Ratliff Software

Production, Inc. also produce dBASE-like systems.

The dialects have become popular because of the demand for:

• Faster-running and more reliable applications

• Applications on different kinds of computers and in different software environments

• More functions and improved productivity for developers

• Source code security

• No runtime royalties for applications

• Lower-cost development systems

This book covers major dBASE-compatible language products for PC/MS-DOS, specifically

Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver. These products share

a command set, with minor variations. Plus, each has its own special commands and functions.

The book contains a complete command and function reference. Each definition includes detailed

explanations and practical examples of the Ashton-Tate implementations. Then, variations among

the dialects follow, also with practical examples. Commands and functions unique to dialects have

their own entries. Appendixes cover character codes, special features of the dialects, and other

reference material.

 PREFACE

The dBASE® Language Handbook 12 Back to CONTENTS

WHO NEEDS THIS BOOK?
"The dBASE Language Handbook" offers concise explanations and realistic examples of dBASE

commands and functions. Programmers, analysts, applications developers, consultants, students,

teachers, managers, users of dBASE-compatible systems, and software developers and vendors

will find it handy for quick reference or in-depth study. It can serve as a convenient supplement or

alternative to the standard manuals.

Foremost, "The dBASE Language Handbook" offers a single reference for programmers and end

users who sell, support, or work with several dBASE-compatible products. I know from personal

experience that many people do this. Some programmers prototype applications in dBASE III

PLUS or dBASE IV, then compile them with Quicksilver or Clipper. Consultants, analysts, and

managers often must deal with a variety of hardware and software. For example, FoxBASE+ runs

under Xenix and on the Macintosh. Clipper runs on Wang computers and other non-IBM systems.

Quicksilver also runs on generic MS-DOS systems. By providing a single, cohesive reference,

"The dBASE Language Handbook" eases the problem of developing, maintaining, supporting, and

using multiple products.

Until now, users of Clipper, dBXL, FoxBASE+, and Quicksilver have had only their product

manuals to help them. They often have a difficult time recognizing differences from standard

dBASE III PLUS or dBASE IV features. The Handbook serves as a secondary reference that

clearly indicates new features and incompatibilities in the various systems.

"The dBASE Language Handbook" will also help those who are considering or evaluating

compatible products. They can see examples of the features provided by Clipper, Quicksilver, and

other products. They can also determine the effort required to make their programs run under

another system.

"The dBASE Language Handbook" is a programming language reference. As such, it focuses on

programming commands and functions—the elements of the language that make dBASE resemble

BASIC, C, or Pascal. Detailed examples illustrate commands and functions so programmers can

apply them to their own applications effectively. When a command or function appears in one

system but not another, I describe ways to simulate the missing feature. For commands and

functions that are superfluous or obsolete, I offer complete references while pointing out superior

alternatives.

WHAT ABOUT THE FUTURE?
As software developers produce new versions and new products, the dBASE language will change.

I expect to update "The dBASE Language Handbook" regularly. I welcome your comments and

suggestions for future editions.

 ACKNOWLEDGEMENTS

The dBASE® Language Handbook 13 Back to CONTENTS

ACKNOWLEDGEMENTS

I thank my editor and series director, Dr. Lance Leventhal, for both his consummate editing skill

and his moral support. In those moments when I saw nothing amusing in dBASE, he pointed out

FKLABEL(), the function you cannot discuss in mixed company.

Many thanks to Russ Freeland for the CALL()/CCALL entries, and to George F. Goley, IV for his

encouragement and sage advice on FoxBASE+.

I also owe gratitude to numerous individuals at Ashton-Tate, Fox Software, Nantucket, and

WordTech systems. I will certainly never run out of floppy disks.

Special thanks to the Data Based Advisor editorial team: Dian Schaffhauser, David Kodama, and

Jewel Nelson for their constant encouragement and support.

Thanks to my production editor, David Morgan, and the staff of Slawson Communications for

making this book possible.

Finally, Thanks to my parents Emily and Jack, for everything else.

 SECTION 1

The dBASE® Language Handbook 14 Back to CONTENTS

SECTION 1

 OVERVIEW OF THE dBASE®

 LANGUAGE DIALECTS

 USING THE COMMAND AND

 FUNCTION REFERENCE

 dBASE® LANGUAGE OPERATORS

 OVERVIEW OF THE dBASE® LANGUAGE DIALECTS

The dBASE® Language Handbook 15 Back to CONTENTS

OVERVIEW OF THE dBASE®

LANGUAGE DIALECTS

dBASE IV, Version 1.0 Ashton-Tate
Provides interactive database management by entering commands at the dot prompt, or by using

the Control Center menu system. The Control Center provides automatic generation of reports,

forms, queries, and applications.

The programming language lets users automate database management applications. It includes

commands and functions for storing and manipulating data, designing forms, and generating

reports. dBASE IV runs dBASE III PLUS applications with little or no modification. It supports

multiuser applications on local area networks.

dBASE IV also supports relational database management through either interactive or embedded

SQL. You can type SQL statements at the dot prompt, or include them in dBASE language

programs.

Purchasers of the Developers Edition can distribute applications under the dBASE IV unlimited

runtime license. Multiuser applications require a LAN PACK key disk at the workstation.

dBASE III PLUS, Version 1.1 Ashton-Tate
Provides interactive database management by entering commands at the dot prompt, or by using

the dBASE Assistant. The Assistant provides menus for most database management functions.

The programming language lets users automate database management applications. It includes

commands and functions for storing and manipulating data, designing forms, and generating

reports.

Distributing dBASE III PLUS applications requires paid runtime licenses from Ashton-Tate.

Multiuser applications require a LAN PACK key disk at the workstation.

Clipper, Summer 1987 Version Nantucket Corp.
Compiles applications into executable programs (extension EXE). Clipper has no interactive

database management features, but it comes with an interactive debugger (DEBUG.OBJ) for

developing applications.

Clipper offers a superset of the dBASE III PLUS programming language. Notable features include

user defined functions, light bar menus, memo functions, array functions, and DOS-level file

 OVERVIEW OF THE dBASE® LANGUAGE DIALECTS

The dBASE® Language Handbook 16 Back to CONTENTS

input/output. Clipper's open architecture allows the linking of object modules written in C or

assembly language.

Clipper supports multiuser applications on local area networks. Applications may be freely

distributed without runtime license fees.

dBXL, Version 1.2 WordTech Systems
Provides interactive database management by entering commands at the interactive prompt, or

with the INTRO mode. INTRO provides an easy to use prompt system for novices.

dBXL's language is a superset of dBASE III PLUS. Most dBASE III PLUS programs run without

modification.

The language includes the standard dBASE III PLUS commands and functions. The extended

features include windowing, graphing, arrays, user defined functions, and DOS interrupt level

commands and functions.

Distribution of dBXL applications requires additional copies of dBXL, or compilation with

Quicksilver.

FoxBASE+, Version 2.0 Fox Software
Provides interactive database management by entering commands at the dot prompt.

The FoxBASE+ language is a superset of dBASE III PLUS. dBASE III PLUS programs run

without modification, but much faster.

The language includes the standard dBASE III PLUS commands and functions. Extended features

include user defined functions, system information functions, light bar menus, and arrays. A

multiuser version is available.

Distribution of runtime applications requires the purchase of a runtime license. Unlimited licenses

are available.

Quicksilver, Version 1.2 WordTech Systems
Compiles applications into executable programs (extension EXE). Quicksilver has no interactive

database management features; however, its companion product, dBXL, is highly compatible (sold

separately). Quicksilver includes an interactive debugger for application development.

Quicksilver's language is a superset of dBASE III PLUS. Most programs run without modification.

 OVERVIEW OF THE dBASE® LANGUAGE DIALECTS

The dBASE® Language Handbook 17 Back to CONTENTS

The language includes the standard dBASE III PLUS commands and functions. The extended

features include windowing, graphing, arrays, DOS interrupt level commands and functions, and

user defined functions. Quicksilver allows direct linking of object modules written in C or

assembly language.

Quicksilver offers comprehensive multiuser capabilities, based on the NetworkerPlus module

(sold separately). Applications may be distributed freely without runtime licensing.

Contact information

Ashton-Tate

20101 Hamilton Avenue, Torrance, Calif. 90502-1319

(213) 329-8000

Fox Software

118 W. South Boundary, Perrysburg, Ohio 43551

(419) 874-0162

Nantucket Corp.

12555 West Jefferson Blvd., Los Angeles, Calif. 90066

(650) 257-4125

WordTech Systems, Inc.

P.O. Box 1747, Orinda, Calif. 94563

(415) 254-0900

 USING THE COMMAND AND FUNCTION REFERENCE

The dBASE® Language Handbook 18 Back to CONTENTS

USING THE COMMAND AND

FUNCTION REFERENCE

The reference section is divided into command and function entries. Each entry has some or all of

the following material:

• COMMAND OR FUNCTION NAME

• DIALECTS

• RETURN VALUE (functions only)

• SYNTAX

• DEFINITION

• RECOMMENDED USE

• EXAMPLE

• SPECIAL USES

• LIMITS AND WARNINGS

• VARIATIONS

• CROSS REFERENCE TO RELATED COMMANDS AND FUNCTIONS

At the top of the page, the keyword indicates the command or function. Keywords are the basis

for alphabetizing the references.

Dialects lists the database systems that contain the command or function. Function entries indicate

the data type of the return value.

The syntax notation shows the command or function, its options, and its arguments in an

abbreviated form. The notation uses the following symbols:

 [] Contains optional arguments. (Do not type the brackets).

< > Contains an argument. (Do not type the brackets).

= () Delimits function arguments. (You must type the parentheses).

a/b Either a or b

<exp> Expression with a data type determined by context.

<exp1>,.....n Contains from 1 to n expressions in a list; expressions are separated by commas

and are limited in length to 254 characters. The list may contain different data

types, depending on context.

<expN> Numeric expression (decimal integer). May include the digits 0 through 9, a

negative sign, and a decimal point; or scientific notation (except Clipper) in the

form xe+y (10 to the yth power times x). For example, 5e+4 equals 10 to the 4th

power times 5, or 50,000.

<expC> Character expression.

 USING THE COMMAND AND FUNCTION REFERENCE

The dBASE® Language Handbook 19 Back to CONTENTS

<expD> Date expression, in the form mm/dd/yyyy.

<expF> Floating point numeric. IEEE 754 real floating point (dBASE IV only).

<expL> Logical expression, evaluating to true or false; or a logical constant in the form

.T., .t., .F., or .f. (period delimiters are required).

<N> Numeric constant.

Note that expressions may consist of literal strings, numeric or logical constants, literal dates

delimited with braces (dBASE IV only), or fields and memory variables that contain data of these

types.

Occasionally, descriptions appear instead of the terse <exp> notation. For example, the RUN

command has the argument <operating system command> instead of <expC>. Other such

descriptions include:

<comment> Text embedded in a program. See commands NOTE, *, and &&

<condition> Logical expression evaluating to true or false. Same as <expL>

<coord> Screen coordinate, consisting of a row and column number

<expression list> Expressions in a list separated by commas; sometimes specified as

<exp1>,.....n

<statement> Any valid dBASE command or function.

The descriptions make the notation more readable.

Keywords appear in upper case.

A definition follows, summarizing the function or command. The definition also explains any

special notation in the syntax listing. Unless otherwise noted, definitions refer to dBASE III PLUS

usage. Syntactic or semantic variations in the other dialects (including dBASE IV) use dBASE III

PLUS as a baseline since it is the standard subset of them all. Commands or functions unique to a

dialect have their own entries.

After the definition, the recommended use describes a useful context and gives examples.

Program examples follow these conventions:

• Keywords appear in uppercase.

• Memory variables, fields, and command options appear in lowercase.

• Program control structures are indented two spaces.

• Program output appears in boldface.

 USING THE COMMAND AND FUNCTION REFERENCE

The dBASE® Language Handbook 20 Back to CONTENTS

Note that dBASE is not sensitive to case or indentation. These conventions simply make program

logic easier to follow.

To enter and run programs, you must use an editor that produces an ASCII file. Most word

processors have a program editing mode, or can export to an ASCII file. Most specialized program

editors produce only ASCII files. You can also use the editors built into dBASE III PLUS, dBASE

IV, dBXL, and FoxBASE+. Use the command MODIFY COMMAND to begin editing.

Type the program listings exactly as shown. If a database is required, use the CREATE command

to create it. Program listings generally illustrate a single command, and therefore may not represent

a complete operation. Code fragments that are not complete programs may show lines marked by

an asterisk that represent other commands or modules you must add. Program fragments may also

name databases that are not described in detail.

Following the examples, Special Uses describes unexpected or innovative usage. Limits and

Warnings highlights potential problems.

Variations describes how commands or functions work in other dialects where they differ from

dBASE III PLUS.

AVERAGE USING THE COMMAND AND FUNCTION REFERENCE

The dBASE® Language Handbook 21 Back to CONTENTS

A Typical Command:

AVERAGE

DIALECTS
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
AVERAGE [<expression list>][<scope>]

[FOR/WHILE <condition>]

[TO <memory variable list>]

DEFINITION:
Computes arithmetic mean of numeric expressions. Uses all fields, or the <expression list> you

specify. Averages all records unless you specify a condition with FOR or WHILE. The results may

go to a memory variable list. In dBASE III PLUS, dBASE IV, FoxBASE+, and dBXL, displays

on the screen when SET TALK is ON.

Example 1—A regional sales office must determine the average mileage logged by traveling

representatives. From the database file MILELOG, average MILES can be calculated FOR a

particular SELLER.

SET TALK on

* Database file MILELOG contains mileage

* information for sales representatives

USE milelog

* MILES and SELLER are fields in MILELOG

AVERAGE miles FOR seller = "James"

32 records averaged

MILES

201

Example 2—In the same sales office, the manager wants a printed mileage report. To produce it,

the AVERAGE miles must be saved in a memory variable that can be either printed or stored in

another database.

SET TALK off

USE milelog

* Store the average of MILES in memory variable AMILES

AVERAGE miles FOR seller = "James" TO amiles

* You can now print AMILES or store it in another database

SET DEVICE TO PRINT

@ 10,10 SAY "A = age miles" + STR(amiles,4,2)

SET DEVICE TO SCREEN

USE summary

Supported dialects

dBASE program code

Program or command output
in bold type

AVERAGE USING THE COMMAND AND FUNCTION REFERENCE

The dBASE® Language Handbook 22 Back to CONTENTS

REPLACE avemiles WITH amiles

VARIATIONS:
Clipper, Quicksilver: AVERAGE requires an expression list and a memory variable list. For

example:

 AVERAGE sales,profits TO sale_ave,prof_ave

puts the average of SALES in memory variable SALE_AVE, and the average of PROFITS in

PROF_AVE.

dBASE IV: You can send AVERAGE results to an existing one-dimensional array. They fill it

starting with the first element until there are no more results, or no more elements. Leftover

elements retain their previous values.

In this example, JAN, FEB, MAR, and APR contain sales figures for a major corporation. The

array RESULTS[] has four elements, one for each field:

PUBLIC results

DECLARE results[4]

USE sales

AVERAGE jan,feb,mar,apr TO ARRAY results

DISPLAY MEMORY

RESULTS pub A [6]

 [1] elem N 3409040.92 (3409040.920000000000)

 [2] elem N 30923.33 (30923.33000000000000)

 [3] elem N 23456.23 (23456.23000000000000)

 [4] elem N 323423.55 (323423.5500000000000)

The dBASE IV CALCULATE command can also do AVERAGEs with its AVG() option.

SEE ALSO:
Commands CALCULATE, DECLARE, and SET TALK ON.

Cross reference

 dBASE® LANGUAGE OPERATORS

The dBASE® Language Handbook 23 Back to CONTENTS

dBASE® LANGUAGE OPERATORS

Arithmetic and string (in order of increasing precedence):
+, - plus, minus

**, ^ exponentiation

*, / multiplication, division

+, - addition, subtraction, or string concatenation

% modulus (Clipper only)

() grouping numbers (Clipper only)

Comparison (no precedence):
< less than

<= less than or equal to

= equal to

>= greater than or equal to

> greater than

<>, # not equal to

$ substring (a$b is true if a is a substring of b)

 == Exact equality (similar to = with SET EXACT ON)

 (Clipper,FoxBASE+ only)

Logical (in order of increasing precedence):
.NOT.,! logical not

.AND. logical and

.OR. logical or

!= logical not equal

() logical grouping

String operators:
+ string concatenation

- string concatenation moving trailing blanks from

 first string to end of second

{ } convert string to date (dBASE IV only)

Operator precedence in evaluating expressions is (descending order):

1) Within parentheses

2) Mathematical and string (as specified)

3) Comparison

4) Logical (as specified)

Evaluation is left to right if not otherwise specified.

 dBASE® LANGUAGE OPERATORS

The dBASE® Language Handbook 24 Back to CONTENTS

Data types

C Character

D Date

F IEEE 754 real floating point (dBASE IV only)

L Logical

M Memo (long text)

N Numeric (decimal integer)

SEE ALSO:
Commands SET EXACT and STORE; function & (macro).

 dBASE® LANGUAGE OPERATORS

The dBASE® Language Handbook 25 Back to CONTENTS

THIS PAGE LEFT INTENTIONALLY BLANK

 SECTION 2

The dBASE® Language Handbook 26 Back to CONTENTS

SECTION 2

 dBASE LANGUAGE COMMANDS

&& SECTION 2

The dBASE® Language Handbook 27 Back to CONTENTS

&&

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
[<statement>] && [<comment or note>]

DEFINITION:
Lets you add program notes to the end of an executable program statement. Text after && is

ignored at runtime. A double ampersand may also start a comment line.

RECOMMENDED USE:
Notes are invaluable for maintaining programs. They act as reminders, and let you keep track of

changes. Use && to put notes in a program's margin.

Example—A manufacturing control program contains notes describing what it is doing.

DO WHILE enter && ENTER is true when user wants to add record

 mspace = SPACE(10) && Create variable to hold user response

 * <More statements>

ENDDO

See command NOTE for another example.

LIMITS/WARNINGS:
A semicolon at the end of a note continues it onto the next line. Be careful. If you put a command

on the next line, dBASE ignores it. (The semicolon is the dBASE line continuation character).

Program notes can slow the execution of dBASE III PLUS and dBXL programs. Such slowing is

negligible unless you use extensive notes between commands, or within DO WHILE loops that

parse them repeatedly.

The compilers strip program notes from their runtime modules.

VARIATIONS:
Clipper: Does not treat a semicolon in a note as a continuation character.

dBXL, Quicksilver: Treats text to the right of &&\ as an executable statement.

This lets you put dBXL-specific or Quicksilver-specific statements in programs running on other

systems. For example, Clipper, dBASE III PLUS, dBASE IV, and FoxBASE+ treat

&&\ DOSINT mvar

&& SECTION 2

The dBASE® Language Handbook 28 Back to CONTENTS

as a program note. You must enable this feature in dBXL by putting COMMENT=ON in

CONFIG.XL.

You can disable this feature by using the -\ option when compiling your application. Quicksilver

will then ignore statements after the &&\.

SEE ALSO:
Commands * and NOTE; Appendix 3, "Sensing the Environment."

* SECTION 2

The dBASE® Language Handbook 29 Back to CONTENTS

*

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
* <program note or comment>

DEFINITION:
Marks a program line as non-executable, that is, a note or comment.

Same as NOTE.

SEE ALSO:
Commands && and NOTE.

*QSOFF...*QSON SECTION 2

The dBASE® Language Handbook 30 Back to CONTENTS

*QSOFF...*QSON

DIALECTS:
Quicksilver only.

SYNTAX:
*QSOFF

 <statements>

*QSON

DEFINITION:
Causes program statements to be disregarded.

*QSOFF directs Quicksilver to ignore subsequent text. *QSON resumes normal execution.

Other systems treat *QSOFF and *QSON as program notes.

RECOMMENDED USE:
Normally, Quicksilver cannot compile unsupported commands such as EDIT and BROWSE, even

if they are "hidden" by the special memory variables XQUICKS or XNATIVE, or in conditional

structures that never execute. However, *QSOFF and *QSON let you compile and run applications

containing unsupported commands.

Example—A program designed for both dBXL and Quicksilver includes two routines for editing

a file. Running under dBXL, it uses the BROWSE command. Compiled with Quicksilver, it uses

memory variables to GET data (Quicksilver doesn't have BROWSE). *QSOFF and *QSON hide

the BROWSE statement from the compiler.

 PUBLIC xquicks

 IF xquicks

 @ 10,10 SAY "Description " GET descrip

 @ 11,10 SAY "Serial number" GET serial

 READ

 ELSE

 *QSOFF

 BROWSE

 *QSON

 ENDIF

SEE ALSO:
Commands &&, *, and NOTE; Appendix 2, "Sensing the Environment."

!/RUN SECTION 2

The dBASE® Language Handbook 31 Back to CONTENTS

!/RUN

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
!/RUN <operating system command>/<external program>

DEFINITION:
Executes a single operating system command from within a program. Same as RUN.

SEE ALSO:
Command RUN.

?/?? SECTION 2

The dBASE® Language Handbook 32 Back to CONTENTS

?/??

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
?[?] <exp1>[,<exp2>,<exp3>,...]

DEFINITION:
? evaluates expressions and expression lists and displays their values on the next line. ?? displays

them on the same line. ? alone displays or prints a blank line.

DEFAULT:
? directs output to the screen. To direct it to a printer as well, use SET PRINT ON. To direct it to

the printer only, use SET PRINT ON and SET CONSOLE OFF.

RECOMMENDED USE:
In the interactive mode, use ? to evaluate numeric, string, and date expressions. It also evaluates

functions that give environment and database information. In programs, use ? to produce simple

list-oriented reports.

SPECIAL USE:
CHR(7) is the ASCII character that rings the system bell, producing a short "beep." Use ?? CHR(7)

in programs to ring the bell without moving the display up a line. This is useful for warnings and

prompts.

EXAMPLES:
Example 1—SORTing a database file requires free disk space up to three times the file's size.

From the interactive prompt, use ? and DISKSPACE() to find out how much space is available.

The result appears on the next line.

. ? DISKSPACE()

9877504

Example 2—A towing company must generate lists of vehicles towed and stored for major clients

(such as the port authority and the police department). The following program gathers data from

file MAINTOW and prints it using ?. The example shows several uses of ? to evaluate and display

expressions.

USE maintow

SET CONSOLE off && Turn off screen output

SET PRINT on && Turn on printer output

* Data items with different types must be converted to the same type

* to be concatenated. DTOC() converts MTODAY from date to character

?/?? SECTION 2

The dBASE® Language Handbook 33 Back to CONTENTS

? "DATE: " + DTOC(mtoday)

* Memory variable GETCLIENT holds name of the client passed from a

* calling program. The macro function (&) evaluates GETCLIENT within a string

? "VEHICLES TOWED and STORED FOR &getclient"

? "--"

DO WHILE .NOT. EOF() && Continue until End of File

 * Print only records for which field ASSIGNOR equals GETCLIENT

 IF UPPER(assignor) = getclient

 ? " Owner: " + SUBSTR(reg_fname,1,1),reg_lname

 ? " Vehicle: " + year,make,model,tag_state,tag_num

 ? " VIN: " + vin_num

 ? " Tow date: " + DTOC(tow_date)

 ENDIF

 ?

 SKIP && Move to the next record

ENDDO

?? CHR(7)

? "**End of VEHICLES TOWED and STORED FOR &getclient **"

EJECT && Eject the paper

SET PRINT off

SET CONSOLE on

VARIATIONS:
dBASE IV: The ?/?? command has the four options PICTURE, FUNCTION, STYLE, and AT in

the form:

?/?? [<expression 1>] [PICTURE <format>]

[FUNCTION <format>] [AT <expN>] [STYLE]]

 [,<expression 2>...]

The AT option lets you specify the column at which to print the expression.

The STYLE option lets you control printed output by specifying bold, italic, underline, superscript,

and subscript. You can also specify fonts 1 through 5 as defined in your CONFIG.DB file.

The STYLE option depends on the installed printer driver. If it does not support a font, the output

prints normally.

Use the STYLE option to change fonts for individual data items. For example, to print a report

heading in boldface at column 15, use the following:

rpthead = "Marigold Software Corp. Annual Report"

? rpthead STYLE "B" AT 15

To change a document's overall typestyle, use the system variables _pscode and _pecode. To

change blocks of text within a document, use ???.

?/?? SECTION 2

The dBASE® Language Handbook 34 Back to CONTENTS

The PICTURE and FUNCTION options let you use templates and functions to format output.

PICTURE lets you use templates and functions together, in the form:

? <exp> PICTURE "@<function> <template>"

FUNCTION allows only a function, in the form:

? <exp> FUNCTION "<function>"

With ?/??, you can use all templates available in the @...SAY command. However, there are only

eight valid functions.

Functions for use with Numeric Data

$
Displays numbers with a floating currency symbol (a dollar sign by default). SET CURRENCY

RIGHT makes the symbol appear on the right. SET CURRENCY LEFT (the default) makes it

appear on the left.

amount = 844.33

? amount FUNCTION "L"

 $844.33

B
Left justifies numeric data.

? daysleft PICTURE "@B" && or ? daysleft FUNCTION "B"

22

L
Displays numbers with leading zeros.

amount = 844.33

? amount FUNCTION "L"

000000000000000844.33

Functions for Long Character Fields (data exceeds the PICTURE template).

H<expN>
Should format a character string to fit horizontally within length <expN>, but doesn't work in

dBASE IV version 1.0.

V<expN>
Formats a character string to fit within length <expN>. It wraps text to subsequent lines if it

exceeds the width, creating a vertical column.

mstring = "Please enter your name and address in the space below"

?/?? SECTION 2

The dBASE® Language Handbook 35 Back to CONTENTS

? mstring FUNCTION "@V10"

Please

enter your

name and

address in

the space

below

Functions for Short Character Fields (data does not exceed template).

J
Right justifies text within a field. Overrides the _alignment system variable.

mprompt1 = "Name: "

mprompt2 = "Address: "

mprompt3 = "City: "

* The ! template converts characters to uppercase

? mprompt1 PICTURE "@J !!!!!!!!!!!!!!!!!!!!!!!!!!!!"

? mprompt2 PICTURE "@J !!!!!!!!!!!!!!!!!!!!!!!!!!!!"

? mprompt3 PICTURE "@J !!!!!!!!!!!!!!!!!!!!!!!!!!!!"

 NAME:

 ADDRESS:

 CITY:

T
Removes leading and trailing blanks from a field.

mname = " Household Construction Corp. "

? mname FUNCTION "T"

Household Construction Corp.

Functions for both Numeric and Short Character Fields

I
Centers numeric or character data within a field. Use it in reports to produce centered columns.

Overrides the _alignment system variable.

With character data:

USE companies

? cname1 PICTURE "@I XXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

? cname2 PICTURE "@I XXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

? cname3 PICTURE "@I XXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

 IBM International

 Xerox

 Compaq Computer Corp.

With numeric data:

?/?? SECTION 2

The dBASE® Language Handbook 36 Back to CONTENTS

USE sales

? jan FUNCTION "I"

? feb FUNCTION "I"

? mar FUNCTION "I"

 9837.22

 33.00

 422.00

SEE ALSO:
Commands @, ???, SET CONSOLE, SET DEVICE, SET PRINT, and SET SPACE.

??? SECTION 2

The dBASE® Language Handbook 37 Back to CONTENTS

???

DIALECTS:
dBASE IV only.

SYNTAX:
??? <expC>

DEFINITION:
Sends control codes to the printer without changing the row and column position (PROW() and

PCOL()).

??? ignores the installed printer driver.

??? also prints text.

You can send control codes to the printer in three ways: 1) use CHR() to send ASCII characters

directly; 2) use control code brace delimiters to send mnemonic codes or ASCII characters; 3)

combine ASCII characters with letters using either CHR() or brace delimiters.

Control codes vary with printer model and brand. See your printer's manual listing.

Control character specifiers can be arguments of the ??? command. You can use either the

mnemonic specifier or its ASCII value, for example "{CTRL-R}" or "{18}". You must enclose

the specifier in quotation marks.

The number in each column is the ASCII value. The form in braces is the specifier. Some codes

have alternate specifiers (separated by /). Use only one.

 0 {NULL}/{CTRL-@} 11 {CTRL-K} 22 {CTRL-V}

 1 {CTRL-A} 12 {CTRL-L} 23 {CTRL-W}

 2 {CTRL-B} 13 {RETURN}/{CTRL-M} 24 {CTRL-X}

 3 {CTRL-C} 14 {CTRL-N} 25 {CTRL-Y}

 4 {CTRL-D} 15 {CTRL-O} 26 {CTRL-Z}

 5 {CTRL-E} 16 {CTRL-P} 27 {ESC}/{ESCAPE}/{CTRL-[}

 6 {CTRL-F} 17 {CTRL-Q} 28 {CTRL-U}

 7 {BELL}/{CTRL-G} 18 {CTRL-R} 29 {CTRL-U}

 8 {BACKSPACE}/{CTRL-H} 19 {CTRL-S} 30 {CTRL-U}

 9 {TAB}/{CTRL-I} 20 {CTRL-T} 31 {CTRL-U}

10 {LINEFEED}/{CTRL-J} 21 {CTRL-U} 127 {DEL}/{DELETE}

RECOMMENDED USE:
Use ??? to change typestyles for blocks of text within a report, and to change global characteristics

such as page length and linespace. Also use it to access printer capabilities not supported by the

driver.

??? SECTION 2

The dBASE® Language Handbook 38 Back to CONTENTS

There are three other ways to control print characteristics: the STYLE options of the ? and ??

commands, the system variables _pecode and _pscode, and the CHR() function. Use _pecode and

_pscode with the PRINTJOB command to control entire reports. Use ?...STYLE to change

typestyles for individual lines. Use CHR() as an alternative to the STYLE option to embed control

codes in character strings.

Example—An accounts receivable program prints invoices using several typestyles. The heading

prints in expanded mode, the detail in compressed double strike, and the notices at the end in

emphasized pica.

* Control codes for Epson printers

SET CONSOLE off

SET PRINT on

??? "{CTRL-N}"+"Invoice " + DTOC(DATE()) && Turns on expanded mode

??? "{CTRL-O}" && Turns on compressed mode

?

?

? "Service " + STR(service,9,2) AT 01

?? "Mileage " + STR(mileage,9,2) AT 40

? "Materials" + STR(material,9,2) AT 01

?? "Hourly " + STR(hourly,9,2) AT 40

? "Postage " + STR(postage,9,2) AT 01

?? "Freight " + STR(freight,9,2) AT 40

? "Labor " + STR(labor,9,2) AT 01

?? "Meals " + STR(meals,9,2) AT 40

? "Travel " + STR(travel,9,2) AT 01

?? "TOTAL " + TRANSFORM(mtotal,"@$ ###,###.##") AT 40

?

??? "{CTRL-R}{ESC}E" && Cancels compressed mode/turns on emphasized

?

? "Your account is now 120 days past due. Please remit today."

? "If you have any questions, please call our toll free hotline."

?

* Cancel emphasized mode. You could also have used the

* ASCII characters "{27}F" or CHR(27)+"F"

??? "{ESC}F"

?

SET PRINT off

SET CONSOLE on

Example—A programmer creates custom drivers that the user can install for a particular printer.

Each one consists of a set of memory variables containing ASCII characters.

empha_on = CHR(27) + "E" && Turn emphasized on

empha_off = CHR(27) + "F" && Turn emphasized off

exp_on = CHR(27) + "W1" && Turn expanded on

exp_off = CHR(27) + "W1" && Turn expanded off

??? SECTION 2

The dBASE® Language Handbook 39 Back to CONTENTS

The driver is saved in a memory file (SAVE TO epson), then later restored with the command

"RESTORE FROM epson".

In a report, the program uses the restored variables with the ??? command:

??? exp_on && Turn emphasized on

? "Kalman Communications Annual Report"

* <More text>

??? exp_off

SEE ALSO:
Commands ?, @...SAY, PRINTJOB, SET DEVICE, and SET PRINT; function CHR().

@ SECTION 2

The dBASE® Language Handbook 40 Back to CONTENTS

@

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
@ <coord> [[SAY <exp> [PICTURE <format>] [FUNCTION <format>]]

[[GET <exp> [PICTURE <format>]] RANGE <expN1>,<expN2>] / [CLEAR]]

DEFINITION:
@ ("AT") indicates position <coord> on the screen or on a printout. It places output (SAYs) on

the screen or on printed reports, and input fields (GETs) on the screen.

<coord> represents a coordinate pair, R and C, where R is the row (0 to 24 from top to bottom),

and C is the column (0 to 79 from left to right). For printed reports, ranges are limited to the page

size.

DEFAULT:
@ directs output to the screen, unless you redirect it with the SET DEVICE command.

OPTIONS:

@ <coord>
@ <coord> alone clears the line to the right of <coord>. For example;

@ 10,9

clears line 10 to the right of column 9.

@ <coord> SAY <exp>
evaluates and displays an expression. For example;

@ 5,10 SAY "Please enter today's date:"

displays the message "Please enter today's date: " starting at line 5, column 10.

@ <coord> SAY <exp> PICTURE <format>
The PICTURE option formats the SAY output with templates and functions. A PICTURE can add

attributes such as commas, dollar signs, and plus signs. It can also manipulate date formats, scroll

fields, and do case conversion.

@ SECTION 2

The dBASE® Language Handbook 41 Back to CONTENTS

@ <coord> SAY <exp> FUNCTION <format> PICTURE <format>
 GET<exp> FUNCTION <format> PICTURE <format>
FUNCTION provides an alternate way to specify functions in SAYs and GETs. Within a

PICTURE <format>, you can use both templates and functions to format SAYs and GETs.

FUNCTION lets you separate function codes and templates into separate clauses for more

flexibility and greater readability. FUNCTIONs do not require the @ symbol.

@ <coord> SAY <exp> PICTURE <format> GET <exp> PICTURE <format>
GET displays an expression (field, memory variable, or array element). When you issue READ

after GETs, the cursor returns to the first GET to allow the user to edit the field or variable. The

GET appears one space after the SAY expression on the same line.

A PICTURE associated with a GET formats both input and output. As you edit the GET field with

a PICTURE, the data you enter assumes the specified format.

PICTURES
A PICTURE consists of a character string containing function or template codes. The character

string may be a literal, a character memory variable or field, or some other character expression.

Functions consist of the @ symbol and function codes. Templates consist of string literals and

template codes. A PICTURE must be of character type. (If you use the FUNCTION keyword, the

@ symbol is unnecessary).

Both function and template codes appear below.

FUNCTIONS
Functions operate on an entire SAY or GET. They can be combined.

Function Codes that Work Only with Character Data

!
Allows any character and converts letters to uppercase. Used with SAY and GET statements.

make = "Chevrolet"

@ 22,25 SAY make PICTURE "@!"

CHEVROLET

A
Allows letters only (no spaces or other characters). Used only with GET statements.

lookup = SPACE(20)

@ 13,22 GET lookup PICTURE "@A"

READ

BaldersonPeteM

@ SECTION 2

The dBASE® Language Handbook 42 Back to CONTENTS

R
Displays literal characters in the template, but does not save them in the field. Used only with GET

statements.

mphone = SPACE(12)

@ 09,15 SAY "Phone: " GET mphone PICTURE "@R 999-999-9999"

READ

619-555-1222

? mphone

6195551212

In all systems except dBXL, when a literal is the last character of an @R template, it is truncated

as follows:

SET DELIMITERS on

mvar = SPACE(6)

@ 01,10 SAY "Enter id number" GET mvar PICTURE "@R (999999)"

READ

Enter id number :(:

To avoid this problem, add a space to the GET variable.

S<n>
Limits a character GET display to <n> characters and scrolls wider input horizontally. In scrolling,

the previous characters move to the left and out of view. By moving the cursor, you can see <n>

characters at a time. S<n> affects only the display, not the input string. In this example, the user

enters a vehicle identification number longer than the defined width of 10. Although only the last

10 characters show, the memory variable VIN_NUM contains the complete string.

vin_num = SPACE(50)

@ 01,01 SAY "Vehicle ID: " GET vin_num PICTURE "@S10"

READ && User enters 2XD28283XX983838XXXZZZ and field shows only 10 chars

3838XXXZZZ

? vin_num

2XD28283XX983838XXXZZZ

Function Codes that Work with Date and Character Data

D
Displays dates in MM/DD/YY format (American date format). Used with SAY and GET

statements.

enddate = SPACE(8)

@ 22,03 SAY "Ending date: " GET enddate PICTURE "@D"

READ

 08/23/87

@ SECTION 2

The dBASE® Language Handbook 43 Back to CONTENTS

E
Displays dates in DD/MM/YY format (European date format). Used with SAY and GET

statements.

Without PICTURE:

begin = DATE()

@ 24,01 SAY "Starting date: " GET begin

READ

09/29/87

With PICTURE:

@ 24,01 SAY "Starting date: " GET begin PICTURE "@E"

READ

29/09/87

Function Codes that Work Only with Numeric Data

 (
Displays negative numbers inside parentheses. Used only with SAY statements.

@ 10,10 SAY -283.22 PICTURE "@("

(283.22)

B
Left justifies numeric data. Used with GET and SAY statements.

Without PICTURE:

daysleft = 22

@ 10,00 SAY daysleft

22

With PICTURE:

@ 10,00 SAY daysleft PICTURE "@B"

22

C
Displays CR (credit) after a positive number. Used only with SAY statements.

@ 22,01 SAY 9828.44 PICTURE "@C"

9828.44 CR

X
Displays DB (debit) after a negative number. Used only with SAY statements.

@ SECTION 2

The dBASE® Language Handbook 44 Back to CONTENTS

@ 10,10 SAY -83207 PICTURE "@X"

83207 DB

Z
Displays blank field instead of zero. Used with GET and SAY statements.

Without PICTURE:

quantity = 0

@ 02,05 SAY quantity

 0

With PICTURE:

@ 02,05 SAY quantity PICTURE "@Z"

Now you see it, now you don't!

TEMPLATES

Template characters operate on the character or number in the exact corresponding position of a

GET or SAY. Different characters may appear in the same PICTURE.

Templates that Work Only with Character Data

!
Converts letters to uppercase. Does not affect other characters. Used with GET and SAY

statements.

@ 23,10 SAY "Press space bar" PICTURE "!!!!!!!!!!!!!!"

 PRESS SPACE BAR

A
Allows letters only. Used only with GET statements.

 partcode = SPACE(10)

 @ 11,60 SAY partcode PICTURE "999AAAAA9A"

 124BdEFI5Z

L
Makes characters appear as logical data. Allows only the letters "T", "t", "F", "f", "Y", "y", "N",

and "n". Used only with GET statements.

 continue = " "

 @ 10,10 SAY "Continue? " GET continue PICTURE "L"

 READ

 Y

@ SECTION 2

The dBASE® Language Handbook 45 Back to CONTENTS

N
Allows letters and numbers. Used only with GET statements.

partcode = SPACE(10)

@ 11,60 SAY partcode PICTURE "NNNNNNNNNN"

 1A399CCDDR

X
Allows any character. Used with GET and SAY statements.

partcode = SPACE(10)

@ 11,60 GET partcode PICTURE "999AXXXA9A"

 151D4ZmD2D

Templates that Work with Character and Numeric Data

Allows only numbers, spaces, signs, and decimal points. Used only with GET statements.

cashflow = SPACE(10)

@ 03,03 SAY "Enter cash flow: " GET cashflow PICTURE "##########"

READ

-964573821

9
Allows only numbers for character data. Allows numbers and signs for numeric data. Used only

with GET statements.

 ssn = SPACE(11)

 @ 08,02 SAY "Social Security No.: " GET ssn PICTURE "999-99-9999"

 READ

 001-974-2938

Templates that Work with Character and Logical Data

Y
Allows only logical "Y", "y", "N", and "n", representing logical .T. and .F. Converts y and n to

uppercase. Used with GET and SAY statements.

continue = .t.

@ 05,04 SAY "Do you want to proceed? "GET continue PICTURE "Y"

READ

Y

Templates that Work Only with Numeric Data

@ SECTION 2

The dBASE® Language Handbook 46 Back to CONTENTS

$
Displays the currency symbol (dollar signs) in place of leading zeroes. Used with GET and SAY.

Used in reports to highlight totals.

@ 06,21 SAY 27477 PICTURE "$$$$$$$$"

$$$27477

Note: FoxBASE+ prints only a single floating dollar sign.

* (an asterisk)
Displays asterisks in place of leading zeroes. Used with GET and SAY. A common application is

in check printing to make amounts difficult to change.

@ 06,21 SAY 27477 PICTURE "********"

***27477

. (a period)
Marks decimal point position. Decimal remains fixed during a READ. Used with GET and SAY.

@ 06,21 SAY 27477 PICTURE "99999.99"

27477.00

If you use a PICTURE to GET a number with decimal places, you must include the decimal point

in the template.

, (a comma)
Inserts a comma if number extends left far enough. Used with GET and SAY.

@ 06,21 SAY 8327477 PICTURE "9,999,999.99"

8,327,477.00

PICTURE Tips:
Non-template characters used in a PICTURE appear within the field at their specified positions.

In a GET, the cursor skips over them, preventing the user from editing them. For example, when

formatting a telephone number, you may use parentheses and hyphens in the template. When the

user edits the formatted GET, the cursor skips over those characters.

 mphone = SPACE(12)

 @ 09,04 "Enter phone: " GET mphone PICTURE "(999)999-9999"

 READ

 () -

When you enter a telephone number, it looks like this:

 (619)555-1212

@ SECTION 2

The dBASE® Language Handbook 47 Back to CONTENTS

If you specify the "R" function, non-template characters appear in the GET, but are not stored in

the variable, as follows:

 @ 09,04 "Enter phone: " GET mphone PICTURE "@R (999)999-9999"

 READ

 () -

The telephone number appears formatted on the screen, but the actual variable or field appears like

this:

 6195551212

Combining Function Codes and Templates

When combining function codes and templates in a <format>, function codes appear first. A space

indicates the end of the function code and the beginning of a template. For example, using the Z

function, the following PICTURE displays a numeric value as all blanks if its value is zero.

Template code 9, together with literal commas, displays the number in a standard form:

 testno = 2948383

 @ 10,10 SAY testno PICTURE "@Z 99,999,999.99"

 2,948,383.00

@ <coord> SAY <exp> PICTURE <format> GET <variable> PICTURE <format>
 RANGE <expN1>,<expN2>
RANGE defines the high and low date or numeric values the user may enter into a GET. For

example,

 items = 0

 @ 05,05 SAY "Enter number of items: " GET items RANGE 0,99

 READ

displays the message and allows a number in the range from 0 to 99. The following checks a range

of dates:

today = CTOD(' / / ')

@ 05,05 SAY "Date: " GET today RANGE CTOD('01/01/86'),CTOD('12/30/87')

READ

In all systems other than dBASE IV, you must use the CTOD() (character-to-date) function for

constant dates in a RANGE. In dBASE IV, you can use the brace delimiters ({ }) to indicate a

date. Invalid input produces a message on line 0 unless you SET SCOREBOARD OFF. The user

can then reenter the value. In a RANGE option, you may omit either the upper or lower boundary.

However, the comma must be there. For example, the command:

@ 05,05 SAY "Enter date: " GET today RANGE ,CTOD('12/30/87')

@ SECTION 2

The dBASE® Language Handbook 48 Back to CONTENTS

prompts the user to enter a date no later than 12/30/87. In dBASE IV, the equivalent statement

would be:

@ 05,05 SAY "Enter date: " GET today RANGE ,{12/30/87}

Note: Pressing ENTER before modifying a RANGE-checked variable circumvents the RANGE

check. So does pressing ESCape. Both thus allow storage of an invalid default value. The solution

to this problem is to assign a default value that falls within the range, or to validate the data after

the read.

@ <coord> CLEAR
Erases the screen from the indicated coordinate to the lower right corner. Note: you can substitute

the CLEAR option of the @ command for CLEAR itself. For example, issuing CLEAR in a user

defined function cancels active GETs. @ 0,0 CLEAR erases the screen, but leaves GETs intact.

@ <coord> CLEAR TO <coord2>
Erases a box on the screen from <coord> at the top left corner to <coord2> at the bottom right

corner.

@ <coord> TO <coord2> [DOUBLE]
Draws a single line box on the screen with the top left corner at <coord> and the bottom right

corner at <coord2>. The result is a horizontal line if the rows are the same and a vertical line if the

columns are the same. For example, @ 10,10 to 10,30 draws a horizontal line on row 10. Specify

DOUBLE for a double line box.

RECOMMENDED USE:
Use @ in programs to design input screens and format reports. The PICTURE and RANGE options

provide the first line of defense in data validation.

Example—A human resource information system (HRIS) uses @ to present carefully laid-out,

reliable data entry screens. The @ command displays text, prompts, and boxes. The careful use of

PICTURE functions and templates prevents entry of erroneous data.

STORE SPACE(20) TO lastname,address,city

state = SPACE(2)

zip = SPACE(10)

DO WHILE .t.

 SET COLOR TO /w && Highlight prompt with black on white display

 @ 06,02 SAY " ENTER EMPLOYEE INFORMATION..."

 SET COLOR TO w

 * Leave SAYs outside DO WHILE to prevent flickering during loop

 @ 07,01 TO 13,40 && Draw single line box around input area

 * Function converts all letters to upper case

 @ 08,02 SAY " Last name: " GET lastname PICTURE "@!"

 @ 09,02 SAY " Address: " GET address

 @ 10,02 SAY " City: " GET city

 * Template converts two letters to upper case

 @ 11,02 SAY " State: " GET state PICTURE "!!"

@ SECTION 2

The dBASE® Language Handbook 49 Back to CONTENTS

 * Template allows numbers, spaces and signs. Hyphen is literal

 @ 12,02 SAY "Postalcode: " GET pcode PICTURE "99999-9999"

 READ

 complete = .F.

 * Get LOGICAL response using "Y" and "N" instead of "T" and "F"

 @ 14,02 SAY "Is information complete? (Y/N)" GET complete PICTURE "Y"

 READ

 IF complete

 CLEAR

 * <replace statements>

 EXIT

 ENDIF

ENDDO

LIMITS/WARNINGS:
@ can display output on the screen anywhere and in any order. However, printers require you to

print linearly, from the top to the bottom of the page. Printing at a previous coordinate causes a

page eject.

dBASE III PLUS, dBASE IV, and FoxBASE+ reserve line 0 to display status information. To use

it in programs, first issue the command SET SCOREBOARD OFF.

VARIATIONS:
Clipper: Does not allow the FUNCTION option of @...SAY.

Clipper, dBASE IV, dBXL, FoxBASE+, Quicksilver:

@ <coord> SAY <exp> GET <variable> PICTURE <format> VALID <condition>
The VALID option prevents the user from exiting a GET until he or she provides a valid entry.

Pressing ESC before modifying the <variable> terminates the GET without validation. The

<variable> retains its original value, even if it would not satisfy <condition>. Also, ESCape

terminates the GET, restoring the default value, regardless of its validity.

The example below requires the user to enter "A", "B", or "C":

 response = " "

 @ 05,05 SAY "Your Choice? (A/B/C) (Y/N) " ;

 GET response PICTURE "!" VALID (response $"ABC")

 READ

Think of the statement as meaning "Get a memory variable called RESPONSE containing a letter

"A," "B," or "C". PICTURE "!" forces uppercase. The dollar sign operator ($) means "contained

in." The VALID expression enforces the proper entry.

@ SECTION 2

The dBASE® Language Handbook 50 Back to CONTENTS

The VALID expression may also include internal functions and user defined functions, as long as

they RETURN a value of .T. or .F.. User defined functions must not CLEAR the screen, CLEAR

GETS, or issue a READ command.

dBASE III PLUS and early versions of dBXL (before version 1.2) do not have a VALID clause;

however, you can simulate it with a DO WHILE loop. The code below prompts the user for an

answer of "A", "B", or "C". If RESPONSE does not contain one of those letters, the loop repeats.

Unfortunately, this technique allows only one GET at a time:

 * Initialize RESPONSE variable

 response = " "

 * Display prompt outside of loop to prevent flickering

 @ 05,05 SAY "Your Choice? (A/B/C)"

 * "Do while RESPONSE does not contain A, B, or C."

 DO WHILE .NOT. response $ "ABC"

 * Template converts letter to uppercase

 @ 05,19 GET response PICTURE "!"

 READ

ENDDO

Clipper, FoxBASE+:

@ <coord> PROMPT <exp> [MESSAGE <exp>]
Produces "bounce bar" menu prompts activated by the MENU TO command. See MENU TO.

@ <coord1>,<coord2> BOX [<expC>]
Draws a box from <coord1> at the top left corner to <coord2> at the bottom right. <expC> may

contain up to nine characters, one for each corner, each side, and the background. This form of the

@command draws a single line if you do not specify <expC>. The following command draws a

box from coordinate 10,10 to 15,30 using the numbers 1 through 8 in the box frame, and 9 as a

background character. (The numbers are examples to guide an actual design).

 @ 10,10,15,30 BOX "123456789"

This command produces the following image:

 122222222222222222223

 899999999999999999994

 899999999999999999994

 899999999999999999994

 899999999999999999994

 766666666666666666665

dBASE III PLUS: FUNCTION must precede PICTURE when you use them together.

dBASE IV:

@ <coord> [[SAY <exp> [PICTURE <format>] [FUNCTION <format>]]

@ SECTION 2

The dBASE® Language Handbook 51 Back to CONTENTS

 [GET <exp> [[OPEN] WINDOW <window name>]

 [PICTURE <format>] [FUNCTION <format>]

 [RANGE <expN1>,<expN2>] [VALID <condition>] [ERROR <expC>]]

 [WHEN <condition>] [DEFAULT <exp>] [MESSAGE <expC>]

 [COLOR [<standard>][,<enhanced>]]]

dBASE IV provides several additional options for SAYs and GETs:

COLOR—Designates the color for SAYs and GETs, temporarily overriding the SET COLOR

command. <standard> affects the SAY colors. <enhanced> affects the GET colors.

You can specify either attribute or both. If you specify only <enhanced>, use a comma to indicate

no <standard> attribute as follows:

@ 10,10 SAY "Enter last name:" GET lname COLOR ,GR+/b

See SET COLOR for more information on color attributes.

DEFAULT <exp>—An expression containing the initial value of the GET field. The expression

must match the field's data type. DEFAULT is valid only in a format file when you are

APPENDing records.

ERROR <expC>—A character expression to display when the VALID condition is not satisfied.

It overrides the internal error message.

FUNCTION <format>—Lets you specify PICTURE formatting functions without using the @

sign as in the PICTURE <format> clause. See PICTURE for more information.

MESSAGE <expC>—Displays a message when the user places the cursor on the associated GET.

With SET STATUS ON, the message appears centered on line 24. With SET STATUS OFF, it

appears on the right side of line 0. If you SET SCOREBOARD and STATUS OFF, the MESSAGE

will not appear.

WINDOW <window name>—Specifies the window to open when the user presses Ctrl-Home to

edit a memo field. Without this option, memo editing defaults to the window defined by SET

WINDOW, or to the full-screen if there is no SET WINDOW. The specified window must be in

memory.

OPEN WINDOW <window name>—Same as WINDOW above, except it does not require the

user to press Ctrl-Home to open the window. The window opens as soon as the READ executes.

Note: the window may overlap other active GETs and other windows.

PICTURE <@format>/FUNCTION <format>—dBASE IV recognizes several PICTURE

function codes besides the standard ones in dBASE III PLUS.

dBASE IV PICTURE/FUNCTION Codes

@ SECTION 2

The dBASE® Language Handbook 52 Back to CONTENTS

^ (exponent symbol)
Converts numbers to scientific notation. Accepts either type N or type F numeric input. A number

in scientific notation has the format:

S.###0...E+###

If the value is negative, S is a minus sign. If it is positive, the sign is omitted. The #s represent

significant digits. The value is padded with zeros to align the notation properly. The number of

zeroes before the E depends on whether the value comes from a field or a memory variable. If

from a field with no decimal places, the number is its length plus one. If the field has decimal

places, the number is its length. If the value is from a memory variable, the number is 20.

For example, the memory variable MTOTAL has a value of 5,753.23. The ^ function converts it

to scientific notation:

 mtotal = 5753.23

 @ 01,01 SAY mtotal PICTURE "@^"

 .575323000000000E+4

$
Displays a currency symbol in front of a number. Works in both GETs and SAYs. Works in GETs

only if you SET CURRENCY LEFT (the default). You can change the currency symbol using the

command SET CURRENCY. You can change the separators (usually commas) using SET

SEPARATOR, and you can change the decimal point with SET POINT.

Programming tip: Use the $ function with a template:

 mtotal = 38383

 @ 10,10 SAY mtotal PICTURE "@$ 999,999.99"

 $38,383.00

M
Lets the user scroll through a list by pressing the space bar. To make a selection, the user then

presses Enter. For example, an office management program lets the operator select a department

by scrolling through a list and pressing Enter.

 mresp = space(20)

 @ 10,10 SAY "Enter department" GET mresp ;

 PICTURE "@M Advertising,Editorial,Software,Marketing,General,Production"

 READ

 ? mresp

 Advertising

I
Centers numeric data within a field. Valid in GETs and SAYs. Used in reports to center columns

of numbers.

@ SECTION 2

The dBASE® Language Handbook 53 Back to CONTENTS

USE sales

@ 01,01 SAY jan PICTURE "@I"

@ 02,01 SAY feb PICTURE "@I"

@ 03,01 SAY mar PICTURE "@I"

This produces the following results:

 9837.22

 33.00

 422.00

J
Right justifies character data in a field.

 message = "WARNING"

 @@15,00 SAY message PICTURE "@J !!!!!!!!!!!!!!!!!!!!!!!!!!"

 WARNING

L
Inserts leading zeroes. Only valid with numeric data in SAYs, for example:

subtotal = 5677

@ 23,25 SAY subtotal PICTURE "@L 999,999.99"

05,677.00

T
Removes leading and trailing blanks from a field.

RANGE—Same as the standard dBASE III PLUS RANGE clause.

VALID <condition>—Same as the Clipper, dBXL, FoxBASE+, or Quicksilver VALID clause.

WHEN <condition>—Lets you edit the associated GET when <condition> is true (.T.). Without

a WHEN clause, you can edit all active GETs (the default). Use WHEN to exclude GETs under

certain conditions. The GET appears, but the cursor skips over it. For example, use WHEN to

establish user levels in an application. You may assign a clerk a level of 5 and a manager a level

of 9. (You can define a PUBLIC memory variable called USERLEVEL containing the value).

When you have a field that only the manager can change, use the command:

 * <More GETs>

 @ 08,02 SAY "Department code: " GET dcode WHEN userlevel = 9

 * <More GETs>

 READ

By making it easy to add field security, WHEN lets you avoid dBASE IV's cumbersome internal

security system.

@ SECTION 2

The dBASE® Language Handbook 54 Back to CONTENTS

Example—A collections management program stores client names, addresses, and amounts due

and past due. A data entry screen uses many @...SAY options to display and edit data.

 CLEAR

 DEFINE WINDOW swindow FROM 10,01 TO 23,79

 SET STATUS ON

 * Get NAME. Do not allow blank field. Display SAY in inverse video

 @ 01,01 SAY "Enter name: " GET name PICTURE "@!" ;

 VALID LEN(TRIM(name))>0 ERROR "Name must not be blank" COLOR n+/w

@ 02,01 SAY "Address : " GET address

@ 03,01 SAY "City : " GET city

* Display scrolling STATE field. Message appears at bottom of screen

@ 04,01 SAY "State : " GET state PICTURE "@M CA,MA,VA,VT,MT" ;

 MESSAGE "Press space bar to see more states"

@ 05,01 SAY "Zipcode : " GET postalcode PICTURE "@!"

@ 06,01 SAY "Telephone : " GET telephone PICTURE "(999) 999-9999"

* Center output

@ 07,01 SAY "Amount due: " GET amount PICTURE "@I"

* Allow editing only when AMOUNT > 100

@ 08,01 SAY "Past due : " GET pastdue PICTURE "@I" WHEN amount > 100

* Edit memo field SALESMEM in window SWINDOW

@ 09,01 SAY "Notes : " GET salesmem WINDOW swindow

READ

@ <coord> TO <coord2> [DOUBLE/PANEL/<border definition>]
 [COLOR <color attribute>]
dBASE IV offers three new border options: PANEL, <border>, and COLOR.

PANEL creates a solid bar border.

<color attribute> lets you define the border's foreground and background colors. It does not affect

the colors inside. If you use the PANEL option, only the foreground color takes effect. See SET

COLOR for more information.

<border definition> lets you define the sides and corners of the border individually. The

definition consists of up to eight keyboard characters or ASCII decimal values in a list, as follows:

SET BORDER TO <t>,,<l>,<r>,<tl>,<tr>,<bl>,

tl______t______tr tl = top left bl = bottom left

| | t = top b = bottom

l r tr = top right br= bottom right

| | l = left

bl______b______br r = right

If you specify only one character, the entire border consists of it. You must delimit keyboard

characters, but not ASCII values, with quotation marks. The border defined here overrides the one

defined by the SET BORDER command.

@ SECTION 2

The dBASE® Language Handbook 55 Back to CONTENTS

To draw a single-line yellow border on a blue background from 10,10 to 20,30, use the command:

@ 10,10 TO 20,30 COLOR GR+/B

To draw a border of asterisks, use the command:

@ 10,10 TO 20,30 "*"

The following statement draws a border using ASCII characters 176 and 178.

@ 10,10 TO 20,30 178,178,178,178,176,176,176,176

See command SET BORDER for more information.

@ <coord1> FILL TO <coord2> [COLOR <color attribute>]
Lets you change the standard foreground and background colors of a screen region. Existing text

appears in the new setting. Subsequent screen output to the region reverts to the previous setting.

See SET COLOR for more information on color attributes.

The region is a rectangle starting at <coord1> and extending to <coord2>. If you omit the COLOR

option, @...FILL TO clears the specified region like the @...CLEAR TO command. To make the

region from 5,5 to 23,35 yellow on blue, use the following command:

@ 5,5 FILL TO 23,35 COLOR GR+/B

dBXL, Quicksilver:

@ <coord> SAY <exp> GET <exp> PICTURE <format> VALID <condition> [HELP <expC>]

The HELP option displays the message in <expC> when the user presses F1 while editing the

corresponding GET variable. The message may be up to 254 characters long. By default, it appears

in the upper right corner of the screen. You can change the location with the SET USERHELP TO

command. To disable HELP messages, SET USERHELP OFF.

Example—A car rental customer wants a particular compact model for a week. The clerk, unable

to remember the exact model code, presses F1 to produce a list on the screen.

* Create End of Line character to produce multi-line messages within a string

eol = CHR(13) + CHR(10)

* Store the message in a memory variable

STORE "E--Economy S-Subcompact " + eol + ;

 "C--Compact M-Midsize " + eol + ;

 "L--Luxury F--Sport " + eol + eol +;

 "Press SPACE BAR to continue" TO codestring

* <statements>

CLEAR

@ 08,10 SAY "Press F1 for more information"

carcode = " "

@ SECTION 2

The dBASE® Language Handbook 56 Back to CONTENTS

@ 10,10 SAY "Enter car code: " GET carcode PICTURE "!" HELP codestring

READ

FoxBASE+:

@ <coord> SAY <exp> PICTURE <format> FUNCTION <format>
 GET <exp> PICTURE <format> FUNCTION <format>
FUNCTION provides an alternate way to specify functions in GETs and SAYs. Within a

PICTURE <format>, you can use both templates and function codes to format GETs and SAYs.

FUNCTION lets you separate function codes and templates into separate clauses for more

flexibility and greater readability.

SEE ALSO:
Commands ?/??, ???, APPEND, MENU TO, SET BORDER, SET COLOR, SET CURRENCY,

SET POINT, SET SEPARATOR, and SET WINDOW; function TRANSFORM().

ACCEPT SECTION 2

The dBASE® Language Handbook 57 Back to CONTENTS

ACCEPT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ACCEPT [<prompt>] TO <memory variable>

DEFINITION:
Lets the user enter character data into a memory variable. If the variable does not exist, it is created

automatically. If the user just presses the Enter key without entering anything, the memory variable

takes the value ASCII 0 (a null string). These features can cause errors if you misspell a name or

accidentally press Enter before typing a value.

DEFAULT:
ACCEPT lets the user enter up to 254 characters on the next available line. It does not display an

input field.

OPTIONS:
ACCEPT displays an optional prompt you define as a character variable or as a string delimited

by single or double quotation marks.

RECOMMENDED USE:
ACCEPT is helpful in simple tasks that do not require sophisticated error trapping or data

validation. Validation is difficult, as ACCEPT does not allow PICTURE functions or templates.

Example—A secretary must search indexed files to find names in an appointment database. Rather

than typing:

. SEEK "Robertson"

. EDIT

the secretary writes a simple program to ACCEPT the name to SEEK:

* FINDNAME.PRG

* Create NAMESEEK for use as a condition in the DO WHILE

nameseek = SPACE(15)

* ReDO the DO WHILE as long as NAMESEEK is not "QUIT."

DO WHILE nameseek # "QUIT"

 CLEAR

ACCEPT "Enter name to find or type 'QUIT': " TO nameseek

 SEEK trim(nameseek) && Trim function strips trailing blanks

 IF FOUND() && If the name exists, then EDIT

 EDIT

ACCEPT SECTION 2

The dBASE® Language Handbook 58 Back to CONTENTS

 ELSE

 WAIT "Name not found" && If name not found, pause

 ENDIF

ENDDO

SPECIAL USES:
If your Clipper, dBASE IV, dBXL, or FoxBASE+ program branches to a user defined function in

a VALID clause, issuing a CLEAR, CLEAR GETS, or another READ clears previously active

GETs. As ACCEPT does not require a READ, you may put it in user defined functions to do

interactive input.

LIMITS/WARNINGS:
ACCEPT does not strictly control input length. Programs using it should allow for a maximum

length string of 254 characters in dBASE III PLUS, dBASE IV, dBXL, and Quicksilver, and 255

in Clipper and FoxBASE+.

SEE ALSO:
Commands INPUT, READ, and STORE.

ACTIVATE MENU SECTION 2

The dBASE® Language Handbook 59 Back to CONTENTS

ACTIVATE MENU

DIALECTS:
dBASE IV only.

SYNTAX:
ACTIVATE MENU <menu name> [PAD <pad name>]

DEFINITION:
Activates a defined pad menu.

By default, pad menus appear as horizontal lists on line 0. You move the cursor with the left and

right arrow keys, making selections with the Enter key.

When activated, the pad menu covers existing text. To deactivate it, press ESC or issue the

DEACTIVATE MENU command. The previous text then reappears.

OPTIONS:
By default, the cursor starts on the first DEFINEd PAD. You can change the starting point with

the PAD <pad name> option.

RECOMMENDED USE:
Use ACTIVATE MENU after you first DEFINE MENU, DEFINE PADs, and specify ON

SELECTIONs.

Example—A library management application displays a bar menu with selections for searching

and updating records. After the menu is defined, the program ACTIVATEs MENU.

DEFINE MENU library

DEFINE PAD sel1 OF library PROMPT "Search for titles"

DEFINE PAD sel2 OF library PROMPT "Record Updates"

ON SELECTION PAD sel1 OF library DO tsearch

ON SELECTION PAD sel2 OF library DO rec_up

ACTIVATE MENU library

PROCEDURE tsearch

* <statements>

PROCEDURE rec_up

* <statements>

SEE ALSO:
Commands ACTIVATE POPUP, ACTIVATE WINDOW, DEACTIVATE, DEFINE MENU, ON

PAD, and SHOW MENU; functions MENU(), PAD(), and PROMPT().

ACTIVATE MENU SECTION 2

The dBASE® Language Handbook 60 Back to CONTENTS

ACTIVATE POPUP SECTION 2

The dBASE® Language Handbook 61 Back to CONTENTS

ACTIVATE POPUP

DIALECTS:
dBASE IV only.

SYNTAX:
ACTIVATE POPUP <popup name>

DEFINITION:
Activates a defined popup menu.

By default, a popup menu appears as a vertical list in a window. You move the cursor with the up

and down arrow keys, and make selections with the Enter key.

When activated, the popup menu covers existing text. To deactivate it, press Esc, issue the

DEACTIVATE MENU command, or ACTIVATE another POPUP.

RECOMMENDED USE:
Use ACTIVATE POPUP after you first DEFINE POPUP, DEFINE BARs, and specify ON

SELECTIONs.

Example—A menu in an anthropological application offers several choices for maintaining

information on ancient artifacts. The program uses ACTIVATE POPUP to display popup menus.

DEFINE POPUP digs FROM 15,01 TO 20,25

DEFINE BAR 1 OF digs PROMPT "Add new artifact"

DEFINE BAR 2 OF digs PROMPT "Search for artifacts"

DEFINE BAR 3 OF digs PROMPT "Exit"

ON SELECTION POPUP digs DO msub1

ACTIVATE POPUP digs

PROCEDURE msub1

mchoice = BAR()

DO CASE

 CASE mchoice = 1

 * <DO art_add>

 CASE mchoice = 2

 * <DO serch_art>

 CASE mchoice = 3

 DEACTIVATE POPUP

ENDCASE

RETURN

ACTIVATE POPUP SECTION 2

The dBASE® Language Handbook 62 Back to CONTENTS

SEE ALSO:
Commands ACTIVATE MENU, ACTIVATE WINDOW, DEACTIVATE, DEFINE MENU, ON

PAD, and SHOW MENU; functions MENU(), PAD(), and PROMPT().

ACTIVATE SCREEN SECTION 2

The dBASE® Language Handbook 63 Back to CONTENTS

ACTIVATE SCREEN

DIALECTS:
dBASE IV only.

SYNTAX:
ACTIVATE SCREEN

DEFINITION:
Disables the active window, restoring output to the full screen. The window's image remains. You

can then CLEAR it or overwrite it with text. You may recall the window or activate another one

with the ACTIVATE WINDOW command. Unlike the DEACTIVATE WINDOW command,

ACTIVATE SCREEN does not erase the window.

RECOMMENDED USE:
Use ACTIVATE SCREEN when alternating between full screen output and window output, if you

want the inactive window's image to remain.

Example—An accounting program displays a popup help message in a window.

The program switches from the full screen mode to the help window, then back to the full screen

using ACTIVATE SCREEN.

The program uses ACTIVATE SCREEN instead of DEACTIVATE WINDOW so the help

window stays in view during full screen operations.

DEFINE WINDOW mhelp FROM 2,50 TO 15,79

DEFINE MENU acct

DEFINE PAD acctp1 OF acct PROMPT "End of month"

DEFINE PAD acctp2 OF acct PROMPT "Close quarter"

DEFINE PAD acctp3 OF acct PROMPT "Help"

ON SELECTION PAD acctp1 OF acct DO eom

ON SELECTION PAD acctp2 OF acct DO eoq

ON SELECTION PAD acctp3 OF acct DO mhelp

ACTIVATE MENU acct

PROCEDURE mhelp

ACTIVATE WINDOW mhelp

TEXT

 This menu offers batch

 selections for closing

 months, quarters, and years

ENDTEXT

ACTIVATE SCREEN SECTION 2

The dBASE® Language Handbook 64 Back to CONTENTS

ACTIVATE SCREEN

RETURN

SEE ALSO:
Commands ACTIVATE WINDOW and DEFINE WINDOW.

ACTIVATE WINDOW SECTION 2

The dBASE® Language Handbook 65 Back to CONTENTS

ACTIVATE WINDOW

DIALECTS:
dBASE IV only.

SYNTAX:
ACTIVATE WINDOW <window name list>/ALL

DEFINITION:
Activates a defined window. Subsequent program output appears there.

The <window name list> consists of windows already defined in memory. You may define up to

20 windows.

Although you can specify a list of windows, only the last one becomes active. The others flash on

the screen in order, overlaying their predecessors.

If you specify ALL, all windows in memory flash on the screen in the order in which they were

defined. The last window defined becomes active.

When activated, a window covers existing text and windows. To deactivate a window, issue the

DEACTIVATE WINDOW command, or ACTIVATE another window "on top" of it. When you

DEACTIVATE a WINDOW, the previous text and windows reappear.

RECOMMENDED USE:
DEFINE all your windows in advance, then ACTIVATE them in subroutines as needed.

Example—A political campaign management system displays user help screens in windows. The

use of windows makes it easy to display help information without disturbing the underlying

program screen. The MAIN popup calls PROCEDURE MACTION. When the user presses F3,

the ON KEY F3 command executes the help procedure instead. The help procedure ACTIVATEs

WINDOWs and displays help text.

* Define windows

DEFINE WINDOW help1 FROM 02,03 TO 10,79

DEFINE WINDOW help2 FROM 17,01 TO 23,60

* When user presses F3, DO procedure THELP with bar and popup values

ON KEY F3 DO thelp WITH BAR(),POPUP()

DEFINE POPUP main FROM 10,15 TO 18,35

DEFINE BAR 1 OF main PROMPT "Add records"

DEFINE BAR 2 OF main PROMPT "Delete records"

DEFINE BAR 3 OF main PROMPT "Dirty tricks"

DEFINE BAR 4 OF main PROMPT "Exit"

ON SELECTION POPUP main DO maction && Do PROCEDURE MACTION

ACTIVATE popup MAIN

ACTIVATE WINDOW SECTION 2

The dBASE® Language Handbook 66 Back to CONTENTS

ON KEY && Disable ON KEY when done

PROCEDURE maction && Main action procedure

mbar = BAR()

DO CASE

 CASE mbar = 1

 * <Add records>

 CASE mbar = 2

 * <Delete records>

 CASE mbar = 3

 * <Do dirty tricks program>

 CASE mbar = 4

 DEACTIVATE POPUP

ENDCASE

RETURN

PROCEDURE thelp && Main help procedure

PARAMETERS mbar,mpop

DO CASE

 CASE mbar = 1 .AND. mpop = "MAIN"

 ACTIVATE WINDOW help1 && Activate defined window HELP1

 @ 03,04 SAY "To add records you need the following information:"

 @ 04,04 SAY " Local delegate names, addresses, telephone numbers"

 @ 05,04 SAY "Press any key to continue"

 WAIT "" && Pauses screen with no message

 DEACTIVATE WINDOW help1

 CASE mbar = 2 .AND. mpop = "MAIN"

 ACTIVATE WINDOW help2 && Activate defined window HELP2

 @ 01,04 SAY "Deleted records are only marked for deletion."

 @ 02,04 SAY "You can recall them later if necessary"

 @ 03,04 SAY "Press any key to continue"

 WAIT ""

 DEACTIVATE WINDOW help2 && Pauses screen with no message

 * <More CASEs>

ENDCASE

RETURN

SEE ALSO:
Commands ACTIVATE MENU, ACTIVATE POPUP, DEACTIVATE, DEFINE MENU,

DEFINE WINDOW, ON PAD, RESTORE WINDOW, and SAVE WINDOW; functions

MENU(), PAD(), and PROMPT().

APPEND SECTION 2

The dBASE® Language Handbook 67 Back to CONTENTS

APPEND

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
APPEND [BLANK]

DEFINITION:
Adds a new record to the end of a database. Opens a full screen with field name prompts for it.

APPEND's primary use is for adding records interactively. Programs use the BLANK option

instead.

After you enter data into a record, APPEND displays a new empty record. APPENDing ends:

1. if the user immediately presses PgDn or Ctrl-C;

2. if the user keeps pressing Enter until the cursor passes through the empty record;

3. if the user presses Enter before entering data in the first field.

You can also end APPENDing by pressing Ctrl-W, Ctrl-Q, or ESCape. Ctrl-W saves the current

record, the others do not.

OPTIONS:
APPEND BLANK adds a blank record to the end of the database in use.

RECOMMENDED USE:
Use APPEND interactively. If you activate a format file, the full screen APPEND assumes its

characteristics.

In a program, use APPEND BLANK to add a record to a database. I recommend the following

procedure:

1. Edit the data in memory variables

2. USE (open) the file

3. APPEND BLANK

4. REPLACE edited memory variables in the new blank record

5. Close the file

The user can edit the data completely before saving it in the database file. The file need only be

open briefly. This lessens the danger of a power loss or computer error damaging or destroying

data. This is like unbagging your groceries first, then putting them all in your refrigerator at once,

rather than leaving the door open for a long time.

APPEND SECTION 2

The dBASE® Language Handbook 68 Back to CONTENTS

Example—A reliable dBASE program opens a database file only long enough to extract or replace

data. In this example, the program prompts the user when the data in variables MLAST and

MFIRST is ready to be APPENDed. Only when the user finishes does the program open the

database file and APPEND BLANK.

* Create memory variables MLAST and MFIRST with lengths of

* 20 and 15, respectively

mlast = SPACE(20)

mfirst = SPACE(15)

DO WHILE .t.

 @ 10,01 SAY "LAST NAME : " GET mlast && Edit the variables

 @ 11,01 SAY "FIRST NAME: " GET mfirst && with the READ command

 READ

 * Get a logical response (Y/N) and store it in a variable DONE

 done = .f. && Initialize DONE to false

 @ 17,01 SAY "Are you done? (Y/N) " GET done PICTURE "Y"

 READ

 * If done editing MLAST and MFIRST, open the file long enough

 * to APPEND BLANK and REPLACE edited data

 IF done && If DONE = .T.

 USE testfile INDEX testfile

 APPEND BLANK

 REPLACE last WITH mlast, first WITH mfirst

 USE

 ENDIF

ENDDO

LIMITS/WARNINGS:
dBASE III PLUS: After APPENDing to a shared database on a network, the record count is not

updated until you move the pointer. To avoid errors, issue GO RECNO() immediately.

VARIATIONS:
Clipper: APPEND requires BLANK. With SET EXCLUSIVE OFF (multiuser mode), Clipper

tries to APPEND and automatically locks the new blank record. The NETERR() function returns

true (.T.) if another user has already locked the file or tries to APPEND BLANK at the same time.

dBASE IV: To speed execution, dBASE IV does not immediately write its data buffers to disk.

The directory listing of the active database may not reflect recent changes until you close the file.

You can force immediate writing of data by issuing the command SET AUTOSAVE ON. It makes

dBASE IV write the data after every record is added.

dBXL, Quicksilver: APPEND AUTOMEM appends a record and gives each field the value of

the memory variable with the same name. If you have not initialized any variables, APPEND adds

a blank record.

APPEND SECTION 2

The dBASE® Language Handbook 69 Back to CONTENTS

APPEND AUTOMEM is equivalent to APPEND BLANK followed by REPLACE commands to

initialize the fields. However, APPEND AUTOMEM is faster because it only updates the database

file and indexes once.

APPEND BLANK and REPLACE both update the database file and open index files.

Quicksilver: APPEND must always include either BLANK or AUTOMEM.

SEE ALSO:
Commands CLEAR AUTOMEM, INSERT, REPLACE, and STORE.

APPEND FROM SECTION 2

The dBASE® Language Handbook 70 Back to CONTENTS

APPEND FROM

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
APPEND FROM <file> [FOR <condition>] [TYPE <file_type>]

DEFINITION:
Adds records to the database in use from another database. Only APPENDs records in the FROM

database for which the expression is true. If no expression is specified, APPENDs all records.

Note: APPEND FROM only appends fields with the same names.

If fields in the FROM database are larger than corresponding ones in the target database, APPEND

FROM truncates them to fit. It replaces numeric data with asterisks.

DEFAULT:
APPEND FROM assumes that the FROM database is a dBASE database file unless you specify

otherwise with the FILE option. APPEND FROM appends all records unless you specify an

expression.

OPTIONS:
APPEND FROM can append records selectively using a logical expression that applies to the

FROM database. For example, you could APPEND FROM a file for all records in which STATE

equals "CA."

RECOMMENDED USE:
When running applications programs with many daily transactions, one often prefers to accept new

data in a batch mode. The idea is to save it in files, and later update a main database using APPEND

FROM. This approach is useful because:

• It eliminates slow index updates on a large main file.

• It protects the main file from corruption, as it is opened only once a day.

Example—A telemarketing company qualifies leads and enters them into two 20,000 record

databases. Rather than open and close the two databases repeatedly, new leads go into a temporary

file. At the end of the day, records are APPENDed from the temporary file into the main files.

* Open main file 1 with active indexes

USE mainfile1 INDEX leadname,leadzip,leadco

* Add data from temporary file, but only for California leads

APPEND FROM tempfile FOR state = "CA"

* Open main file 2 with active indexes

USE mainfile2 INDEX leadname,leadzip,leadco

APPEND FROM SECTION 2

The dBASE® Language Handbook 71 Back to CONTENTS

* Add data from temporary file for all states except California

APPEND FROM tempfile FOR state # "CA"

LIMITS/WARNINGS:
dBASE III PLUS, dBASE IV: APPEND FROM <file> FOR DELETED() does not work.

SPECIAL USES:
The dBASE language lets you APPEND FROM other types of files. You can thus import data

from applications such as spreadsheets and word processors. If the FROM <file> is not a DBF file,

choose the TYPE option from the following:

DBASEII

Ashton-Tate dBASE II database

dBASE IV only.

DELIMITED [WITH <delimiter>/BLANK]

Delimited format file

Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

DIF

VisiCalc™ spreadsheet format

dBASE III PLUS, dBASE IV, and dBXL.

FW2

Ashton-Tate Framework database or spreadsheet

dBASE IV only.

RPD

Ashton-Tate RapidFile database

dBASE IV only.

SDF

System Data Format

Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYLK

Multiplan™ spreadsheet format

dBASE III PLUS, dBASE IV, and dBXL.

WK1

Lotus 1-2-3 release 2.x

dBASE IV only.

WKS

Lotus 1-2-3 release 1.A spreadsheet format

dBASE III PLUS, dBASE IV, and dBXL.

APPEND FROM SECTION 2

The dBASE® Language Handbook 72 Back to CONTENTS

dBASE III PLUS and dBASE IV have an IMPORT command for creating dBASE files from

foreign formats.

VARIATIONS:
dBASE IV: The APPEND FROM ? option displays a list of available databases.

dBASE IV also allows the form:

 APPEND FROM ARRAY <array name> FOR <condition>

The ARRAY option adds an array to a database. Each row becomes a record, and each column a

field. (In ARRAY[x,y], x is the row, y the column.)

The first column in the array becomes the first field in the record, the second column becomes the

second field, and so on, until there are no more fields or no more array columns. APPEND FROM

ARRAY ignores excess columns. Excess fields remain empty.

Elements in the array must have the same data types as the target database fields.

Example—To protect its database from damage due to power losses, a sales contact program

opens CONTACT.DBF only long enough to update it. The program first stores data in an array,

opens the database, APPENDs FROM ARRAY, and then closes the database.

DECLARE mrec[1,5] ** One row, five columns/one record, five fields,

mrec[1,1] = SPACE(30) ** could also be represented as mrec[5]

mrec[1,2] = SPACE(30)

mrec[1,3] = "San Diego "

mrec[1,4] = "CA"

mrec[1,5] = " "

@ 01,01 SAY "Enter name: " GET mrec[1,1]

@ 02,01 SAY "Enter address: " GET mrec[1,2]

@ 03,01 SAY "Enter city: " GET mrec[1,3]

@ 04,01 SAY "Enter state: " GET mrec[1,4]

@ 05,01 SAY "Enter zipcode: " GET mrec[1,5]

READ

USE contacts

APPEND FROM ARRAY mrec

USE

The FOR <condition> option appends only rows matching the condition. The condition is

evaluated before each row is appended; however, dBASE IV associates the data in the array with

its target field! For example, you can issue

APPEND FROM ARRAY mrec FOR name = "SMITH"

where NAME is the field corresponding to the array column.

APPEND FROM SECTION 2

The dBASE® Language Handbook 73 Back to CONTENTS

APPEND FROM ARRAY is similar to FoxBASE+'s GATHER command.

FoxBASE+:

APPEND FROM <file> [FIELDS <fieldlist>][FOR <condition>] [TYPE <file type>]
An optional FIELDS list APPENDs only a subset of fields. The field list must be chosen from the

currently selected database.

Example—An accountant uses a FIELDS list to APPEND only sales and tax data FROM a daily

transaction file into a yearly file.

USE yearacct

APPEND FROM daily FIELDS totsales,salestax

108 Records added

SEE ALSO:
Commands COPY TO, DECLARE, GATHER, IMPORT, and SCATTER.

APPEND MEMO SECTION 2

The dBASE® Language Handbook 74 Back to CONTENTS

APPEND MEMO

DIALECTS:
dBASE IV only.

SYNTAX:
APPEND MEMO <memofield name> FROM <filename> [OVERWRITE]

DEFINITION:
Adds a text file to a memo field in the current record.

APPEND MEMO appends the text file unless you specify the OVERWRITE option.

OVERWRITE erases the old text first.

Unless you specify an extension for the filename, APPEND MEMO assumes TXT.

Example—A building inspector uses a word processor on a portable computer to take notes about

building sites. Back at the office, a tracking program uses APPEND MEMO to add the notes to a

memo field F_NOTES. Previous notes are preserved.

USE inspects

site = "1091MAIN"

SEEK site

APPEND MEMO f_notes FROM A:\NOTE6_10 && Memo field F_NOTES,

 && external file NOTE6_10.TXT

LIMITS/WARNINGS:
Imported text files must be in ASCII format. You can use the dBASE IV internal editor (MODIFY

COMMAND/FILE) or other text editors that produce ASCII files.

SEE ALSO:
Commands APPEND, APPEND FROM, COPY MEMO, and MODIFY COMMAND/FILE.

ASSIST SECTION 2

The dBASE® Language Handbook 75 Back to CONTENTS

ASSIST

DIALECTS:
dBASE III PLUS and dBASE IV.

SYNTAX:
ASSIST

DEFINITION:
Makes the interactive modes of dBASE III PLUS and dBASE IV switch from command line

control to menu control. The menu control mode in dBASE III PLUS is called "The dBASE

Assistant." In dBASE IV, it is "The Control Center."

ASSIST is not intended for programs.

VARIATIONS:
The menu mode of dBXL is called "INTRO." The dBXL INTRO command is equivalent to

ASSIST.

SEE ALSO:
Command INTRO.

AVERAGE SECTION 2

The dBASE® Language Handbook 76 Back to CONTENTS

AVERAGE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
AVERAGE [expression list] [<scope>] [FOR/WHILE <condition>]

 [TO <memory variable list>]

DEFINITION:
Computes the arithmetic mean of numeric expressions. Uses all fields or the <expression list> you

specify. Averages all records unless you specify a condition with FOR or WHILE. The results may

go to a memory variable list. In dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+, displays

on the screen when SET TALK is ON.

Example 1—A regional sales office must determine the average mileage logged by traveling

representatives. From the database file MILELOG, average MILES can be calculated FOR a

particular SELLER.

SET TALK on

* Database file MILELOG contains mileage information for sales reps

USE milelog

* MILES and SELLER are fields in MILELOG

AVERAGE miles FOR seller = "James"

32 records averaged

MILES

201

Example 2—In the same sales office, the manager wants a printed mileage report. To produce it,

the AVERAGE miles must be saved in a memory variable that can be either printed or stored in

another database.

 SET TALK off

 USE milelog

 * Store the average of MILES in memory variable AMILES

 AVERAGE miles FOR seller = "James" TO amiles

 * You can now print AMILES, or store it in another database

 SET DEVICE TO PRINT

 @ 10,10 SAY "Average miles" + STR(amiles,4,2)

 SET DEVICE TO SCREEN

 USE summary

 REPLACE avemiles WITH amiles

AVERAGE SECTION 2

The dBASE® Language Handbook 77 Back to CONTENTS

VARIATIONS:
Clipper, Quicksilver: AVERAGE requires an expression list and a memory variable list. For

example:

AVERAGE sales,profits TO sale_ave,prof_ave

puts the average of SALES in memory variable SALE_AVE, and the average of PROFITS in

PROF_AVE.

dBASE IV: You can send AVERAGE results to an existing one-dimensional array. They fill it,

starting with the first element, until there are no more results or no more elements. Leftover

elements retain their previous values.

In this example, JAN, FEB, MAR, and APR contain sales figures for a major corporation. The

array RESULTS[] has four elements, one for each field:

PUBLIC results

DECLARE results[4]

USE sales

AVERAGE jan,feb,mar,apr TO ARRAY results

DISPLAY MEMORY

RESULTS pub A [6]

 [1] elem N 3409040.92 (3409040.920000000000)

 [2] elem N 30923.33 (30923.33000000000000)

 [3] elem N 23456.23 (23456.23000000000000)

 [4] elem N 323423.55 (323423.5500000000000)

The dBASE IV CALCULATE command can also do AVERAGEs with its AVG() option.

SEE ALSO:
Commands CALCULATE, DECLARE, and SET TALK ON.

BEGIN SEQUENCE... SECTION 2

The dBASE® Language Handbook 78 Back to CONTENTS

BEGIN SEQUENCE...

DIALECTS:
Clipper only.

SYNTAX:
BEGIN SEQUENCE...

 <statements>

 [BREAK]

 <statements>

END

DEFINITION:
A control structure for handling errors locally within a procedure. When an error or exception

occurs, issue the BREAK statement to transfer control to the statement immediately following the

END.

BEGIN SEQUENCE resembles DO WHILE...[EXIT]...ENDDO and IF...ENDIF, except that it

does not repeat, and it does not depend on a condition. Also, unlike DO WHILE and IF, a

SEQUENCE can be terminated from a subprogram with the BREAK command.

RECOMMENDED USE:
You can use BEGIN SEQUENCE with Clipper's error system (ERRORSYS.PRG) to BREAK for

certain types of runtime errors. Runtime errors call functions which, in turn, RETURN true (.T.)

or false (.F.). Most error functions QUIT Clipper when they RETURN (.F.). A value of true retries

the operation that caused the error.

Example—A file routine USEs a file on drive A. If the user inserts the wrong disk, the program

calls the OPEN_ERROR function which in turn BREAKs to the END of the current SEQUENCE.

* ACCOUNTS.PRG

CLEAR

BEGIN SEQUENCE

 @ 0 ,0 SAY "Insert disk in drive A and press SPACE BAR"

 WAIT ""

 USE a:accounts && Use file that does not exist

 LIST name

 * <more database statements>

END

*

* <resume program without open file>

FUNCTION open_error

PARAM name, line, info, model, _1

*

SET DEVICE TO screen

BEGIN SEQUENCE... SECTION 2

The dBASE® Language Handbook 79 Back to CONTENTS

@ 00,00 SAY "File not found, change disks and retry? (Y/N)"

 INKEY(0)

DO WHILE .NOT. CHR(LASTKEY()) $ "YyNn"

 INKEY(0)

END

@ 00,00

IF .NOT. CHR(LASTKEY()) $ "Yy"

 BREAK

END

@ 00,00 SAY "Insert new disk in drive A and press SPACE BAR"

WAIT ""

@ 00,00

RETURN .T.

SEE ALSO:
Command ON ERROR; functions DOSERROR() and FERROR().

BEGIN/END TRANSACTION SECTION 2

The dBASE® Language Handbook 80 Back to CONTENTS

BEGIN/END TRANSACTION

DIALECTS:
dBASE IV only.

SYNTAX:
BEGIN TRANSACTION [<path name>]

 * <Database operations>

END TRANSACTION

DEFINITION:
Treats a series of database operations as a logical unit which you can undo when an error occurs.

Such a series, or transaction, may involve several database files.

The ROLLBACK command "undoes" changes made to the databases during the transaction.

To provide this undo capability, BEGIN TRANSACTION sets an integrity flag in the database

file header and creates a log file duplicating the pre-transaction data.

When true, the integrity flag indicates that the transaction was interrupted, leaving the database in

a state of change. You can test the flag with the ISMARKED() function.

On single user systems, the transaction log file is called TRANSLOG.LOG. To store it in a

directory other than the current one, you can specify a path name in the BEGIN TRANSACTION

command. On local area networks, the transaction log file takes the name of the workstation

(<workstation name>.LOG). This lets the system administrator determine which station initiated

a transaction on shared databases.

A successful END TRANSACTION resets the integrity flag to false and erases the transaction log

file.

The BEGIN TRANSACTION and END TRANSACTION must be in the same procedure. You

may not nest transactions. One must end before another begins. All files and records locked during

the transaction remain locked until the END TRANSACTION. During the transaction, the

UNLOCK command has no effect. END TRANSACTION releases all file and record locks issued

during the transaction.

Transaction Commands:

The transaction log records commands that change data or create new database files or indexes.

Some commands are not allowed in transactions (they cause an error message).

Database Commands Always Recorded in the Transaction Log

BEGIN/END TRANSACTION SECTION 2

The dBASE® Language Handbook 81 Back to CONTENTS

APPEND

BROWSE

CHANGE

DELETE

EDIT

RECALL

REPLACE

UPDATE

Database Commands Allowed If They Do Not Overwrite or Close Existing Files

COPY TO

CREATE

IMPORT FROM

INDEX TO

JOIN TO

SET CATALOG TO

SORT TO

TOTAL TO

Prohibited Commands

CLEAR ALL

CLOSE ALL/DATABASE/INDEX

DELETE FILE

ERASE

INSERT

MODIFY STRUCTURE

PACK

RENAME

ZAP

RECOMMENDED USE:
Use BEGIN TRANSACTION and END TRANSACTION to ensure data integrity when a

transaction cannot be successfully completed. Transactions may fail if another user has locked a

file or record, the power fails, or a disk drive is not ready. Transaction processing is especially

useful for updating interdependent files. For example, a general ledger program might update six

master database files from a transaction file. If five updates succeed, but the last one fails, the

entire transaction is invalid. ROLLBACK can recover the five updated databases.

Example—An invoicing system updates tax tables and transaction files with new tax rates. The

procedure uses an ON ERROR routine to trap transaction errors. If an operation fails, the user can

RETRY the operation or ROLLBACK.

SET REPROCESS TO 20 && Set RETRY counter to 20

ON ERROR DO trans_err && If error occurs, DO PROCEDURE trans_err

*

BEGIN/END TRANSACTION SECTION 2

The dBASE® Language Handbook 82 Back to CONTENTS

BEGIN TRANSACTION F:\log && Begin logging in F:\log subdirectory

USE taxtable INDEX taxdex IN 1 && File contains state tax information

* Update file using new tax rate

REPLACE ALL statetx WITH (.065*statetx) + statetx

USE acctbills IN 2 && File contains current billing

* Update file using new tax rate

REPLACE ALL mtotal WITH subtotal*.065

END TRANSACTION && Reset integrity flag; delete log file

ON ERROR && Turn off ON ERROR handler

IF COMPLETED() && TRUE if transaction is successful

 @ 23,01 SAY "Your transaction is completed."

ENDIF

CLEAR

PROCEDURE trans_err

@ 22,01 CLEAR TO 24,70 && Clear rectangle

@ 22,01 TO 24,70 DOUBLE && Draw box

mretry = .f. && Prompt user to retry

@ 23,03 SAY "Your transaction has failed. Try again? " GET mretry PICTURE "Y"

READ

IF mretry && TRUE if user answers "Y"

 RETRY && RETURNs to line that failed and reexecutes it

ELSE

 @ 23,03 CLEAR TO 23,69

 @ 23,03 SAY "Recovering databases."

 ROLLBACK && Recover transaction databases

 @ 22,01 TO 24,70

 IF ROLLBACK() && TRUE if ROLLBACK succeeds

 @ 23,03 SAY "Rollback successful"

 ENDIF

ENDIF

RETURN

LIMITS/WARNINGS:
Because they are disk intensive, transaction logging and recovery reduce processing speed

significantly. Also, they require disk space nearly four times the cumulative total of all files

included in a transaction.

For sensitive data, you should make file backups before beginning a transaction. On single user

systems, file backups will often be easier and more efficient than transaction logging.

MULTIUSER TIP:

On local area networks, store all transaction log files in a common subdirectory. This will simplify

recovery for each workstation in the event of a power loss.

SEE ALSO:
Commands RESET, RETRY, ROLLBACK, and UNLOCK; functions COMPLETED(),

FLOCK(), ISMARKED(), LOCK(), and ROLLBACK().

BEGIN/END TRANSACTION SECTION 2

The dBASE® Language Handbook 83 Back to CONTENTS

BREAK SECTION 2

The dBASE® Language Handbook 84 Back to CONTENTS

BREAK

DIALECTS:
Clipper, dBXL, and Quicksilver.

DEFINITION:
Ends execution of a BEGIN SEQUENCE...END SEQUENCE structure in Clipper.

Ends execution of a FOR...NEXT loop in dBXL and Quicksilver.

SEE ALSO:
Commands BEGIN SEQUENCE...END SEQUENCE and FOR...NEXT.

BROWSE SECTION 2

The dBASE® Language Handbook 85 Back to CONTENTS

BROWSE

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
BROWSE [FIELDS <field list>] [LOCK <expN>] [FREEZE <field>]

 [NOFOLLOW] [NOMENU] [NOAPPEND] [WIDTH <expN>]

DEFINITION:
Allows easy interactive editing and adding of records. It opens up a full screen edit/add mode with

several menu options. The options vary among dBASE III PLUS, dBASE IV, dBXL, and

FoxBASE+. BROWSE allows editing of all fields. Because it is an interactive command, Clipper

and Quicksilver do not have it.

DEFAULT:
BROWSE selects all fields unless you specify a field list.

OPTIONS:
BROWSE [FIELDS <field list>]: Limits the BROWSE mode to the specified fields. Default is

all fields.

BROWSE [FREEZE <field>]: Allows changes to only one field on the screen. All fields are still

displayed.

BROWSE [LOCK <exp>]: Specifies contiguous fields on the left side of the screen that do not

move when you pan the display.

BROWSE [NOAPPEND]: Prevents the user from adding records to the file.

BROWSE [NOFOLLOW]: Makes the record pointer stay at its original location. When you use

index files and change a key field, BROWSE normally repositions the record pointer. For example,

suppose you want to change 10 records in a database file indexed on a date. When you BROWSE

through the file, records having the same date are together. If you change a date, the record (and

the pointer) will be repositioned. Use NOFOLLOW if you want to continue working on records

with the original date.

BROWSE [NOMENU]:

dBASE III PLUS: Prevents display of the menu bar (Top, Bottom, Record No., Lock, Freeze, and

Find).

dBASE IV: Prevents display of the menu bar (Records, Fields, Go To, and Exit).

BROWSE SECTION 2

The dBASE® Language Handbook 86 Back to CONTENTS

FoxBASE+: Prevents the user from accessing the cursor movement key menu. Allows access to

menu bar.

dBXL: Not available.

BROWSE [WIDTH <expN>]: Limits the number of characters displayed for any field (between

4 and 99 characters). You can scroll the field horizontally with the arrow keys.

VARIATIONS:
dBASE III PLUS: Does not allow browsing of MEMO fields.

dBASE IV: Displays the STATUS bar, even when BROWSEing in a window.

Allows browseing of MEMO fields.

Pressing F2 switches from BROWSE mode to EDIT mode. The PICTUREs and VALID clauses

from an active format file remain in effect.

dBASE IV also offers five new options:

COMPRESS: Squeezes two more lines of data on the screen by removing some blank lines. The

normal mode shows 17 lines of data. The COMPRESSed mode shows 19.

FORMAT: Uses the @...SAY command options in the active format file. For example, you can

use PICTUREs, FUNCTIONs, RANGEs, and VALID clauses defined for each field in the

BROWSE. The screen positioning of the @...SAY is disabled; the data remains in the standard

BROWSE table format.

NOCLEAR: Leaves data on the screen after exiting the BROWSE. The screen clears by default.

NOEDIT: Restricts the user from changing the data on the screen. The user can still delete with

Ctrl-U.

NOINIT: Uses the options specified in the previous BROWSE command. (If you repeat a lengthy

BROWSE command, you only have to type most of it once).

WINDOW <window name>: Specifies a defined window in which to open the BROWSE. When

you exit, the window automatically deactivates (it remains in memory, but is erased from the

screen). When the window is erased, the underlying text reappears.

FIELDS: In addition to setting a field list, you can SET read-only fields, calculated fields, and field

widths, in the form:

 BROWSE...FIELDS <fieldname> / [/R][/<column width>] / <calculated fieldname> ...

BROWSE SECTION 2

The dBASE® Language Handbook 87 Back to CONTENTS

Read-only fields are fields you want to prevent the user from editing. Note that the slash (/) is a

literal character you must enter with the R. To limit the field list to ARTICLE, AUTHOR, and

PAY, while specifying PAY as read-only, use the command:

BROWSE FIELDS article, author, PAY /R

To limit the width of ARTICLE to 10 characters, use the command:

BROWSE FIELDS article /10, author, PAY /R

To make a field read-only and limit it to 10 characters, put the options together without any spaces

between them:

BROWSE FIELDS article /10/R, author, PAY /R

A calculated field is the result of a valid dBASE expression. The <calculated fieldname> is a

memory variable containing the expression. In BROWSE, calculated fields change on the screen

as you edit fields involved in their expressions. In EDIT, the calculated field doesn't change until

you move off the record.

Example—An invoice program in a towing company uses a calculated field MTOTAL to display

the amount due. The program defines MTOTAL as the sum of MILES, PARTS, and LABOR.

USE invoice

BROWSE FIELDS miles, parts, labor, mtotal = miles + parts + labor, inv_num

Because you can use any valid expression in a calculated field, you can go far beyond simple

mathematics and do things such as include the time, date, diskspace, and record count as part of

the fields list.

You can also use user defined functions in calculated fields. This lets you do complex

computations without cluttering the BROWSE command. In the interactive mode, just call your

user defined function from the calculated field expression, then SET PROCEDURE TO the

program file containing your UDFs. In programs, simply add the user defined function to the end

of a program file. Unfortunately, this can slow BROWSE down to a crawl.

Example—An aircraft repair shop has an invoice with over 15 items. To compute the total

efficiently, the programmer puts the formula in a user defined function.

USE invoice

SET FIELDS to miles, parts, labor, mtotal = REPAIR(), inv_num

FUNCTION repair

RETURN subtotal = miles + parts + labor + pickup + insur + postage + ;

 handling + driver + hookup + overhed + expenses + tools + ;

 license + fuel + phone + oil

* End of REPAIR

BROWSE SECTION 2

The dBASE® Language Handbook 88 Back to CONTENTS

FoxBASE+: Allows browsing of MEMO fields. The NOMODIFY option prevents the user from

changing the data.

SEE ALSO:
Commands ASSIST and INTRO.

CALCULATE SECTION 2

The dBASE® Language Handbook 89 Back to CONTENTS

CALCULATE

DIALECTS:
dBASE IV only.

SYNTAX:
CALCULATE [<scope>]

 AVG(<expN>) / CNT() / MAX(<exp>) / MIN(<exp>)/

 NPV(<rate>,<flows>,<initial>) / STD(<expN>) /

 SUM(<expN>) / VAR(<expN>)

 [FOR <condition>] [<WHILE>]

 [TO <memory variable list>/ARRAY <array name>]

DEFINITION:
Computes financial and statistical functions in one pass through a database file. It supports eight

functions that operate on records limited by <scope>, FOR <condition>, and WHILE <condition>.

CALCULATE produces at least one result. If you do not specify a target memory variable or array,

the result appears on the screen when TALK is SET ON. Its data type depends on the function.

The <memory variable list> corresponds to the list of functions. The first result goes in the first

memory variable, the second result in the second variable, and so on. The number of functions and

memory variables must agree.

A target array must be one-dimensional. dBASE IV permits more elements than there are results.

However, you cannot have more results than elements.

DEFAULT:
If you do not use a scope or condition, CALCULATE processes all records.

OPTIONS:
CALCULATE supports the following functions:

AVG(<expN>) Returns numeric
Computes the arithmetic mean of <expN>. <expN> is the fieldname, or an expression involving

the fieldname.

CNT() Returns numeric
Counts the number of records CALCULATEd (limited by <scope> and FOR/WHILE

<condition>).

MAX(<exp>) Returns numeric, date, or character.
Returns the largest value in a field. <exp> can be a numeric, date, or character field.

CALCULATE SECTION 2

The dBASE® Language Handbook 90 Back to CONTENTS

MIN(<exp>) Returns numeric, date, or character.
Returns the smallest value in a field. <exp> can be a numeric, date, or character field.

NPV(<rate>,<flows>,[<initial>]) Returns numeric
Computes the Net Present Value of a field. <rate> is the discount rate. <flows> is the numeric field

containing periodic cash flow values (both positive and negative). <initial> is the initial investment

or a negative number representing cash outflow.

STD(<expN>) Returns type F numeric
Computes the standard deviation of a field (the square root of the variance). <expN> is the

fieldname, or an expression involving the fieldname.

SUM(<expN>) Returns numeric
SUMs the specified field. <expN> is the fieldname, or an expression involving the fieldname.

VAR(<expN>) Returns type F numeric
Computes the variance of a field. <expN> is the fieldname, or an expression involving the

fieldname.

RECOMMENDED USE:
Use CALCULATE in financial and statistical applications. A single CALCULATE command can

replace several other dBASE commands, reducing the amount of coding and increasing execution

speed. For example, in dBASE III PLUS, you need two commands to compute average income in

Massachusetts, requiring two passes through the file:

COUNT FOR state = "MA" TO statect

AVERAGE ALL income FOR state = "MA" TO income

dBASE IV requires only one command:

CALCULATE FOR state = "MA" CNT() AVG(income) TO statect,income

The more functions you use, the greater the benefits of using CALCULATE.

Example—An analysis program uses CALCULATE to compute the average accounts receivables

over twelve months, counting only ones with sales over $10,000. CALCULATE also determines

the maximum, minimum, and standard deviation for those months. The results go to an array

RESULTS.

. DECLARE RESULTS[5]

. CALCULATE CNT(), AVG(rcv), MAX(rcv), MIN(rcv), STD(rcv) ;

 TO ARRAY RESULTS FOR rcv > 10000

 CNT() AVG(rcv) MAX(rcv) MIN(rcv) STD(rcv)

 3 49556 54556 44556 4082.48

 3 records

CALCULATE SECTION 2

The dBASE® Language Handbook 91 Back to CONTENTS

. DISPLAY MEMORY

 User Memory Variables

RESULTS pub A [5]

 [1] elem N 3 (3.000000000000000000)

 [2] elem N 49556 (49556.00000000000000)

 [3] elem N 54556 (54556.00000000000000)

 [4] elem N 44556 (44556.00000000000000)

 [5] elem F 4082.48 (4082.482904638630316)

Other parts of the analysis program use more sophisticated expressions in the CALCULATE

command. For example, one query averages sales from separate regional divisions:

 . CALCULATE AVG(ne_sales+sw_sales) TO regional

 . ? regional

 54223

In some computations, the program ignores empty fields by averaging FOR fields with values

greater than zero.

. CALCULATE AVG(ne_sales+sw_sales) FOR ne_sales > 0 .AND. ;

 se_sales > 0 TO regional

. ? regional

45002

CALCULATE duplicates other dBASE commands such as AVERAGE, COUNT, and SUM.

However, CALCULATE's MAX() and MIN() functions differ from the standalone MAX() and

MIN() functions. The standalone MIN() and MAX() compute the greater or lesser of two values.

SEE ALSO:
Commands AVERAGE, COUNT, and SUM; functions MAX() and MIN().

[C]CALL SECTION 2

The dBASE® Language Handbook 92 Back to CONTENTS

[C]CALL

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
[C]CALL <module> [WITH <exp>[,<exp>,<exp>,...]]

DEFINITION:
Executes a routine written in another language (typically assembly language or C).

In dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver, the routine is a binary

program file (extension BIN) previously placed in memory with the LOAD command. In Clipper,

routines must be in Intel 8086 relocatable object file format (extension OBJ). You include them in

your applications by making them available at link time.

Quicksilver supports both BIN and OBJ methods with CALL (BIN) and CCALL (OBJ). CCALL

is the same as Clipper's CALL. You can only use it with the native code optimizer (QS.EXE). It

does not work in the d-code mode.

OPTIONS:
WITH allows rapid parameter passing between dBASE language applications and subroutines

written in other languages. The addresses of parameters are passed to the subroutines. In dBASE

III PLUS, dBXL, FoxBASE+, and Quicksilver CALL, you may pass only one parameter at a time.

Furthermore, it must be either a memory variable or a literal string. In Clipper and in Quicksilver's

CCALL, you can pass multiple parameters of most types.

No parameter type checking is done, and the actual address of a memory variable is passed to the

BIN routine. Using this scheme, you may not lengthen the passed parameter without corrupting

memory.

For information on dBASE IV's CALL, see Variations.

PARAMETER PASSING CONVENTIONS:
To call binary program files (extension BIN), you must pass the parameter's address in the DS

(segment) and BX (offset) register pair. In dBASE III PLUS, the byte at DS:[BX-1] contains the

variable's length. However, FoxBASE+ does not implement the "length byte," and other systems

don't use it consistently. We suggest you avoid using it altogether.

Clipper's CALL and Quicksilver's CCALL pass parameter addresses in standard C format on the

stack (see Example 2). You can CALL (CCALL) C library routines (large model) in this way.

The C library's segment classes for code segment, data segment, and so on, must match those used

in the dBASE compiler's library—Lattice C libraries should work with pre-Summer '87 Clipper or

[C]CALL SECTION 2

The dBASE® Language Handbook 93 Back to CONTENTS

Quicksilver, but you must use Microsoft libraries with Clipper Summer '87 and later releases. Do

not use C functions that dynamically allocate memory using library routines.

In addition to its C parameter-passing conventions, Clipper also passes the first parameter's address

in the DX:BX register pair. Most other implementations use DS:BX.

LIMITS/WARNINGS:
Do not insert a null byte into a character parameter. The variable will appear to be truncated at

the point of the insertion. (Typically, dBASE and C character strings end in a null byte.)

BIN routines must not have any segment fixups (much like COM files) and cannot be more than

32K in size. Maintain all data space within the module's code space. Be sure to preserve register

values on entry (especially segment registers and the stack pointer). CALLed modules must take

full responsibility for changes they make to memory variables in most implementations. Since

internal storage formats vary, each dialect has slightly different rules. (In dBASE III PLUS,

lengthening a passed parameter corrupts memory).

RECOMMENDED USE:
Use CALL and CCALL to extend your applications to do anything a low-level language can do,

such as:

• get information about the runtime enviroment,

• control hardware directly,

• process files in ways not provided in the language,

• add functions for memory variable manipulation.

Writing your own assembly language and C routines requires great programming skill. If you are

inexperienced, you can use pre-written CALLable subroutines as long as you follow their

instructions carefully.

Example 1—PRTSC.ASM—BIN/OBJ routine to print the screen (no check for printer not ready):

 OBJ EQU 1 ;Change this to 0 for BIN format

 PROG SEGMENT PUBLIC 'PROG' ; if using the Lattice C compiler,

 ; for Microsoft C, use 'CODE'

 PUBLIC PRTSC

 PRTSC PROC FAR

 INT 5 ;Call BIOS routine to print the screen

 RET ;Far return to system

 PRTSC ENDP

 IF OBJ ;If linked into compiled application,

 ; don't use a label after END directive

 END

 ENDIF

 END PRTSC ;BIN code requires label after END

[C]CALL SECTION 2

The dBASE® Language Handbook 94 Back to CONTENTS

To use PRTSC.ASM in OBJ format, assemble it with the Microsoft Macro Assembler (MASM)

as follows:

MASM PRTSC;

Then, if you need a BIN routine, use LINK to create an intermediate EXE file:

LINK PRTSC;

To create the final BIN file, use the EXE2BIN utility:

EXE2BIN PRTSC;

Example 2—DIREXIST.ASM is an assembly language routine that verifies the existence of DOS

subdirectories on any drive. It prevents errors when trying to create or use files. For example, we

could test for the existence of a subdirectory on different disk drives. If it is not on A, check B, C,

and so on. Here is the assembly language code for DIREXIST.ASM:

OBJ EQU 0 ;make it 1 for OBJ code, will insert appropriate instructions

MYPROG SEGMENT BYTE PUBLIC 'PROG'

 assume cs:codeseg

PUBLIC DIREXIST

DIREXIST PROC FAR

START:

IF OBJ ;---------- To produce more generic code, we make DS:BX

 ;---------- point to the passed parameter in any case

 push bp ;Save BP before setting

 mov cp,sp ; it up as the frame pointer

 mov ds,[bp+8] ;BP+8 has word segment

 mov bx,[bp+6] ;BP+6 has word offset

 ENDIF

 mov dx,bx ;Move the offset of memory

 ;variable into DX

 mov ah,4eh ; to set up DOS function

 ; call "find first."

 mov cx,18d ;Look for file with directory

 ; attribute (it will find hidden

 ; subdirectories, by the way)

 int 21h ;Call DOS

 jnc found ;Carry not set, must have found it

 mov byte ptr ds:[bx],' ' ;Move in a space if not found

 found:

 IF OBJ

 pop bp

 ENDIF

 RET ;Back to dBASE or other system

 DIREXIST ENDP

 MYPROG ENDS

 IF OBJ

[C]CALL SECTION 2

The dBASE® Language Handbook 95 Back to CONTENTS

 END

 ELSE

 END START

To create DIREXIST.BIN, type:

MASM DIREXIST;

LINK DIREXIST;

EXE2BIN DIREXIST;

To link into Clipper or Quicksilver applications (CCALL for Quicksilver), change OBJ EQU 0 to

OBJ EQU 1 and type:

MASM DIREXIST;

You can CALL DIREXIST from a dBASE language program as follows:

PUBLIC clipper

subdir = 'C:\work' && Check for subdirectory "work" on drive C

IF .NOT. clipper && If not Clipper (or QS CCALL),

 LOAD direxist && use LOAD and CALL format (BIN file)

ENDIF

CALL direxist WITH subdir

If C:\work does NOT exist, DIREXIST sets the ASCII value of SUBDIR to 32 (a blank). Test for

this with the statement:

IF ASC(subdir) = 32

 * <your error routine>

ENDIF

If C:\work exists, SUBDIR does not change.

VARIATIONS:
dBASE IV: CALL converts parameters to ASCII format. It accepts up to seven parameters, which

may be memory variables or fields of any type (but not arrays). The CALL() function lets you use

BIN routines within such command constructs as REPLACE ALL...WITH and COUNT FOR,

thus giving them some of the power of user defined functions.

In dBASE IV, you may modify a field or memory variable in a BIN routine, as long as you do not

lengthen it or change its type. If you lengthen a parameter, dBASE IV truncates it to the original

length. This does not corrupt memory as in dBASE III PLUS. dBASE IV passes the address of a

pointer table in ES and DI, as well as the first parameter's address in DS and BX (for compatibility

with dBASE III PLUS). The number of parameters is passed in CX. ES:DI points to a (null-

terminated) table of doubleword pointers to the "translated" parameters, each of which is stored in

a 255-byte scratch buffer. Since dBASE IV allows almost any type of expression to be passed, you

[C]CALL SECTION 2

The dBASE® Language Handbook 96 Back to CONTENTS

can easily prevent a BIN routine from changing a memory variable or field by enclosing it in

parentheses. For example:

CALL litebar WITH mchoice

allows LITEBAR to change memory variable "mchoice", whereas

CALL litebar WITH (mchoice)

passes only a copy of the variable.

Example 3—OUTP.ASM—dBASE IV-specific routine to send a value to a specified output port

using multiple parameters:

page 66,132

name outp

Comment $--

 Example of a simple BIN routine that uses dBASE IV's

 multiple-parameter-passing convention. Sends a value to

 the specified port. Syntax:

 LOAD outp

 CALL outp WITH <port>,<value>

 * Port and value can be numeric memory variables,

 * ASCII text numerics, or immediate values

 Use the following commands to make a BIN routine from OUTP.ASM:

 masm outp;

 link outp;

 exe2bin outp;

 del outp.exe

 ---$

ARGCOUNT EQU cx ;argument count is passed in cx

CODESEG SEGMENT PUBLIC 'CODE'

outp PROC FAR

 ASSUME CS:CODESEG,ES:nothing,DS:nothing,SS:nothing

 cmp ARGCOUNT,2 ;two arguments?

 jne do_nada ;no, don't do anything

 push ds ;save ds

 push si ;and si

 lds si,es:[di] ;load ds:si with first pointer

 call atoi ;trans. to binary number in ax

 mov dx,ax ;first param goes in dx for OUT

 add di,4 ;move to next parameter

 lds si,es:[di] ;load ds:si again

 call atoi ;translate into ax

 out dx,ax ;send value to port

 pop si ;restore si,ds

 pop ds

[C]CALL SECTION 2

The dBASE® Language Handbook 97 Back to CONTENTS

do_nada:

 RET ;return to dBASE IV

outp ENDP

comment $---*

* procedure atoi *

* --Makes ASCII int pointed to by DS:SI into integer in AX-- *

* ignore overflow and sign *

* --$

atoi PROC

 push bx ;save bx,cx,dx

 push cx

 push dx

 xor ax,ax ;clear accumulator

 mov bx,10 ;set radix

 xor ch,ch ;clear ch for adds

skipspaces:

 cmp byte ptr ds:[si],' ' ;pointing at space?

 jne accumulate ;no, go on

 inc si ;else look at next

 jmp skipspaces

accumulate:

 mov cl,ds:[si] ;move in next digit

 cmp cl,'0' ;is it numeric?

 jl done ;if not, we're done

 cmp cl,'9' ;check high end

 ja done

 sub cl,'0' ;if numeric, make it binary

 mul bx ;shift ax left (decimal)

 add ax,cx ;add in new digit

 inc si ;look at next loop

 jmp accumulate

done:

 pop dx

 pop cx ;restore dx,cb,bx

 pop bx

 RET

atoi ENDP

CODESEG ENDS

END outp

SEE ALSO:
Commands LOAD and RUN; function CALL().

CANCEL SECTION 2

The dBASE® Language Handbook 98 Back to CONTENTS

CANCEL

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CANCEL

DEFINITION:
Stops execution of a program file and closes all open program files. Clears all private memory

variables and returns control to the interactive mode without closing database files.

RECOMMENDED USE:
Use CANCEL to end program execution in dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+

without closing database files. Many dBASE users employ both programs and interactive

commands. CANCEL leaves database files available for interactive use. (Clipper and Quicksilver

close all files and return control to the operating system).

Example—Financial counselors use a program to project investment returns. Occasionally they

want to compute a SUM or AVERAGE that is not in the menu. CANCELling the program allows

them to access the open database files directly. A selection in the menu CANCELs program

execution, but leaves the active files open.

* Create logical variable RESPONSE with a value of .F. (false).
response = .F.

* The PICTURE "Y" displays the logical variable as Y or N.
@ 10,10 SAY "End the program? (Y/N)" GET response PICTURE "Y"

READ

IF response && If RESPONSE is true (.T.)...

 CANCEL

ENDIF

This example issues the prompt "End the program? (Y/N)". The answer, "Y" or "N", goes in

memory variable RESPONSE. The IF statement evaluates RESPONSE. If it is true, the program

CANCELs.

SPECIAL USES:
If you SUSPEND program execution, you cannot edit the open program files using the MODIFY

COMMAND editor. Issue CANCEL to end the SUSPENDed mode before trying to edit a program.

VARIATIONS:
dBXL: CANCEL returns control to the XL prompt and clears all memory variables.

Clipper, Quicksilver: CANCEL returns control to the operating system.

CANCEL SECTION 2

The dBASE® Language Handbook 99 Back to CONTENTS

FoxBASE+: In the Runtime version, control returns to the operating system. In the development

version, control returns to the interactive mode. CANCEL releases all private memory variables.

SEE ALSO:
Commands RETURN and QUIT.

CASE SECTION 2

The dBASE® Language Handbook 100 Back to CONTENTS

CASE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CASE <condition>

DEFINITION:
Indicates a branching point in a program when <condition> evaluates to true (.T.). CASE is part

of a DO CASE structure.

SEE ALSO:
Command DO CASE for more information.

CD SECTION 2

The dBASE® Language Handbook 101 Back to CONTENTS

CD

DIALECTS:
dBXL only.

SYNTAX:
CD [<path>]

DEFINITION:
Changes the MS-DOS/PC-DOS directory to the specified <path>.

<path> consists of a valid drive letter and directory.

If the path specifies a drive other than the current one, CD changes the directory, but not the drive.

CD without a path displays the current directory and drive.

CD works like the MS-DOS/PC-DOS CD or CHDIR commands.

RECOMMENDED USE:
Use CD from dBXL's interactive mode to navigate through file directories. It is not necessary in

programs since you can control directory access with the commands SET DBF, SET NDX, and

SET PATH.

Example—Working in dBXL's interactive mode, Samuel in accounting browses directories

looking for the accounts receivable database.

SET PROMPT TO ". " && Change to standard dot prompt

. CD \DBXL\AR

. DIR AR*.DBF

SEE ALSO:
Commands SET DBF, SET DEFAULT, SET NDX, and SET PATH.

CHANGE/EDIT SECTION 2

The dBASE® Language Handbook 102 Back to CONTENTS

CHANGE/EDIT

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
CHANGE [scope] [FIELDS <field list>] [WHILE <condition>] [FOR <condition>]

DEFINITION:
Allows full-screen editing of fields in the database in use.

DEFAULT:
Displays all fields unless otherwise specified in the FIELDS option. Selects all records unless

otherwise specified by SCOPE, FOR, or WHILE conditions. CHANGE is the same as EDIT.

RECOMMENDED USE:
Use CHANGE in the interactive mode of dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

You can include it in programs; however, it does not allow enough control over the user's actions

for sophisticated applications. For example, CHANGE lets users modify the database directly.

Example 1—A legal secretary wants to quickly change one client's address in a database file.

From the dBASE dot prompt, he or she uses CHANGE to initiate full-screen editing.

. USE clients

. CHANGE FOR lname = "Marvin"

The screen now appears as follows:

CHANGE/EDIT SECTION 2

The dBASE® Language Handbook 103 Back to CONTENTS

VARIATIONS:
Clipper: The interactive editing utility, DBU, lets you change database records.

dBASE IV: Pressing F10 invokes a bar menu that lets you control CHANGE operations such as

Undo Change, Add New Records, Mark Record for Deletion, Blank Record, Lock Record, and

Follow Record to New Position. The F10 menu also lets you move through the database by record

number or do simple searches. CHANGE has several more command line options, in the form:

CHANGE [NOINIT] [NOFOLLOW] [NOAPPEND] [NOMENU] [NOEDIT]

 [NODELETE][NOCLEAR] [<record number>]

NOAPPEND: Stops the user from adding records.

NOCLEAR: Leaves data on the screen after exiting the CHANGE. The screen clears by default.

NODELETE: Stops the user from deleting records with Ctrl-U.

NOEDIT: Stops the user from changing the data on the screen. The user can still delete with Ctrl-U.

NOFOLLOW: Changing a key field in an indexed database moves the changed record to a new

position in the index. By default, the record pointer follows the moved record. NOFOLLOW leaves

the pointer in its original position. The next record after the original position becomes the current

record. This lets you CHANGE sequentially, without jumping around the database.

NOINIT: Uses the options specified in the previous CHANGE command. (If you have long

repetitive CHANGE commands, you only have to type the options once).

NOMENU: Stops the user from invoking the CHANGE/EDIT bar menu by pressing the F10 key.

<record number>: Starts the CHANGE at the specified record number and lets the user access all

other records.

Warning: <record number> alone is easily confused with a scope that uses a record number. To

restrict CHANGE to a single record, use CHANGE RECORD <record number>, using the

"RECORD" keyword.

Networking Notes: On a network, the status bar indicates the locking condition, as follows (in the

lefthand column):

CHANGE/EDIT SECTION 2

The dBASE® Language Handbook 104 Back to CONTENTS

Message Cause

Exclusive use (USE <filename> EXCLUSIVE)

File locked (Automatic, FLOCK())

Read only (PROTECT)

Record locked (Automatic, LOCK(), RLOCK(), or Ctrl-O interactively)

Record unlocked (Automatic, UNLOCK)

On a network, when you press a key to update a record, CHANGE automatically tries to lock the

record and related ones. If the lock succeeds, dBASE IV rereads the record from disk to determine

whether another user has changed it since you first displayed it. If so, the new data appears with

the prompt, "Data in record has changed." You can press Esc to cancel CHANGE, unlocking the

record. If you press any other letter or number key, CHANGE proceeds.

SEE ALSO:
Commands BROWSE, EDIT, and SET AUTOSAVE.

CLEAR SECTION 2

The dBASE® Language Handbook 105 Back to CONTENTS

CLEAR

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CLEAR

DEFINITION:
Erases the screen, releases all pending GET statements, and puts the cursor in the upper left corner.

You can clear parts of the screen with the @ <coord> CLEAR statement. (See @<coord>

CLEAR).

RECOMMENDED USE:
Use CLEAR to erase the screen before displaying menus or reports.

Example—A programmer uses CLEAR at the beginning of every application as part of a general

"housekeeping" routine that resets the program environment.

* HOUSE.PRG

SET SAFETY OFF

SET TALK off

SET SCOREBOARD off

SET UNIQUE on

CLEAR ALL

CLEAR

LIMITS/WARNINGS:
Because CLEAR releases pending GETs, don't use it in procedures or user defined functions while

GETs are active. For example, avoid CLEAR in procedures initiated with Clipper's SET KEY

command or in Clipper, FoxBASE+, or Quicksilver user defined functions called from a VALID

clause (see @...SAY...GET). If you must CLEAR the screen in these situations, use @ 0,0 CLEAR

or, in Clipper, CLEAR SCREEN.

VARIATIONS:
Clipper: The SCREEN option clears the screen without releasing pending GETs. It lets you

CLEAR the screen in SET KEY procedures or in user defined functions called from the VALID

clause of the @...SAY...GET command.

dBASE IV: If you have an active window, CLEAR erases only its contents. The border and the

full screen surrounding it remain intact. You must enter the full-screen mode to CLEAR the entire

screen by first DEACTIVATing, CLEARing, or RELEASing the window. You can also

ACTIVATE SCREEN to select the full-screen mode.

CLEAR SECTION 2

The dBASE® Language Handbook 106 Back to CONTENTS

dBXL, Quicksilver:

CLEAR [CHARACTER "<expC>"]

The CHARACTER option fills the screen with the leftmost character of <expC>. For example,

CLEAR CHARACTER "*" fills the background with asterisks. dBXL and Quicksilver have

special windowing commands and functions that are enhanced by using the CHARACTER option.

This option helps you simulate "desktop" user interfaces (such as Apple Macintosh, the GEM

operating system, and Microsoft Windows) by defining backgrounds with a single command.

Also, if you have an active window, CLEAR erases only its contents. The frame and the screen

surrounding it remain intact. To clear the screen, you must select the full screen mode as follows:

WSELECT 0

CLEAR

SEE ALSO:
Command @...CLEAR TO.

CLEAR ALL SECTION 2

The dBASE® Language Handbook 107 Back to CONTENTS

CLEAR ALL

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CLEAR ALL

DEFINITION:
Releases all memory variables and arrays, closes open database files and all set relations, and

selects work area 1 (the default). It also closes all related index files, format files, and memo files,

and rejects all current @...GET commands. CLEAR ALL does not close PROCEDURE files.

RECOMMENDED USE:
Use CLEAR ALL as the first command in a main program. It assures a clean work environment

and avoids corrupting open files from a previous application.

Example—A library application consists of 20 program files. The main one, called LIB.PRG,

calls the others. CLEAR ALL at the beginning of LIB.PRG assures that previous programs do not

leave active variables or open files.

* LIB.PRG

CLEAR ALL

SET TALK off

SET ECHO off

VARIATIONS:
dBASE IV: Also removes MENUS and POPUPS from memory.

SEE ALSO:
Commands CLEAR MENUS, CLEAR POPUPS, CLEAR WINDOWS, CLOSE DATABASES,

CLOSE PROCEDURE, and RELEASE.

CLEAR AUTOMEM SECTION 2

The dBASE® Language Handbook 108 Back to CONTENTS

CLEAR AUTOMEM

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
CLEAR AUTOMEM

DEFINITION:
Creates a set of memory variables for an open database with the same names as the field names

(AUTOMEM variables). CLEAR AUTOMEM overwrites existing memory variables with the

same names.

RECOMMENDED USE:
Use CLEAR AUTOMEM to create new AUTOMEM variables within a DO WHILE loop during

data entry. This clears AUTOMEM variables with the same names used in the previous record.

You can also use CLEAR AUTOMEM in the interactive mode, from the XL prompt.

Example—A data entry module initializes 42 AUTOMEM variables with CLEAR AUTOMEM.

After adding a new record (with APPEND AUTOMEM), issue CLEAR AUTOMEM to reset the

AUTOMEM variables.

 SET TALK off

 response = "Y"

 USE mainentr

 DO WHILE response # "N"

 CLEAR

 CLEAR AUTOMEM

 * <42 @...SAY...GETs>

 READ

 APPEND AUTOMEM

 @ 10,10 SAY "Add more records? (Y/N) " GET response PICTURE "!"

 READ

 ENDDO

Without CLEAR AUTOMEM, this example would require 42 memory variable declarations, an

APPEND BLANK, and 42 REPLACEs.

VARIATIONS:
FoxBASE+: SCATTER...TO <array> stores fields from the current record in an array.

SEE ALSO:
Commands CLEAR, GATHER, and SCATTER.

CLEAR FIELDS SECTION 2

The dBASE® Language Handbook 109 Back to CONTENTS

CLEAR FIELDS

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CLEAR FIELDS

DEFINITION:
Releases field lists created with the SET FIELDS TO <field list> command. It releases fields set

in all work areas. If there is no SET FIELDS TO <field list>, CLEAR FIELDS has no effect.

RECOMMENDED USE:
The SET FIELDS command limits the fields available to LIST, DISPLAY, EDIT, etc. CLEAR

FIELDS restores ALL FIELDS. SET FIELDS and CLEAR FIELDS are intended for interactive

use.

Example—A large inventory file contains four fields. A clerk wants to work with only two of

them without having the others cluttering the screen. He uses the SET FIELDS command to select

the fields he wants. He later issues CLEAR FIELDS to restore the field list.

 . USE invent

 . LIST

 Record# PARTNO QUANT DESC UNITCOST

 1 0383 1 Widget 2.95

 . SET FIELDS TO partno,quant

 . LIST

 Record# PARTNO QUANT

 1 0383 1

 . CLEAR FIELDS

 . LIST

 Record# PARTNO QUANT DESC UNITCOST

 1 0383 1 Widget 2.95

In this example, the user selects fields PARTNO and QUANT from file INVENT. A LIST shows

only the selected fields. After issuing CLEAR FIELDS, the LIST once again shows all fields.

SEE ALSO:
Command SET FIELDS.

CLEAR GETS SECTION 2

The dBASE® Language Handbook 110 Back to CONTENTS

CLEAR GETS

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CLEAR GETS

DEFINITION:
Cancels all pending GET statements. It does not erase the screen as CLEAR does.

RECOMMENDED USE:
You can use GETs to display data, and then issue a READ conditionally to edit. However, there

is a limit on the number of GETs you can use before issuing the next READ, CLEAR, or CLEAR

ALL.

Example—An editing module of a real estate application displays a record with GETs. It asks the

user whether to EDIT or continue to the next record. If the user chooses to EDIT, the program

executes a READ. Otherwise, the program executes a CLEAR GETS before proceeding to the

next record.

 USE property && a database file with various fields

 DO WHILE .t.

 CLEAR

 * 1) Initialize memory variables from PROPERTY

 * 2) Use @...SAY...GET memory variables

 * Use WAIT instead of @ SAY...GET...READ because READ activates all GETs

 WAIT "(E)dit (C)ontinue (R)eturn? (E/C/R)" TO response

 DO CASE

 CASE UPPER(response) = "E" && If RESPONSE is E, READ

 READ

 * <REPLACE memory variables into PROPERTY>

 * If RESPONSE is C, CLEAR GETS and move to next record

 CASE UPPER(response) = "C"

 CLEAR GETS

 SKIP

 CASE UPPER(response) = "R" && If RESPONSE is R, RETURN

 RETURN

 ENDCASE

 ENDDO

SEE ALSO:
Commands CLEAR, CLEAR ALL, and GET.

CLEAR KEY SECTION 2

The dBASE® Language Handbook 111 Back to CONTENTS

CLEAR KEY

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
CLEAR KEY

DEFINITION:
Clears the typeahead buffer. Same as CLEAR TYPEAHEAD in dBASE III PLUS and dBASE IV.

SEE ALSO:
Command CLEAR TYPEAHEAD.

CLEAR MEMORY SECTION 2

The dBASE® Language Handbook 112 Back to CONTENTS

CLEAR MEMORY

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CLEAR MEMORY

DEFINITION:
Releases all memory variables. It differs from RELEASE ALL in that it releases public variables

as well as private ones.

SEE ALSO:
Command CLEAR ALL.

CLEAR MENUS SECTION 2

The dBASE® Language Handbook 113 Back to CONTENTS

CLEAR MENUS

DIALECTS:
dBASE IV only.

SYNTAX:
CLEAR MENUS

DEFINITION:
Erases all bar menus and removes them from memory.

RECOMMENDED USE:
Use CLEAR MENUS to clear the screen and reclaim memory space for more menus.

Example—A subroutine DEFINEs and ACTIVATEs several menus. Before returning to the

calling program, it issues CLEAR MENUS.

CLEAR MENUS

RETURN

SEE ALSO:
Commands CLEAR POPUPS and CLEAR WINDOWS.

CLEAR POPUPS SECTION 2

The dBASE® Language Handbook 114 Back to CONTENTS

CLEAR POPUPS

DIALECTS:
dBASE IV only.

SYNTAX:
CLEAR POPUPS

DEFINITION:
Erases all popup menus and removes them from memory.

Clears all ON SELECTION commands.

RECOMMENDED USE:
Use CLEAR POPUPS to clear the screen and reclaim memory space for more popups.

Example—A subroutine DEFINEs and ACTIVATEs several popups. Before returning to the

calling program, it issues CLEAR POPUPS.

CLEAR POPUPS

RETURN

SEE ALSO:
Commands CLEAR MENUS and CLEAR WINDOWS.

CLEAR PROGRAM SECTION 2

The dBASE® Language Handbook 115 Back to CONTENTS

CLEAR PROGRAM

DIALECTS:
FoxBASE+ only.

SYNTAX:
CLEAR PROGRAM

DEFINITION:
Clears the FoxBASE+ program buffer.

RECOMMENDED USE:
FoxBASE+ executes programs using a buffering system to improve performance. Entire command

files (PRGs) are loaded into memory. During development, if you edit with an external editor,

issue CLEAR PROGRAM before DOing the new program. Otherwise, the old program remains

in the buffer and will execute.

Also use CLEAR PROGRAM when editing a procedure file, even if you use the internal

FoxBASE+ editor MODIFY COMMAND.

SEE ALSO:
Commands CLOSE PROCEDURE, DO, and MODIFY COMMAND.

CLEAR TYPEAHEAD SECTION 2

The dBASE® Language Handbook 116 Back to CONTENTS

CLEAR TYPEAHEAD

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CLEAR TYPEAHEAD

DEFINITION:
Empties the keyboard typeahead buffer.

RECOMMENDED USE:
Use CLEAR TYPEAHEAD to prevent a program user from entering data before viewing a screen

prompt.

Example—A critical menu selection decides whether to delete 10 years' data in a communicable

disease tracking application. Normally, an impatient operator can enter a response before the actual

prompt appears. To prevent this, the programmer includes CLEAR TYPEAHEAD before all

critical prompts.

CLEAR TYPEAHEAD

response = " "

@ 10,05 SAY "Delete data for last 10 years? (Y/N) "

DO WHILE .NOT. response $ "YN"

 @ 10,42 GET response PICTURE "!"

 READ

ENDDO

VARIATIONS:
Clipper: CLEAR TYPEAHEAD not available in versions before Summer '87. To clear the

keyboard buffer in earlier versions, use the KEYBOARD command with a null value:

KEYBOARD ""

dBXL, Quicksilver: CLEAR KEY is the same as CLEAR TYPEAHEAD.

SEE ALSO:
Commands CLEAR KEY, KEYBOARD, and SET TYPEAHEAD TO.

CLEAR WINDOWS SECTION 2

The dBASE® Language Handbook 117 Back to CONTENTS

CLEAR WINDOWS

DIALECTS:
dBASE IV only.

SYNTAX:
CLEAR WINDOWS

DEFINITION:
Erases all windows and removes their definitions from memory.

Restores full-screen operation and reveals text previously covered by windows.

RECOMMENDED USE:
Use CLEAR WINDOWS as a quick way to clear the screen and reclaim memory space for more

windows. If you want to save window definitions, use the command SAVE WINDOWS. You can

later use RESTORE WINDOWS to reload them into memory.

SEE ALSO:
Commands CLEAR MENUS, CLEAR POPUPS, RESTORE WINDOWS, and SAVE

WINDOWS.

CLOSE SECTION 2

The dBASE® Language Handbook 118 Back to CONTENTS

CLOSE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CLOSE [ALTERNATE/DATABASES/FORMAT/INDEX/PROCEDURE]/ALL

DEFINITION:
Closes alternate, database, format, index, and procedure files.

OPTIONS:
CLOSE ALL

Closes all files without releasing memory variables.

CLOSE ALTERNATE

Closes an alternate file.

CLOSE DATABASES

Closes all database, index, and format files.

CLOSE FORMAT

Closes an open format file in the currently selected work area.

CLOSE INDEX

Closes open indexes in the currently selected work area.

CLOSE PROCEDURE

Closes a procedure file.

VARIATIONS:
dBASE III PLUS, FoxBASE+, and Quicksilver: When you CLOSE ALL from an open

procedure file, the procedure remains open. You cannot issue CLOSE PROCEDURE from within

an open procedure file.

dBASE IV: You may issue CLOSE ALL from an open procedure file.

dBXL: CLOSE ALL causes a syntax error when issued from a procedure file. The problem is that

it tries to close the open procedure, giving the error message "File is in use." Similarly, you cannot

issue CLOSE PROCEDURE from within an open procedure file.

CLOSE UDF closes a user defined function file. Opened by the command SET UDF TO

<filename>, a function file may contain up to 32 user defined functions. SET UDF TO <filename>

CLOSE SECTION 2

The dBASE® Language Handbook 119 Back to CONTENTS

closes the previous function file before opening the new one. SET UDF TO without a filename

also closes the user defined function file. CLOSE UDF is not available in Quicksilver.

SEE ALSO:
Commands CLEAR ALL, INDEX, RELEASE, SET ALTERNATE, SET PROCEDURE, SET

UDF TO, and USE.

COMMIT SECTION 2

The dBASE® Language Handbook 120 Back to CONTENTS

COMMIT

DIALECTS:
Clipper only.

SYNTAX:
COMMIT

DEFINITION:
Writes all active data buffers to disk without affecting record pointers or closing open database

files.

RECOMMENDED USE:
When you add or edit records, new data stays in memory buffers until you close the file or until

the buffers are full. If the computer loses power during data entry, data in the buffers is lost. Issuing

COMMIT after adding or changing a record protects the new data.

In multiuser applications, COMMIT ensures that changes to a database are reflected immediately,

providing a higher degree of concurrency control. Without COMMIT, data needed by other users

may remain in buffers unnecessarily.

LIMITS/WARNINGS:
Do not use COMMIT after issuing PACK/ZAP. This combination of commands in a multiuser

application could corrupt the database.

SEE ALSO:
Commands FLUSH and SET AUTOSAVE.

COMPILE SECTION 2

The dBASE® Language Handbook 121 Back to CONTENTS

COMPILE

DIALECTS:
dBASE IV only.

SYNTAX:
COMPILE <filename>

DEFINITION:
Converts a source program into an executable tokenized form. COMPILE also checks syntax. If it

detects an error, it stops and you must fix the program before recompiling.

COMPILE converts only one program at a time.

The target file has an extension of DBO. Source programs are ASCII files.

DOing an uncompiled program will automatically COMPILE it.

With SET DEVELOPMENT ON, DO compares the PRG file with the DBO file. If the PRG file's

time and date are later, DO <filename> recompiles the PRG file, then executes it.

Using the internal MODIFY COMMAND editor to change a program erases the associated DBO

file. With SET DEVELOPMENT ON, the next time you run the program, DO <filename>

recompiles it, thus avoiding the possibility of running an old version.

DEFAULT:
COMPILE looks for a file with a PRG extension, unless you specify otherwise.

COMPILE looks in the default directory for the specified file.

RECOMMENDED USE:
You must COMPILE all source files before executing them. Even if you are not ready to run a

program, COMPILE does a quick syntax check and finds most obvious errors.

LIMITS/WARNINGS:
Be sure to give source programs unique names. Otherwise, you might overwrite existing DBO

files without warning.

dBASE III PLUS does not recognize dBASE IV-compiled programs.

The compiler optimizes program speed by evaluating constants at compile time.

COMPILE SECTION 2

The dBASE® Language Handbook 122 Back to CONTENTS

Note: Source files may have extensions FRG (generated report form), FMT (format), LBG

(generated label), PRG (program), PRS (SQL program), QBE (query file), and UPD (update

query).

SEE ALSO:
Commands DO, MODIFY COMMAND, and SET DEVELOPMENT.

CONTINUE SECTION 2

The dBASE® Language Handbook 123 Back to CONTENTS

CONTINUE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CONTINUE

DEFINITION:
Causes a record-by-record search to continue, using the conditions in the previous LOCATE

command.

When the search finds a matching record, it positions the record pointer there. CONTINUE

reexecutes the LOCATE, starting at the next record. If the search fails, the record pointer ends up

at the end of the LOCATE scope, or at the End of File (EOF), whichever comes first.

CONTINUE only works on the database in the active work area. Distinct CONTINUEs can operate

independently in different work areas.

Example—A career placement agency must find all Brodericks in a client database. Because there

are no indexes, the secretary uses LOCATE instead of SEEK or FIND. After finding the first

match, the secretary issues the CONTINUE command to continue the search, starting with the next

record.

. USE mainfile

. LOCATE FOR lname = "Broderick"

Record = 5

. ? lname

Broderick

. CONTINUE

Record=122

. ? lname

Broderick

. CONTINUE

End of LOCATE scope

SEE ALSO:
Command LOCATE.

CONVERT SECTION 2

The dBASE® Language Handbook 124 Back to CONTENTS

CONVERT

DIALECTS:
dBASE IV only.

SYNTAX:
CONVERT [TO <expN>]

DEFINITION:
Adds a internal field called _DBASELOCK to an open database file in the current work area. In

multiuser applications, _DBASELOCK contains information about record and file locks.

<expN> is the length of _DBASELOCK, ranging from 8 to 24 characters. If you do not specify

its value, the default is 16 characters. CONVERT makes a backup of the original database file with

a CVT extension.

RECOMMENDED USE:
Use CONVERT to prepare databases for multiuser applications that use CHANGE() and

LKSYS(). These functions tell you who has locked a record or file, when it was locked, and

whether it has been changed. You must also CONVERT databases to use SET REFRESH. SET

REFRESH updates a user's BROWSE or EDIT screen when another user changes the data being

displayed. The _DBASELOCK field holds the data that makes these multiuser features possible.

The counter that indicates whether a record was CHANGEd occupies the first two bytes of

_DBASELOCK. The TIME indicator (returned by LKSYS(3)) occupies the next three bytes. The

DATE indicator (returned by LKSYS(4)) occupies the next three. The LOGIN NAME (returned

by LKSYS(5)) occupies the remainder. If you CONVERT TO 24 which is the maximum length

of _DBASELOCK, the login takes the last 16. If you CONVERT TO 16 (the default), the login

name takes the last eight. If you CONVERT TO 8, the login name is not stored.

The CHANGE() indicator, the time, and the date are in hexadecimal format. The login name is a

character representation.

Example—To prepare a multiuser application, the programmer CONVERTs database files. For

small databases (under 10,000 records), the programmer specifies the full 24 characters. However,

to save disk space, the programmer specifies only 16 characters for files over 10,000 records.

USE mainsales

CONVERT && Default to 16. Creates MAINSALES.CVT backup file

USE subsales

CONVERT TO 24 && Also creates SUBSALES.CVT backup file

CONVERT SECTION 2

The dBASE® Language Handbook 125 Back to CONTENTS

LIMITS/WARNINGS:
You cannot view _DBASELOCK directly. Instead, you must use the functions CHANGE() and

LKSYS() to return its value. _DBASELOCK appears in the file structure; you can delete it.

However, you cannot add it through CREATE/MODIFY STRUCTURE.

SEE ALSO:
Command SET REFRESH; functions CHANGE(), LKSYS(), LOCK(), and RLOCK().

COPY SECTION 2

The dBASE® Language Handbook 126 Back to CONTENTS

COPY

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
COPY TO <new file> [<scope>] [FIELDS <field list>] [FOR <condition>]

[WHILE <condition>] [TYPE] <file type>]

DEFINITION:
COPY TO moves data in the active database to a new file. The output file can be a different type,

such as DELIMITED ASCII or Standard Data Format (SDF). dBASE III PLUS and dBASE IV

can also produce files in DIF, SYLK, and WKS formats. Additionally, dBASE IV can produce

dBASE II, Framework II, and RapidFile files.

DEFAULT:
Unless you specify a scope, or a FOR or WHILE condition, COPY copies all records. Unless you

specify a different file TYPE, it creates another dBASE III PLUS or dBASE IV database file

(DBF). Unless you specify a FIELDS list, it copies all fields.

COPY copies memo fields only when the target is a dBASE III PLUS or dBASE IV database file.

OPTIONS:
The TYPE <file type> option converts COPY output to file formats other than dBASE III PLUS

or dBASE IV. The other TYPEs are:

DBASEII

Ashton-Tate dBASE II database. dBASE IV only

DELIMITED [WITH <delimiter>/BLANK]

Delimited format file

Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver

DIF

VisiCalc spreadsheet format

dBASE III PLUS, dBASE IV, and dBXL

FW2

Ashton-Tate Framework database or spreadsheet

dBASE IV only

RPD

Ashton-Tate RapidFile database

dBASE IV only

COPY SECTION 2

The dBASE® Language Handbook 127 Back to CONTENTS

SDF

System Data Format

Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+,

and Quicksilver.

SYLK

Multiplan spreadsheet format

dBASE III PLUS, dBASE IV, and dBXL

WKS

Lotus 1-2-3 release 1.A spreadsheet format

dBASE III PLUS, dBASE IV, and dBXL

The dBASE III PLUS/dBASE IV EXPORT command creates pfs:File files.

RECOMMENDED USE:
Use COPY TO to create files containing query results. By putting selected records in another file,

you can manipulate data and create reports without considering irrelevant records.

Example—An inventory application uses several report programs to format data in different ways

(e.g., one program lists parts sorted by number, another by product category). To choose and

organize records for a report, each program could include data selection commands. However, it

is easier to select data in a separate program and COPY the selected records TO a summary file.

When the search criteria changes, the report programs need not be modified.

USE invent1

COPY TO repfile FOR category = "KITCHEN"

USE repfile

SORT ON partno TO partno

DO report1

In this example, COPY examines records from REPFILE for the category "KITCHEN." Only

records meeting this criteria go into REPFILE, a temporary database that the program overwrites

every time it executes.

LIMITS/WARNINGS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+: Do not use the letters A through J or M as

database file names to COPY TO. Clipper and Quicksilver do not have this restriction.

Only FoxBASE+ allows ALIAS-> designators in the COPY TO FIELDS option. This lets you

COPY FIELDS from an unselected database.

In dBASE III PLUS and dBASE IV, you must first SET RELATION INTO the unselected

database, then use the alias-> designator in the SET FIELDS command. You can then COPY TO

with a FIELD list without alias designators, as follows:

COPY SECTION 2

The dBASE® Language Handbook 128 Back to CONTENTS

USE file1 INDEX key && KEY is index name and key field name

SELECT 2

USE file2

SET RELATION TO key INTO file1

SET FIELDS TO file1->partnum,key && PARTNUM is a field in FILE1

COPY TO temp FIELDS partnum,key && Field names must be unique, or only

 && those in the current file will COPY

VARIATIONS:
dBASE IV: You can send data to an array with

COPY TO ARRAY <array name> [FIELDS <field list>] [<scope>]

 [FOR <condition>] [WHILE <condition>]

The ARRAY option adds the contents of an open database to an existing array. Each record in the

database becomes an array row. Each field becomes an array column. (In ARRAY[x,y], x is the

row, and y the column.)

The first field in the record becomes the first column in the array. The second field becomes the

second column, and so on, until there are no more fields or no more columns. COPY TO ARRAY

ignores excess columns or fields.

The first record in the database becomes the first row in the array. The second record becomes the

second row, and so on, until there are no more records or no more rows.

All data copied from a database to an array is subject to <scope>, FOR, WHILE, and <field list>

conditions. The first field or record is the first matching these conditions if specified.

Elements in the target array must have the same data types as the database fields.

Example—Database defaults are stored in a database. To protect the database from damage due

to power losses, a sales contact program opens CONTACT.DBF only long enough to COPY its

contents to an array. The program first opens the database, COPYs TO ARRAY, then closes the

database.

DECLARE mrec[5]

USE contacts

GOTO 10

COPY TO ARRAY mrec NEXT 1 && Copy only current record

USE

@ 01,01 SAY "Enter name: " GET mrec[1,1]

@ 02,01 SAY "Enter address: " GET mrec[1,2]

@ 03,01 SAY "Enter city: " GET mrec[1,3]

@ 04,01 SAY "Enter state: " GET mrec[1,4]

@ 05,01 SAY "Enter zipcode: " GET mrec[1,5]

READ

COPY SECTION 2

The dBASE® Language Handbook 129 Back to CONTENTS

FoxBASE+: Allows alias-> designators in the COPY TO FIELDS <field list>. This lets you

COPY fields from unselected work areas.

Can read, but not directly modify, dBASE II and FoxBASE database files. You can use COPY to

convert dBASE II and FoxBASE files to dBASE III PLUS files.

SEE ALSO:
Commands APPEND FROM, COPY FILE, EXPORT, GATHER, and SCATTER.

COPY FILE SECTION 2

The dBASE® Language Handbook 130 Back to CONTENTS

COPY FILE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
COPY FILE <file1> TO <file2>

DEFINITION:
Duplicates a closed file. You must specify extensions for both files. You may also specify drive

designators and DOS path names.

RECOMMENDED USE:
COPY FILE works like the DOS COPY command. Use it to create archival backups.

Example—A finance company requires floppy disk backups every evening. The system

administrator issues the COPY FILE command for drive A.

 . COPY FILE pastdue.prg TO a:pastdue.prg

 1222 bytes copied

LIMITS/WARNINGS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+: Do not use the letters A through J or M as

database file names.

VARIATIONS:
Clipper: COPY FILE copies from the default drive and directory (set by SET DEFAULT and

SET PATH).

dBASE IV: COPY FILE copies from the default directory established by the SET PATH

command or the PATH set in the CONFIG.DB file.

SEE ALSO:
Commands COPY and SET PATH.

COPY INDEXES SECTION 2

The dBASE® Language Handbook 131 Back to CONTENTS

COPY INDEXES

DIALECTS:
dBASE IV only.

SYNTAX:
COPY INDEXES <file list> [TO <MDX filename>]

DEFINITION:
Copies index files (extension NDX) into a multiple index file (extension MDX), creating a TAG

in the target MDX for each index.

The original index file is unchanged.

To use COPY INDEXES, you must first USE a database and activate the indexes to be copied.

DEFAULT:
If you do not specify a target MDX file with the TO option, COPY INDEXES adds the TAGs to

the production multiple index file.

If no such file exists, COPY INDEXES creates one with the same name as the database.

OPTIONS:
You can specify a target MDX file with the TO <MDX filename> option. If it does not exist,

COPY INDEXES creates it and gives it the specified name.

LIMITS:
Multiple index files are limited to 47 TAGs. However, you can only use COPY INDEXES on 10

indexes at a time, as that is the open index limit.

RECOMMENDED USE:
Use COPY INDEXES to convert dBASE III PLUS applications to dBASE IV.

Example—A dBASE III PLUS property management application uses four index files with a main

file called TENANTS. The programmer uses COPY INDEXES to convert to a dBASE IV

production multiple index file. The TO option is not required, since COPY INDEXES creates the

production index with the same name as the database.

USE tenants INDEX rents,duedates,balance,deposits

COPY INDEXES rents,duedates,balance,deposits

To COPY INDEXES to an existing multiple index file, the command would be:

COPY INDEXES SECTION 2

The dBASE® Language Handbook 132 Back to CONTENTS

COPY INDEXES rents,duedates,balance,deposits TO prop_mdx

SEE ALSO:
Commands COPY TAG, INDEX, and SET INDEX; functions MDX() and NDX().

COPY MEMO SECTION 2

The dBASE® Language Handbook 133 Back to CONTENTS

COPY MEMO

dBASE IV only.

SYNTAX:
COPY MEMO <memo name> TO <filename> [ADDITIVE]

DEFINITION:
Copies text from the current record's memo field to a text file. If the file already exists, COPY

MEMO erases it.

If SET SAFETY is ON, dBASE IV prompts the user before erasing the file.

Drive and path designators are optional.

You can specify a memo field in an unselected work area by using the ALIAS-> designator with

the fieldname. You can also copy a memo field from another work area if it is part of the current

SET FIELDS list.

DEFAULTS:
The target file defaults to a TXT extension.

OPTIONS:
You can append the current memo field to an existing text file with the ADDITIVE option.

RECOMMENDED USE:
Example—A law office management program stores case notes in memo fields. At the end of the

month, the program generates a log file containing all case notes.

USE legal

DO WHILE end_date < {02/08/89} .AND. .NOT. EOF()

 COPY MEMO c_notes TO feblog ADDITIVE

 SKIP

ENDDO

The program produces a text file called FEBLOG.TXT.

SEE ALSO:
Command APPEND MEMO; functions MEMLINES(), MLCOUNT(), and MLINE().

COPY STRUCTURE SECTION 2

The dBASE® Language Handbook 134 Back to CONTENTS

COPY STRUCTURE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
COPY STRUCTURE TO <filename> [FIELDS <field list>]

DEFINITION:
Copies the active database's structure to a new database file (extension DBF) with no records.

DEFAULT:
All fields, unless limited by the FIELDS option.

RECOMMENDED USE:
Use COPY STRUCTURE to create new empty databases from existing databases. If some field

definitions differ, you can then use MODIFY STRUCTURE to change the structure.

Example—A programmer must create a new database file for a towing company application under

development. To avoid the tedious definition process, the programmer copies the structure of an

existing file.

 . USE vehicles

 . LIST STRUCTURE

 Structure for database: C:vehicle.dbf

 Number of data records: 104

 Date of last update : 05/17/87

 Field Field Name Type Width Dec

 1 MAKE Character 10

 2 MODEL Character 10

 3 MILEAGE Numeric 10

 4 COST Numeric 10

 ** Total ** 41

 . COPY STRUCTURE TO veh2 FIELDS make,model

 . USE veh2

 . LIST STRUCTURE

 Structure for database: C:subfile.dbf

 Number of data records: 0

 Date of last update : 05/17/87

 Field Field Name Type Width Dec

 1 MAKE Character 10

 2 MODEL Character 10

 ** Total ** 21

COPY STRUCTURE SECTION 2

The dBASE® Language Handbook 135 Back to CONTENTS

SPECIAL USE:
You can use COPY STRUCTURE to regain disk space from database files. In some cases, dBASE

files from which records have been DELETEd and PACKed, or ZAPped, do not relinquish their

disk space. To reclaim disk space fully, proceed as follows:

1. COPY STRUCTURE of the active database to a temporary file.

2. USE the temporary file.

3. APPEND FROM the original file.

4. DELETE the original file with the DELETE FILE command.

5. RENAME the temporary file to the name of the original file.

SEE ALSO:
Command COPY TO <file> STRUCTURE EXTENDED.

COPY...STRUCTURE EXTENDED SECTION 2

The dBASE® Language Handbook 136 Back to CONTENTS

COPY...STRUCTURE EXTENDED

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
COPY TO <filename> STRUCTURE EXTENDED

DEFINITION:
Creates a new database that contains information about the currently active database's structure.

The new database contains a record for every field in the original. It has the following structure:

1 FIELD_NAME Character 10

2 FIELD_TYPE Character 1

3 FIELD_LEN Numeric 3

4 FIELD_DEC Numeric 3

RECOMMENDED USE

Use COPY TO as the first step in creating new database files under program control. First, create

a STRUCTURE EXTENDED file with the COPY TO command. Then modify its contents using

EDIT, REPLACE, etc.. Next, create a new database file with the modified structure using the

CREATE FROM command.

Example—A programmer uses similar database files in several applications. Rather than

CREATE each file from scratch, he or she copies the STRUCTURE EXTENDED, then EDITs the

resulting file. To modify the applications, the programmer need only reedit the STRUCTURE

EXTENDED file before regenerating the database files.

 . USE receipts

 . DISPLAY STRUCTURE

 Structure for database: C:receipts.dbf

 Number of data records: 104

 Date of last update : 05/17/87

 Field Field Name Type Width Dec

 1 NAME Character 10

 2 ADDRESS Character 10

 3 PRETAX Numeric 10

 4 POSTTAX Numeric 10

 ** Total ** 41

 . COPY TO rec_extnd STRUCTURE EXTENDED

 . LIST

 Record# FIELD_NAME FIELD_TYPE FIELD_LEN FIELD_DEC

 1 NAME C 10 0

 2 ADDRESS C 10 0

 3 PRETAX N 10 0

 4 POSTTAX N 10 0

COPY...STRUCTURE EXTENDED SECTION 2

The dBASE® Language Handbook 137 Back to CONTENTS

REC_EXTND contains a record for each field in RECEIPTS. Each record can be treated like any

other dBASE record. It can be EDITed, REPLACEd, etc. In this example, the programmer changes

NAME to FIRSTNAME and adds 2 decimal places to PRETAX.

. LIST

Record# FIELD_NAME FIELD_TYPE FIELD_LEN FIELD_DEC

 1 FIRSTNAME C 10 0

 2 ADDRESS C 10 0

 3 PRETAX N 10 2

 4 POSTTAX N 10 0

Using CREATE FROM, the programmer then generates a new database containing the changes:

 . CREATE new_rec FROM rec_extd

 . DISPLAY STRUCTURE

 Structure for database: C:new_rec.dbf

 Number of data records: 0

 Date of last update : 08/19/87

 Field Field Name Type Width Dec

 1 FIRSTNAME Character 10

 2 ADDRESS Character 10

 3 PRETAX Numeric 10 2

 4 POSTTAX Numeric 10

 ** Total ** 43

SEE ALSO:
Commands CREATE, CREATE FROM, and MODIFY STRUCTURE.

COPY TAG SECTION 2

The dBASE® Language Handbook 138 Back to CONTENTS

COPY TAG

DIALECTS:
dBASE IV only.

SYNTAX:
COPY TAG <tag name> [OF <MDX filename>] TO <NDX filename>

DEFINITION:
Copies a multiple index file TAG into an index file (extension NDX). The MDX file is unchanged.

To use COPY TAG, you must first USE a database and activate the MDX from which to copy.

OPTIONS:
If you have more than one open MDX file, OF <MDX filename> specifies the one you want.

DEFAULT:
Without the OF option, COPY TAG copies TAGs from the open MDX.

RECOMMENDED USE:
Use COPY TAG to create dBASE III PLUS-compatible indexes from the dBASE IV-specific

MDX format.

Example—A dBASE IV parcel tracking system uses a file PARCELS and two multiple index

files PARCMDX and TRACKER. PARCMDX has four TAGs: SHIPDATE, RECVDATE,

COST, and WEIGHT. To use the PARCELS file and PARCMDX with dBASE III PLUS, the

programmer copies the TAGs to a dBASE III PLUS-compatible index file (NDX).

USE parcels INDEX tracker,parcmdx

COPY TAG shipdate OF parcmdx TO shipdate

100% indexed 92 Records indexed

COPY TAG recvdate OF parcmdx TO recvdate

100% indexed 92 Records indexed

COPY TAG cost OF parcmdx TO cost

100% indexed 92 Records indexed

COPY TAG weight OF parcmdx TO weight

100% indexed 92 Records indexed

SEE ALSO:
Commands COPY TAG, INDEX, and SET INDEX; functions MDX() and NDX().

COUNT

CREATE SECTION 2

The dBASE® Language Handbook 139 Back to CONTENTS

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
COUNT [<scope>] [WHILE <condition>] [FOR <condition>]

 [TO <memory variable>]

DEFINITION:
Counts the number of records within the given scope for which the expression is true. The count

appears on the screen when you SET TALK ON. With SET TALK OFF, you must use a TO

<memory variable> clause.

DEFAULT:
All records if no scope, WHILE, or FOR is given.

OPTIONS:
TO <memory variable> puts the result in a numeric memory variable.

RECOMMENDED USE:
Use COUNT to determine how many records meet a specified condition.

Example—A demographics application analyzes the purchasing habits of mailorder customers.

COUNT determines how many live in the state of Washington and earn over $50,000. The number

counted is stored in memory variable QUALIFY.

. USE customers

. COUNT FOR state = "WA" .AND. income > 50000 TO qualify

. ? qualify

455

VARIATIONS:
Clipper, Quicksilver: The COUNT result must go to a memory variable with the TO <memory

variable> clause.

SEE ALSO:
Commands AVERAGE, CALCULATE, SET TALK, and SUM; function RECCOUNT().

CREATE

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

CREATE SECTION 2

The dBASE® Language Handbook 140 Back to CONTENTS

SYNTAX:
CREATE [<filename>]

DEFINITION:
Starts an interactive program to define the structure of a new database. If you don't supply a

filename, a prompt asks for one. Prompts then ask for the name, type, length, and number of

decimals for each field. You end the process by pressing the Enter key when the cursor is at the

last empty input field. At that point, a prompt asks:

Do you wish to add data now?

Answering (Y)es puts dBASE in the APPEND mode. Answering (N)o restores the interactive

prompt or continues to the next line in a program.

Change the structure of existing files with MODIFY STRUCTURE.

RECOMMENDED USE:
Use CREATE to generate new database files. When creating several similar files, you can often

save time by copying the first one's structure, then modifying it with MODIFY STRUCTURE.

Example—A large university grading application uses 10 database files. Four are nearly identical.

To save time, CREATE one file, then copy its structure to others that you can modify later.

. CREATE freshman

The following screen appears. You enter the specifications for the FRESHMAN file.

When you finish specifying the new file, press Enter. You will be asked if you want to enter data.

If you say no, control passes back to the interactive mode. Now, to duplicate the file structure, do

the following:

CREATE SECTION 2

The dBASE® Language Handbook 141 Back to CONTENTS

COPY STRUCTURE to soph

COPY STRUCTURE to junior

COPY STRUCTURE to senior

You can now use MODIFY STRUCTURE to change the three new files SOPH, JUNIOR, and

SENIOR. Perhaps, for example, SENIOR has added fields for GRADUATING, EXPECTED

DATE OF GRADUATION, and SENIOR HONORS.

LIMITS/WARNINGS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+: Do not use the letters A through J or M as

database filenames. They are reserved for ALIAS names.

VARIATIONS:
Clipper, Quicksilver: Both provide stand-alone utility programs for file creation.

Clipper: CREATE <file> produces an empty STRUCTURE EXTENDED file. (See COPY TO

<file> EXTENDED). From it, you can then create other database files with the CREATE FROM

command.

SEE ALSO:
Commands CREATE FROM and MODIFY STRUCTURE.

CREATE...FROM SECTION 2

The dBASE® Language Handbook 142 Back to CONTENTS

CREATE...FROM

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CREATE <file> FROM <structure extended file>

DEFINITION:
Produces a new database file using a structure in a STRUCTURE EXTENDED file.

RECOMMENDED USE:
Use CREATE FROM to build temporary database files for storing intermediate calculations or

for modifying database structures under program control.

SPECIAL USE:
In Clipper, the CREATE <file> command produces an empty STRUCTURE EXTENDED file.

You may CREATE FROM it under program control to generate all databases for an application.

You can thus deliver an application program to clients as a single executable (EXE) file.

A trick in dBASE III PLUS and dBASE IV lets you achieve the same effect as Clipper's CREATE

FROM. The SET CATALOG command CREATEs a database file without user interaction. It thus

lets you create a database file and immediately COPY its STRUCTURE EXTENDED. The new

file can serve as the basis for all other database files in an application. The procedure is:

 * dBASE III PLUS example

 * When creating a new catalog, prompts for a "catalog title"

 SET TITLE OFF && SET TITLE OFF disables the prompt

 SET CATALOG TO origin && Creates ORIGIN.CAT (a database file)

 SET CATALOG TO && Close the CATALOG file

 USE origin.cat && Catalog assigns a CAT ext. instead of DBF

 COPY STRUCTURE EXTENDED TO base_ext

 USE base_ext

 DISPLAY STRUCTURE

Structure for database: C:\BASE_EXT.DBF

 Number of data records: 5

 Date of last update : 09/23/87

 1 FIELD_NAME Character 10

 2 FIELD_TYPE Character 1

 3 FIELD_LEN Numeric 3

 4 FIELD_DEC Numeric 3

 ** Total ** 18

dBASE IV has an additional field FIELD_IDX for the index indicator.

CREATE...FROM SECTION 2

The dBASE® Language Handbook 143 Back to CONTENTS

You can now modify the STRUCTURE EXTENDED file and generate new database files using

CREATE FROM.

SEE ALSO:
Commands COPY STRUCTURE EXTENDED, CREATE, MODIFY STRUCTURE, and SET

CATALOG.

CREATE GRAPH SECTION 2

The dBASE® Language Handbook 144 Back to CONTENTS

CREATE GRAPH

DIALECTS:
dBXL only.

SYNTAX:
CREATE/MODIFY GRAPH <filename>

DEFINITION:
Starts an interactive program for defining bar graphs, line graphs, pie charts, regression lines,

scatter plots, and step graphs. CREATE GRAPH uses up to 40 records from the current database.

Graph definitions are stored in graph format files (extension GRF). The data remains in the

database file. You may use a GRF file with another database, as long as it contains the same fields

as the original. dBXL GRF files are compatible with Quicksilver.

On systems with the Enhanced Graphics Adapter (EGA), you can define color graphs. Systems

with the Color Graphics Adapter (CGA) or Hercules card are limited to monochrome graphs with

cross-hatching.

The GRAPH FORM command displays graph format files.

CREATE graph also lets you store graphs in formats for Aldus Pagemaker (PCX), PC Paintbrush

(PCX), and Xerox's Ventura Publisher (IMG).

You can use the printer defined by dBXL's SET GRAPHPRINT command or Quicksilver's

INSTALL program. Supported printers are:

• Epson FX (or LX86)

• Epson MX/IBM Graphics Printer (the default)

• Hewlett Packard LaserJet

• Okidata dot matrix

The manual also lists an HPGL Plotter option, but it does not work.

RECOMMENDED USE:
Use CREATE GRAPH with GRAPH FORM to display simple business graphs. The graph format

file (GRF) defines the graph type, titles, expressions, and color, but the plotting conforms to the

open database.

Example—An accountant wants to display a bar graph comparing 1988 and 1989 expenses. To

do this, she opens the associated database and issues CREATE GRAPH.

* Database contains three fields, MONTH (C,12), PAY1988 (N,8,2),

CREATE GRAPH SECTION 2

The dBASE® Language Handbook 145 Back to CONTENTS

* and PAY189 (N,8,2)

USE expenses

CREATE GRAPH expgraph

The accountant then defines the graph in the following steps:

1. Choose graph TYPE: BAR GRAPH:

2. Enter X and Y axis values:

CREATE GRAPH SECTION 2

The dBASE® Language Handbook 146 Back to CONTENTS

3. Enter graph titles:

4. Choose output options:

After she saves the graph, it is ready for display with the command

GRAPH FORM expgraph

CREATE GRAPH SECTION 2

The dBASE® Language Handbook 147 Back to CONTENTS

The graph appears as follows:

LIMITS/WARNINGS:
CREATE GRAPH requires a Hercules, IBM Color, or IBM Enhanced Graphics Adapter (or

compatible).

X axis labels overlap if there is not enough room. To avoid this, keep them as short as possible.

dBXL and Quicksilver do not display graphs within the active window. The screen blanks briefly,

then the graph fills the screen. When the user presses a key, the graph disappears and the previous

screen is erased as well. To preserve it, issue WSAVE before displaying the graph, then

WRESTORE after.

VARIATIONS:
Quicksilver: The standalone program MODIGRF.EXE creates graph forms compatible with

Quicksilver. Quicksilver can use graphs generated by dBXL.

SEE ALSO:
Commands GRAPH FORM, RESTORE GRAPH, and SET GRAPHPRINT.

CREATE COMMAND/LABEL/REPORT/ SECTION 2

The dBASE® Language Handbook 148 Back to CONTENTS

CREATE COMMAND/LABEL/REPORT/

QUERY/SCREEN/VIEW

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
CREATE/MODIFY LABEL/REPORT/QUERY/SCREEN/VIEW

MODIFY COMMAND

DEFINITION:
These are utility programs designed for interactive use. Support for them varies from product to

product, as follows:

 dBASE III PLUS:
CREATE LABEL/REPORT/QUERY/SCREEN/VIEW FROM ENVIRONMENT

dBASE IV:
CREATE LABEL/REPORT/QUERY/SCREEN/VIEW/VIEW FROM ENVIRONMENT

dBXL:
CREATE LABEL/REPORT/QUERY/FILE/COMMAND/VIEW FROM ENVIRONMENT

FoxBASE+:
CREATE LABEL/REPORT

Clipper has separate interactive utility programs for creating LABELS and REPORTS. The

Quicksilver manual recommends that programmers create LABEL and REPORT forms in advance

with dBASE III PLUS. See REPORT FORM and LABEL FORM.

OPTIONS:
CREATE COMMAND [<filename>]
Invokes dBXL's text editor. Files have a default extension of PRG.

CREATE FILE [<filename>]
Invokes dBXL's text editor.

CREATE LABEL [<filename>]
Automates mailing label generation. Allows saving and reusing of label forms.

QUERY/SCREEN/VIEW SECTION 2

The dBASE® Language Handbook 149 Back to CONTENTS

CREATE QUERY [<filename>]
dBASE III PLUS, dBASE IV, and dBXL offer interactive prompting for sophisticated searches on

a database. You can save complex queries for reuse.

CREATE REPORT [<filename>]
The dBASE III PLUS, dBXL, and FoxBASE+ internal report generators provide simple summary

reports without programming. dBASE IV provides more powerful reports.

CREATE SCREEN [<filename>]
Starts an interactive forms design program. It lets you define input forms with boxes, lines,

database views, and custom typestyles.

CREATE VIEW [<filename>]
Creates a special file (extension VUE) in which you define databases, indexes, active relations,

filters, and open format files. Restoring the VUE file with SET VIEW TO <filename> establishes

the dBASE working environment.

CREATE VIEW FROM ENVIRONMENT [<filename>]
Creates a view (extension VUE) file containing information on open database files and their work

areas, formats, indexes, relations, set fields, and filter conditions.

Issuing CREATE VIEW FROM ENVIRONMENT is like taking a snapshot of the dBASE

working environment. When you finish a work session, use it to preserve the current environment.

Start the next session with SET VIEW TO the VUE file.

MODIFY COMMAND [<filename>]
Starts the internal program editor. Gives files a default extension of PRG.

SEE ALSO:
Commands LABEL FORM, MODIFY COMMAND/FILE REPORT FORM, SET CATALOG,

SET FIELDS, SET INDEX, SET RELATION, and SET VIEW.

DEACTIVATE MENU/POPUP/WINDOW SECTION 2

The dBASE® Language Handbook 150 Back to CONTENTS

DEACTIVATE MENU/POPUP/WINDOW

DIALECTS:
dBASE IV only.

SYNTAX:
DEACTIVATE MENU/POPUP

DEACTIVATE <window name list>/ALL

DEFINITION:
Deactivates and erases a menu, popup, window, or group of windows.

These objects remain in memory for later reactivation. To remove them from memory, use

RELEASE MENUS/POPUPS/WINDOWS or CLEAR MENUS/POPUPS/WINDOWS.

Text covered by menus, popups, and windows is restored upon deactivation. When you

DEACTIVATE WINDOW, the previously active window (if there is one) becomes active again.

DEACTIVATing all windows restores full-screen mode.

DEACTIVATE MENU and DEACTIVATE POPUP are not valid from the dot prompt, since no

menu or popup can be active.

DEACTIVATion of a MENU or POPUP does not interrupt or terminate program execution.

Control returns to the line after the menu or popup was activated.

OPTIONS:
You can DEACTIVATE multiple windows by using a list or by specifying ALL.

RECOMMENDED USE:
Use DEACTIVATE MENU and DEACTIVATE POPUP from an ON SELECTION PAD or ON

SELECTION POPUP statement. The DEACTIVATE commands have the same effect as pressing

ESC.

Example 1—An automobile parts inventory menu offers three choices. The last one is "Return,"

which deactivates the POPUP.

DEFINE POPUP parts FROM 01,01 To 05,25

DEFINE BAR 1 OF parts PROMPT "Stock report"

DEFINE BAR 2 OF parts PROMPT "Product search"

DEFINE BAR 3 OF parts PROMPT "Return to previous menu"

 ON SELECTION POPUP parts DO mchoice

 ACTIVATE POPUP parts

 PROCEDURE mchoice

DEACTIVATE MENU/POPUP/WINDOW SECTION 2

The dBASE® Language Handbook 151 Back to CONTENTS

 msel = BAR()

 DO CASE

 CASE msel = 1

 * <Do stock procedure>

 CASE msel = 2

 * <Do search procedure>

 CASE msel = 3

 * End execution of popup

 DEACTIVATE POPUP

 ENDCASE

If you display the POPUP under a MENU PAD (using ON PAD), control returns to the MENU

when you DEACTIVATE POPUP. In this situation, DEACTIVATE POPUP does not appear to

work because the ON PAD immediately reactivates the POPUP. To deactivate the POPUP and its

controlling MENU, use DEACTIVATE MENU.

Example 2—The inventory program from Example 1 uses DEFINE MENU to list user selections.

The last choice on every MENU is "Exit."

 DEFINE MENU refill

 DEFINE PAD sel1 OF refill PROMPT "List stock numbers for refill" AT 0,0

 DEFINE PAD sel2 OF refill PROMPT "Exit" AT 0,50

 ON SELECTION PAD sel1 OF refill DO rquery

 ON SELECTION PAD sel2 OF refill DO mexit

 ACTIVATE MENU refill

 PROCEDURE rquery

 DISPLAY part,qty FOR qty < 5

 RETURN

 PROCEDURE mexit

 DEACTIVATE MENU

 RETURN

Example 3—The inventory system from Examples 1 and 2 uses ten windows to display

information. They are called WIN1 through WIN10. The program deactivates them by name.

DEACTIVATE win1,win7,win9

Before exiting to the dot prompt, the inventory system DEACTIVATEs ALL windows.

DEACTIVATE WINDOW ALL

Warning: Avoid the temptation to use DEACTIVATE ALL WINDOW instead of DEACTIVATE

WINDOW ALL. While most dBASE syntax is flexible, this command is not.

DEACTIVATE MENU/POPUP/WINDOW SECTION 2

The dBASE® Language Handbook 152 Back to CONTENTS

SEE ALSO:
Commands ACTIVATE MENU, ACTIVATE POPUP, CLEAR MENUS/POPUPS/ WINDOWS,

DEFINE MENU, DEFINE POPUP, and RELEASE MENUS/POPUPS/WINDOWS; functions

BAR(), MENU(), PAD(), and PROMPT().

DEBUG SECTION 2

The dBASE® Language Handbook 153 Back to CONTENTS

DEBUG

DIALECTS:
dBASE IV only.

SYNTAX:
DEBUG <fileame> [WITH <parameter list>]

DEFINITION:
Executes the specified program or procedure under the control of the interactive debugger.

The debugger lets you analyze a program while it runs (see the figure below for a typical screen)/

You can set breakpoints, display the results of expressions, edit the program, or execute it a line at

a time.

The debugger has debugger, display, breakpoint, and edit windows. The debugger window shows

work areas, open files, active procedures, and the current line number. The edit window shows the

program lines as they execute. Pressing E lets you edit them. The breakpoint window lets you use

the LINENO() function to set breakpoints (see function LINENO() for an example). The display

window lets you specify expressions to trace as values change in the program.

RECOMMENDED USE:
Use the debugger to fix program syntax and logic errors, and to optimize program performance.

Quite often, watching a program's execution can point out inefficiencies such as lines that execute

unnecessarily.

DEBUG SECTION 2

The dBASE® Language Handbook 154 Back to CONTENTS

You can display the debugger's command list by pressing F1. The list overlaps the breakpoint

window.

VARIATIONS:
Clipper: The interactive debugger is in a linkable object module called DEBUG.OBJ. The

ALTD() function activates it.

dBASE III PLUS, dBXL, FoxBASE+: Use SET DEBUG, SET ECHO, SET STEP, and SET

TALK to debug programs.

Quicksilver: You can select the interactive debugger (called dB Debugger) at compile time with

the -G switch.

SEE ALSO:
Commands SET DEBUG, SET ECHO, SET STEP, and SET TALK; functions ALTD(),

LINENO(), and PROGRAM().

DECLARE SECTION 2

The dBASE® Language Handbook 155 Back to CONTENTS

DECLARE

DIALECTS:
Clipper and dBASE IV.

SYNTAX:
DECLARE <array name>[<expN1>,<expN2>]] [,<array list>]

Note: The outer square brackets around expN1,expN2 are literals. They must be included in the

DECLARE statement.

DEFINITION:
Activates an array of <expN1> rows and <expN2> columns. For example, you would DECLARE

an array NAME with five rows as follows:

DECLARE name[5]

Clipper allows only one dimension. dBASE IV allows two. You would DECLARE a dBASE IV

array with five rows and 2 columns as follows:

DECLARE names[5,2]

Array elements can be referenced by the array name and a number (subscript) representing its

relative position. Subscripts start at 1.

The data type in an element is determined by the last STORE made to it. Before values are

STOREd in an array, all elements are false (.F.).

Arrays use only one memory variable name. When you LIST MEMORY, they appear with type

"A".

Two-dimensional arrays can be DECLAREd and accessed with 1 or 2 subscripts.

OPTIONS:
You may DECLARE several arrays at once. For example:

DECLARE week[7],year[12]

creates two arrays, week and year, with seven and 12 elements, respectively.

RECOMMENDED USE:
Use DECLARE to store lookup data for quick access, or to load and unload data from databases.

You can also use arrays to accept the results of the AVERAGE and CALCULATE commands.

DECLARE SECTION 2

The dBASE® Language Handbook 156 Back to CONTENTS

Example 1—A dBASE IV editing program copies data from a database to an array using the

COPY TO ARRAY command. The database contains five fields and 10 records.

SET TALK ON

DECLARE mdata[10,5]

USE trans

COPY TO ARRAY mdata

10 Records Copied

Example 2—A Clipper programmer designs files with numbered field names. He or she can then

initialize memory variables in a DO WHILE loop by incrementing a counter, replacing many

STORE or equal sign declarations. As the counter increases, the elements of the array are assigned

the values of the corresponding numbered fields. You can then edit the array and REPLACE the

data back into the file using the same incrementing technique. This program adds a new record to

a form letter generating program. Each field is one line in the letter.

DECLARE mline[23] && Declare an array of 23 elements

USE letters && LETTERS file has fields LINE1 through LINE23

APPEND BLANK && Add a record

FOR counter = 1 TO 23

 * As counter increments, array MLINE and field LINE increment

 * Create a string version of counter and remove leading blanks

 scnter = LTRIM(STR(counter,2,0))

 * The & expands SCNTER, forming field names LINE1, LINE2,LINE3, etc.

 STORE line&scnter TO mline[counter]

NEXT counter

Now array MLINE contains 23 elements, each representing a blank field in the new database

record. To edit it, increment GETs in a DO WHILE or FOR NEXT loop. This is the equivalent of

23 @...SAY...GET statements:

FOR counter = 1 TO 23

 @ counter,1 GET mline[counter]

 NEXT counter

 READ

After editing is completed, the program can REPLACE the values in the same way:

FOR counter = 1 TO 23

 scnter = LTRIM(STR(counter,2,0))

 REPLACE line&scnter WITH mline[counter]

 NEXT counter

See APPEND FROM ARRAY, AVERAGE, and COPY TO ARRAY for more examples.

VARIATIONS:
Clipper: Limited to one-dimensional arrays. You may use PUBLIC <memory variable/array list>

or PRIVATE <memory variable/array list> instead of DECLARE to create arrays, reducing the

DECLARE SECTION 2

The dBASE® Language Handbook 157 Back to CONTENTS

number of lines of code. Also note that LEN(<arrayname>) returns the number of elements in the

array.

dBASE IV: Has two-dimensional arrays.

FoxBASE+: The DIMENSION command provides multidimensional array capability.

LIMITS:
Clipper: Arrays must have at least one element and may have up to 4096. Ones DECLAREd with

fewer or more elements default to 1 or 4096, respectively.

dBASE IV: Arrays may have up to 1023 elements, depending on the amount of available memory.

SEE ALSO:
Commands APPEND FROM ARRAY, COPY TO ARRAY, DIMENSION, FOR...NEXT,

GATHER, PRIVATE, PUBLIC, and SCATTER; functions ADIR(), AFILL(), AINS(), ADEL(),

LEN(), and TYPE().

DEFINE BAR SECTION 2

The dBASE® Language Handbook 158 Back to CONTENTS

DEFINE BAR

DIALECTS:
dBASE IV only.

SYNTAX:
DEFINE BAR <bar number> OF <popup name> PROMPT <expC>

 [MESSAGE <expC>][SKIP [FOR <condition>] [NOSPACE]]

DEFINITION:
Defines a selection item in a popup menu. You must DEFINE POPUP before

using DEFINE BAR.

<bar number> is the relative number in the selection list. It must be an integer. Omitting it leaves

a blank line in the popup menu. Specifying an existing BAR number overwrites the BAR. POPUP

BARs scroll vertically when there are more BARs than available lines in the popup. <popup name>

is the name of a defined popup. It may be up to 10 characters long.

PROMPT <expC> is the text that appears in the menu. It is truncated if it exceeds the window's

width.

OPTIONS:
MESSAGE <expC> is text that appears centered on line 24 when the user moves the cursor to the

associated BAR. The message overwrites any message defined in the POPUP command.

SKIP lets you display an item in the menu without letting the user select it with the cursor. In

addition, you can specify a SKIP FOR <condition> clause that deactivates the BAR when a

condition is true (.T.). For example, you may SKIP a BAR that says "Move to next record" when

the pointer is at the end-of-file, as follows:

 DEFINE BAR 1 OF main PROMPT "Move to next record" SKIP FOR EOF()

RECOMMENDED USE:
Use DEFINE BAR after first DEFINEing a POPUP. The sequence for using POPUP menus is as

follows:

1. DEFINE the POPUP.

2. DEFINE its BARs.

3. ACTIVATE it.

4. Specify an action when the user makes a selection with the ON SELECTION POPUP

command.

Example—A popup menu appears in a genealogy program.

DEFINE BAR SECTION 2

The dBASE® Language Handbook 159 Back to CONTENTS

DEFINE POPUP tree1 FROM 15,01 TO 20,35

DEFINE BAR 1 OF tree1 PROMPT "Trace maternal" MESSAGE "Show mother 20 gens"

DEFINE BAR 2 OF tree1 PROMPT "Trace paternal"

* If update file doesn't exist, then disallow selection

DEFINE BAR 3 OF tree1 PROMPT "Update files" SKIP FOR .NOT. FILE("trans")

DEFINE BAR 4 OF tree1 PROMPT "Exit"

ON SELECTION POPUP tree1 DO msub1

* <More statements>

ACTIVATE POPUP tree1

LIMITS/WARNINGS:
You may not DEFINE BAR if you use the FIELD, FILES, or STRUCTURE options of the

DEFINE POPUP command. These options predefine the BARs.

A popup must have at least one BAR.

The number of BARs is limited only by the amount of available memory; however, popups with

several hundred BARs execute slowly.

SEE ALSO:
Commands ACTIVATE POPUP, DEFINE POPUP, and ON SELECTION POPUP; functions

BAR() and PROMPT().

DEFINE BOX SECTION 2

The dBASE® Language Handbook 160 Back to CONTENTS

DEFINE BOX

DIALECTS:
dBASE IV only.

SYNTAX:
DEFINE BOX FROM <col1> TO <col2> HEIGHT <expN> [AT LINE <line>]

 [SINGLE/DOUBLE/<border definition>]

DEFINITION:
Prints boxes in reports.

<col1> is the starting (left) column. <col2> is the right column. Column values can range from 0

(far left) to 255.

HEIGHT <expN> is the depth of the box in lines (rows). Its value is relative to the top of the box.

It can range from 1 to 32767.

Boxes appear only around text printed with ?/?? statements. DEFINE BOX does not work with

@...SAYs and SET DEVICE TO PRINT. You must use SET PRINT ON instead.

OPTIONS:
You can specify the box's starting line with AT LINE <line>.

You can specify a SINGLE or DOUBLE line border. Or you can define a border with a string.

SINGLE is the default.

The <border definition> lets you define the sides and corners of the border individually. The

definition consists of up to eight keyboard or ASCII characters in a list organized as follows:

<t>,,<l>,<r>,<tl>,<tr>,<bl>,

tl______t______tr tl = top left bl = bottom left

| | t = top b = bottom

l r tr = top right br = bottom right

| | l = left

bl______b______br r = right

BOX <border definitions> are the same as in SET BORDER, except that you cannot DEFINE an

entire BOX with one character. (SET BORDER TO "$" defines the entire box as dollar signs;

DEFINE BOX..."$" defines only the top as dollar signs).

See command SET BORDER for details on border definitions.

DEFINE BOX SECTION 2

The dBASE® Language Handbook 161 Back to CONTENTS

RECOMMENDED USE:
Use DEFINE BOX to embellish printed reports. (The dBASE IV report generator uses it

extensively).

Because most printers do not permit reverse line positioning, you cannot use @ <coord> TO

<coord> to print a box, then reverse to print text. To avoid this limitation, DEFINE BOX prints

part of the box with each line of text output.

Example—A magazine editor keeps article information in a database. To highlight parts of a

weekly report, the editor uses DEFINE BOX.

USE articles

SET PRINT ON

?

DEFINE BOX FROM 0 TO 70 HEIGHT 11 DOUBLE

?

?

?? "ARTICLE" AT 2

?? ARTICLE AT 12

?

?? "AUTHOR" AT 2

?? AUTHOR AT 12

?

?? "RECEIVED" AT 2

?? RECEIVED PICTURE "Y" AT 12

?

?? "PAGES" AT 2

?? PAGES PICTURE "99.99" AT 12

?

?? "COLUMNS" AT 2

?? COLUMNS PICTURE "9" AT 12

?

?? "DEPT" AT 2

?? DEPT AT 12

?

?? "PAY" AT 2

?? PAY PICTURE "9,999.99" AT 12

?

?

?

SET PRINT OFF EJECT

A typical report appears as follows (formatted for an Epson LX-80):

DEFINE BOX SECTION 2

The dBASE® Language Handbook 162 Back to CONTENTS

+---+

: :

: ARTICLE THE BEES OF SOUTH AMERICA :

: AUTHOR WALLINGHAM :

: RECEIVED N :

: PAGES 10.25 :

: COLUMNS 2 :

: DEPT INSECT LIFE :

: PAY 1,543.88 :

: :

+---+

You can define your own border characters with the <border definition>. For example, to print a

border of dollar signs, use the command:

DEFINE BOX FROM 0 TO 75 HEIGHT 11 "$","$","$","$","$","$","$","$"

LIMITS/WARNINGS:
The appearance of printed boxes depends on your printer. ASCII graphics characters (non-

keyboard characters) such as SINGLE and DOUBLE lines may be simulated with keyboard

characters. Some boxes may be garbled. If so, check whether system variable _pdriver has the

correct value (e.g., _pdriver= "LX80.PR2" for an Epson LX-80).

SEE ALSO:
Commands @...TO and SET BORDER.

DEFINE MENU SECTION 2

The dBASE® Language Handbook 163 Back to CONTENTS

DEFINE MENU

DIALECTS:
dBASE IV only.

SYNTAX:
DEFINE MENU <menu name> [MESSAGE <expC>]

DEFINITION:
Initializes a horizontal PAD menu.

To use a PAD menu, you must follow these steps:

1. DEFINE the MENU

2. DEFINE the PADs (selections)

3. Define what happens when the cursor moves to a PAD with ON SELECTION PAD or ON

PAD

4. ACTIVATE the MENU.

DEFINE MENU gives the menu a name, and provides an optional message that appears centered

on line 24 when you ACTIVATE MENU. If you give individual PADs messages in the DEFINE

PAD command, they supersede the menu message.

To erase a menu, but leave it in memory, use DEACTIVATE MENU. To remove a menu from

memory, use RELEASE MENUS.

RECOMMENDED USE:
Use DEFINE MENU and DEFINE PAD in the same procedure to make the program easier to read.

Then ACTIVATE or DEACTIVATE the menu from other procedures when necessary.

Example—An inventory program displays a pad menu with selections for updating records. The

first step in creating a menu is DEFINE MENU. Another procedure later ACTIVATEs MENU.

PROCEDURE defmenu1

DEFINE MENU parts

DEFINE PAD sel1 OF parts PROMPT "Search for titles"

DEFINE PAD sel2 OF parts PROMPT "Record Updates"

ON SELECTION PAD sel1 OF parts DO tsearch && Do search module

ON SELECTION PAD sel2 OF parts DO rec_up && Do update module

SEE ALSO:
Commands ACTIVATE MENU, DEACTIVATE MENU, DEFINE PAD, ON PAD, ON

SELECTION PAD, and RELEASE; functions MENU() and PAD().

DEFINE PAD SECTION 2

The dBASE® Language Handbook 164 Back to CONTENTS

DEFINE PAD

DIALECTS:
dBASE IV only.

SYNTAX:
DEFINE PAD <pad name> OF <menu name> PROMPT <expC>

 [AT <coord>] [MESSAGE <expC>]

DEFINITION:
Defines a single selection item (a pad) in a pad menu.

In an activated menu, the user can press the left and right arrow keys to move the cursor bar. The

ON SELECTION PAD and ON PAD commands determine whether the user can press Enter to

make a selection or whether a POPUP appears immediately.

To use a PAD menu, you must follow these steps:

1. DEFINE the MENU.

2. DEFINE the PADs.

3. Define what happens when the cursor moves to a PAD with ON SELECTION PAD or ON

PAD.

4. ACTIVATE the MENU.

To DEFINE PAD, you must first DEFINE MENU <menu name>. If there is no such menu, dBASE

reports an error.

You may use up to 10 characters in the <pad name>. It may not begin with a number.

The PROMPT is the text that appears in the menu selection. Moving the cursor bar to the PROMPT

highlights it. The maximum length is 79 characters.

By default, menus appear on line 0. Because dBASE IV places the prompts end-to-end, their total

length may not exceed the screen's width.

OPTIONS:
AT <coord> lets you place prompts anywhere on the screen. For example,

DEFINE PAD sel1 OF master PROMPT "Enter name" AT 2,4

places the pad on row 2, starting in column 4. If you use the AT option, prompts may overlap.

You can define a MESSAGE of up to 79 characters to appear when the cursor bar touches the pad.

It is centered on line 24, overwriting the message in the DEFINE MENU command.

DEFINE PAD SECTION 2

The dBASE® Language Handbook 165 Back to CONTENTS

RECOMMENDED USE:
When you DEFINE PAD, give it a name related to its action or to its position in the menu.

Example—A farm management program has a menu with two pads, GRAINYIELD and

AVGPRICE.

DEFINE MENU farm1 && Old MacDonald had an agribusiness

DEFINE PAD grainyield OF farm1 PROMPT "Grain yield report" AT 2,1 ;

 MESSAGE "A listing of this month's yields"

DEFINE PAD avgprice OF farm1 PROMPT "Average grain prices" AT 2,30 ;

 MESSAGE "A listing of the average grain prices at local markets"

ON SELECTION PAD grainyield OF farm1 DO gr_rpt && Print grain report

ON SELECTION PAD avgprice OF farm1 DO price_rpt && Print price report

* <Statements>

ACTIVATE MENU farm1

LIMITS/WARNINGS:
By default (without the AT <coord> option), pad menus appear on line 0, conflicting with the

SCOREBOARD display, including the Caps, Ins, and Del status. To avoid this, SET

SCOREBOARD OFF when using pad menus on line 0.

SEE ALSO:
Commands ACTIVATE MENU, DEFINE MENU, ON PAD, ON SELECTION PAD, and SET

SCOREBOARD; functions MENU() and PAD().

DEFINE POPUP SECTION 2

The dBASE® Language Handbook 166 Back to CONTENTS

DEFINE POPUP

DIALECTS:
dBASE IV only.

SYNTAX:
DEFINE POPUP <popup name> FROM <coord> [TO <coord>]

 [PROMPT FIELD <field name>/PROMPT FILES [LIKE <pattern>]]

 [PROMPT STRUCTURE] [MESSAGE <expC>]

DEFINITION:
Adds a popup menu definition to memory. It remains inactive until you ACTIVATE POPUP.

Popup menus display prompts vertically within a single line box. The user makes a selection by

moving the cursor bar to a prompt and pressing Enter.

To create popup menus, you first DEFINE POPUP, DEFINE its BARs, and then ACTIVATE

POPUP. (You do not have to DEFINE BARs if you use the FIELD, FILES, or STRUCTURE

options). Use DEACTIVATE POPUP to erase popups from the screen and leave them in memory.

Use RELEASE POPUPS to erase popups and remove them from memory.

<popup name> is the name of a defined popup. If it already exists, the new definition overwrites

it. The name may be up to 10 characters long.

<coord> is the top left <row>,<column> position of the popup's border. The lower right corner is

set automatically to accommodate the longest prompt.

OPTIONS:
You can specify the lower right corner of the popup border with TO <coord>. With the status bar

on (SET STATUS ON), the popup border may extend to row 21, column 79. With the bar off, it

may extend to row 24. (You may define the border to row 24 at any time; however, its validity

depends on the status bar at the time you ACTIVATE POPUP).

Prompts wider than the border are truncated.

MESSAGE <expC> is text that appears centered on line 24 when you ACTIVATE the POPUP.

MESSAGEs specified in the DEFINE BAR command overwrite it.

The PROMPT FIELD, PROMPT FILES, and PROMPT STRUCTURE options let you easily

create "pick lists" of field data, files, and field names, respectively. If you use one of these options,

you may not DEFINE BARs for the popup.

The PROMPT FIELD <fieldname> lets you use the values in a database as prompts for the popup.

DEFINE POPUP SECTION 2

The dBASE® Language Handbook 167 Back to CONTENTS

The PROMPT FILES option defines all filenames in the current directory as prompts. If you use

the PROMPT FILES LIKE <pattern> option, you can limit the file selection to those matching

<pattern>. The pattern may include a drive and pathname; however, once the popup is activated,

the user may branch throughout the file directories. There is no apparent way to restrict the user

from browsing directories.

The PROMPT STRUCTURE option defines fieldnames from the open database as prompts.

RECOMMENDED USE:
DEFINE POPUP is the first step in creating a popup menu. If you do not use the PROMPT FIELD,

PROMPT FILES, or PROMPT STRUCTURE options, you must then DEFINE BARs. The next

step, ON SELECTION POPUP, specifies a command to execute when the user makes a selection.

You can use this to DO a procedure. In the procedure, use BAR() to determine which popup BAR

the user selected.

Example 1—A simple popup menu appears in a membership program.

DEFINE POPUP members FROM 15,01 TO 20,35

DEFINE BAR 1 OF members PROMPT "Renewals list"

DEFINE BAR 2 OF members PROMPT "Members past due"

DEFINE BAR 3 OF members PROMPT "Membership report"

ON SELECTION POPUP members DO maction

* <More statements>

ACTIVATE POPUP members

PROCEDURE maction

mbar = BAR()

DO CASE

 CASE mbar = 1

 DO renewals

 CASE mbar = 2

 DO expires

 CASE mbar = 3

 DO memreport

ENDCASE

RETURN

Example 2—An advertising sales program attaches POPUP menus to PAD menus with the

command ON PAD ACTIVATE <popup>. When the user moves the cursor to a menu PAD, the

associated POPUP appears automatically.

SET SCOREBOARD OFF

CLEAR

*

DEFINE MENU master

DEFINE PAD sel1 OF master PROMPT "File updates"

DEFINE PAD sel2 OF master PROMPT "Reports"

DEFINE PAD sel3 OF master PROMPT "Reindex"

DEFINE POPUP SECTION 2

The dBASE® Language Handbook 168 Back to CONTENTS

ON PAD sel1 OF master ACTIVATE POPUP fupdate

ON PAD sel2 OF master ACTIVATE POPUP freport

ON PAD sel3 OF master ACTIVATE POPUP freindex

DEFINE POPUP fupdate FROM 1,1

DEFINE POPUP freport FROM 1,15

DEFINE POPUP freindex FROM 1,30

DEFINE BAR 1 OF fupdate PROMPT "Add records"

DEFINE BAR 2 OF fupdate PROMPT "Edit records"

DEFINE BAR 3 OF fupdate PROMPT "Delete records"

DEFINE BAR 1 OF freport PROMPT "List sales"

DEFINE BAR 2 OF freport PROMPT "List commissions"

DEFINE BAR 3 OF freport PROMPT "List salaries"

DEFINE BAR 1 OF freindex PROMPT "Reindex all files"

DEFINE BAR 2 OF freindex PROMPT "Reindex master files"

*

ACTIVATE MENU master

This program produces the following menu:

Example 3—A query program lets users choose a database file and then a field from a popup

menu. The program then DISPLAYs the chosen fields.

SET SCOREBOARD OFF && Disable to avoid overwriting on line 0

CLEAR

PROCEDURE dbfpop

DEFINE POPUP dbfs FROM 1,1 TO 15,20 PROMPT FILES LIKE *.DBF

ON SELECTION POPUP dbfs DO dbf_use

ACTIVATE POPUP dbfs

*

DEFINE POPUP query FROM 1,1 TO 15,20 PROMPT STRUCTURE

ON SELECTION POPUP query DO qprocess

ACTIVATE POPUP query

* end of procedure

PROCEDURE dbf_use

mfile = PROMPT() && PROMPT() returns the value of the prompt,

USE (mfile) && in this case, a filename

DEACTIVATE POPUP

RETURN

* end of procedure

PROCEDURE qprocess

DEFINE POPUP SECTION 2

The dBASE® Language Handbook 169 Back to CONTENTS

CLEAR && BAR() returns the BAR number selected

search = FIELD(BAR()) && It can then be used as an argument

DISPLAY ALL &search && in the FIELD() function to get the

WAIT && fieldname from the number

CLEAR

RETURN

* end of procedure

LIMITS/WARNINGS:
You may not DEFINE BAR if you use the FIELD, FILES, or STRUCTURE options of the

DEFINE POPUP command. These options predefine the BARs.

A popup must have at least one BAR.

The number of BARs is limited only by the amount of available memory; however, popups with

several hundred BARs execute slowly.

SEE ALSO:
Commands ACTIVATE POPUP, DEACTIVATE POPUP, ON SELECTION POPUP,

RELEASE, and SHOW POPUP; functions BAR() and PROMPT().

DEFINE WINDOW SECTION 2

The dBASE® Language Handbook 170 Back to CONTENTS

DEFINE WINDOW

DIALECTS:
dBASE IV only.

SYNTAX:
DEFINE WINDOW <window name> FROM <coord1> TO <coord2>

 [DOUBLE/PANEL/NONE/<border definition>]

 [COLOR [<standard>][,<enhanced>][,<frame>]]

DEFINITION:
Creates a window definition. You can then activate the window with the ACTIVATE WINDOW

command. All subsequent output goes to the active window. You can define up to 20 windows,

then switch among them with ACTIVATE WINDOW.

DEACTIVATE WINDOW erases the window but leaves it in memory. RELEASE WINDOW

erases the window and removes its definition from memory. Both DEACTIVATE WINDOW and

RELEASE WINDOW restore the underlying text. CLEAR ALL also erases the window and

removes it from memory.

<window name> is up to 10 characters long. It may not begin with a number. If you define a new

window with the same name, it overwrites the old one.

<coord1> is the screen coordinate of the upper left corner of the window border. <coord2> is the

lower right. The coordinate range is 0,0 to 23,79 when the status bar is off (SET STATUS OFF),

and 0,0 to 20,79 when it is on. (The status bar setting is relevant when you ACTIVATE WINDOW,

rather than when you DEFINE WINDOW).

OPTIONS:
DOUBLE specifies a double line border instead of the default single line.

PANEL specifies an inverse video border (ASCII character 219).

NONE specifies a window with no border.

<border definition> lets you define the border's sides and corners. It consists of up to eight

keyboard or ASCII characters organized as follows:

<t>,,<l>,<r>,<tl>,<tr>,<bl>,

where:

DEFINE WINDOW SECTION 2

The dBASE® Language Handbook 171 Back to CONTENTS

t = top tl = top left

b = bottom tr = top right

l = left bl = bottom left

r = right br = bottom right

You may omit any character inside the list by leaving its comma in place. You must omit extra

commas from the end of the list. Only parts of the border you specify will be redefined, unless you

specify only the first character. In that case, it forms the entire border.

The COLOR option lets you change the color of the window's contents and border. See SET

COLOR for valid codes.

RECOMMENDED USE:
Use windows to display reports, menus, or help screens without disturbing the underlying text.

Also use them to BROWSE data and edit memo fields.

Example 1—A legal program lets clerks enter case briefs into a memo field. After DEFINEing

WINDOW, the program use the SET WINDOW OF MEMO command to set the default memo-

editing window. When the clerk moves the cursor to a memo field and presses Ctrl-Home, the

memo editor opens in the defined window.

* ASCII character 168 prints as an upside-down question mark. The

* window has yellow on blue standard text, red on white

* enhanced text, and black on white border

DEFINE WINDOW brief FROM 02,03 TO 10,79 168 COLOR gr+/b,r/w,n/w

SET WINDOW OF MEMO TO brief

Example 2—A library program defines two windows. One displays the author, title, and pages,

another displays an abstract. The windows appear simultaneously, but only one is actually active.

This program demonstrates switching among windows and the full screen (with the ACTIVATE

SCREEN command).

DEFINE WINDOW source FROM 01,01 TO 07,48

DEFINE WINDOW abstract FROM 01,50 TO 21,79

USE source

DO WHILE .t.

 ACTIVATE WINDOW source

 ?

 ? "AUTHOR: " + author AT 2 && Data type C, length 30

 ? "TITLE: " + title AT 2 && Data type C, length 30

 ? "PAGES: " + STR(pages,3,0) AT 2 && Data type N, length 3

 ?

 ACTIVATE WINDOW abstract

 ? nmemo && Data type MEMO

 ACTIVATE SCREEN && Activates full screen mode

 mview = .f.

 @ 23,01 SAY "View another? " GET mview PICTURE "Y"

DEFINE WINDOW SECTION 2

The dBASE® Language Handbook 172 Back to CONTENTS

 READ

 IF .NOT. mview

 RELEASE WINDOWS source, abstract && Erase windows and remove

 && from memory

 RETURN

 ENDIF

 SKIP

 IF EOF()

 ?? CHR(7)

 SKIP -1

 ENDIF

ENDDO

LIMITS/WARNINGS:
Some ASCII characters display correctly on the screen, but may not print correctly. Do not use

ASCII characters 7, 8, 10, 12, 13, 27, or 127 in <border definition>.

SEE ALSO:
Commands ACTIVATE SCREEN, ACTIVATE WINDOW, CLEAR WINDOWS,

DEACTIVATE WINDOW, RESTORE WINDOW, SAVE WINDOW, SET BORDER, SET

COLOR, and SET WINDOW OF MEMO.

DELETE SECTION 2

The dBASE® Language Handbook 173 Back to CONTENTS

DELETE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DELETE [<scope>] [WHILE <condition>] [FOR <condition>]

DEFINITION:
Marks records to be removed from the active database. Physical removal does not occur until you

issue the PACK command. DELETE ALL/PACK does not reclaim the disk space occupied by

MEMO fields. ZAP is similar, but it is faster and does reclaim MEMO field space.

SET DELETED ON hides deleted records. RECALL removes deletion marks. It restores records

marked for deletion since the last time you PACKed the database.

DEFAULT:
DELETE marks the current record for deletion, unless you select records using a scope, WHILE,

or FOR clause. When you use a scope or other condition with DELETE, the pointer moves to the

next record after the scope is exhausted.

RECOMMENDED USE:
Use DELETE and PACK to purge database files of unwanted records. If your application has large

files, frequent PACKs may not be practical. Instead, SET DELETED ON to hide DELETEd

records until you have time to PACK. DELETE alone does not move the record pointer.

Example 1—A hotel reservation system consistently overbooks rooms by 20 percent. At the end

of every week, the administrator purges "no-shows" from the file with the DELETE command.

USE reserves

* SHOW is a logical field which, if true, indicates that a reservation was

fulfilled

DELETE ALL FOR .NOT. SHOW

 36 records deleted

PACK

 120 records copied

In this example, 36 reservations went unfulfilled out of a total of 156.

VARIATIONS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+: SET TALK ON echoes the number of records

deleted. Also, deleted records appear with "del" at the top of the screen when SET SCOREBOARD

is ON, or on the STATUS BAR when editing. When LISTing or DISPLAYing a database, deleted

records have an asterisk ahead of the first field.

DELETE SECTION 2

The dBASE® Language Handbook 174 Back to CONTENTS

Example 2—A LIST of unfulfilled hotel reservations from the previous example (before

PACKing the database) shows deleted records with an asterisk preceding the first field.

 . LIST

Record# NAME ADDRESS STATE

 1 *Jones 122 Main Street CA

 2 Johnson 14 Arizona Ave. MA

 3 *Edwards P.O. Box 2222 CA

 4 Rowlands 24 Pennsylvania Ave. VA

SEE ALSO:
Commands PACK, RECALL, SET DELETED, and SET SCOREBOARD; function DELETED().

DELETE FILE SECTION 2

The dBASE® Language Handbook 175 Back to CONTENTS

DELETE FILE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DELETE FILE <filename>

DEFINITION:
DELETE FILE deletes a file specified by a full filename and extension. The file cannot be in USE.

You may use disk drive designators and paths, but not wildcard characters such as * and ?. In

dBASE III PLUS and dBASE IV, the command

DELETE FILE ?

displays a menu of files created by the SET CATALOG command. Deleted files are then removed

from the active CATALOG.

RECOMMENDED USE:
DELETE FILE removes files permanently.

Example—An antique store program copies the month's database files on a floppy disk, then

erases them from the hard disk to make room for new files.

COPY FILE oldsales.dbf TO A:augsales.dbf

DELETE FILE oldsales.dbf

File has been deleted

SEE ALSO:
Commands COPY FILE and SET CATALOG.

DELETE TAG SECTION 2

The dBASE® Language Handbook 176 Back to CONTENTS

DELETE TAG

DIALECTS:
dBASE IV only.

SYNTAX:
DELETE TAG <tag1> [OF <MDX filename>][, <tag2> [OF

<MDX filename>...47]] /

 <NDX filename1>, [<NDX filename2>...10]

DEFINITION:
Erases TAGs from a multiple index file (extension MDX) or closes index files (extension NDX).

DELETE TAG has two functions: it can either erase TAGs from an MDX file or close index files

(NDX). DELETEing a TAG reclaims its disk space. If you DELETE the last TAG, DELETE TAG

erases the MDX file.

Erasing MDX TAGs

If you don't use the OF <MDX filename> option, DELETE TAG affects the first open MDX (in

most cases, the production MDX file).

Use the OF <MDX filename> option when you have more than one MDX file open with duplicate

TAGs.

Closing indexes
If you use index filenames instead of TAGs, DELETE TAG closes them. It does not erase them.

Whereas SET INDEX TO without arguments closes all index files, DELETE TAG lets you close

individual TAGs. All TAGs in the active MDX file move up to fill in the closed TAG, changing

the order.

RECOMMENDED USE:
Use DELETE TAG to remove unused TAGs from an MDX file. Keep as few TAGs in the MDX

as possible, since it can grow rapidly. Also, the REINDEX command reindexes every TAG. With

a large database and many TAGs, a REINDEX could take hours!

Example—Through months of continuous use, the production MDX file of a SALES database

becomes cluttered with unused TAGs. To erase them, the programmer issues DELETE TAG from

the dot prompt.

 . DISPLAY STATUS

Currently Selected Database:

Select area: 1, Database in Use: D:\DBASE\SALES.DBF Alias: SALES

 Production MDX file: D:\DBASE\SALES.MDX

DELETE TAG SECTION 2

The dBASE® Language Handbook 177 Back to CONTENTS

 Index TAG: JAN Key: jan

 Index TAG: FEB Key: feb

 Index TAG: MAR Key: mar

 Master Index TAG: APR Key: apr

 . DELETE TAG jan,feb

 . DISPLAY STATUS

Currently Selected Database:

 Select area: 1, Database in Use: D:\DBASE\SALES.DBF Alias: SALES

 Production MDX file: D:\DBASE\SALES.MDX

 Master Index TAG: APR Key: apr

 Index TAG: MAR Key: mar

To DELETE a TAG called JUN from MTOTALS.MDX, use the command:

 . DELETE TAG jun OF MTOTALS

SEE ALSO:
Commands COPY TAG, INDEX, SET INDEX, and SET ORDER; functions MDX(), NDX(),

TAG(), and ORDER().

DIMENSION SECTION 2

The dBASE® Language Handbook 178 Back to CONTENTS

DIMENSION

DIALECTS:
dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
FoxBASE+: DIMENSION <array name> (<expN1>[,<expN2>])[,<array list>]

(Allows one or two dimensions. You must include the parentheses in the command).

dBXL/Quicksilver: Use brackets [] instead of parentheses. Allows up to 255 dimensions.

DEFINITION:
DIMENSION activates memory variable arrays of mixed data types. You can reference an element

by the array name, and a number (subscript) representing its relative position. Subscripts begin at

1.

The STORE command assigns values to the entire array, or to individual elements. The data type

in an element is determined by the last STORE made to it. Before values are STOREd in an array,

all elements are false (.F.).

An array uses one memory variable name. When you LIST MEMORY, arrays appear with data

type "A".

You can DIMENSION a list of arrays in one command as in:

DIMENSION main(2,5),sub(3,10),sub2(4,10)

VARIATIONS:
dBXL/Quicksilver: DIMENSION uses brackets [] around its subscripts, There can be

(theoretically) up to 254 subscripts, specified as follows:

DIMENSION <array name> [<expN1>[,<expN2>][,<expN3>]....[,<expN255>][,<array list>]

You will exhaust memory space, or reach the maximum command line length, before reaching the

array dimension limit.

An array can have at most 254 elements.

FoxBASE+: DIMENSION uses parentheses around its subscripts. Arrays can have one or two

subscripts.

An array can contain no more than 3,600 elements. Each element occupies at least 18 bytes of

storage.

DIMENSION SECTION 2

The dBASE® Language Handbook 179 Back to CONTENTS

RECOMMENDED USE:
Use DIMENSION to hold structured data in memory. This is useful for data driven menus and

lookup tables.

Example 1—A FoxBASE+ program stores menu items in database files. Each item consists of a

user prompt and a subroutine name MACTION that indicates the subroutine to execute.

 CLEAR && CLEAR the screen

 mrow = 2 && Upper left coordinates for menu box

 mcol = 2 && You could pass these as PARAMETERS to

 USE menu && the menu routine

 Use DBF with fields

 && MSELECT (char,30) and MACTION (char, 10)

 mrec = RECCOUNT() && Record count is the # of array elements

 DIMENSION smenu(mrec,2) && DIMENSION array with element

 && for each record

 * Array building routine

 ctr = 1 && Start a counter

 DO WHILE ctr <= mrec && Repeat until CTR equals MREC

 STORE mselect TO smenu(ctr,1) && Put field MSELECT into element CTR,1

 STORE maction TO smenu(ctr,2) && Put field MACTION into element CTR,2

 SKIP && SKIP to next record

 ctr = ctr + 1 && Add 1 to CTR

 ENDDO

 * Menu building routine

 @ mrow,mcol-1 TO mrow+mrec+1, mcol+30 && Draw BOX around menu coordinates

 ctr = 1 && Repeat

DO WHILE process,

 DO WHILE ctr <= mrec && taking data from array,

 @ mrow+ctr,mcol PROMPT smenu(ctr,1) && then use data as menu PROMPTs

 ctr = ctr + 1

 ENDDO

 MENU TO mresponse && Activate @...PROMPT menu, store to MRESPONSE

 mdo = smenu(mresponse,2) && Store subroutine name in MDO

DO &mdo && Execute subroutine

When retrieving data from a database file, the SCATTER command automatically DIMENSIONs

an array and stores the contents of the current record in it. You can edit the array using

@...SAY...GETs, then use the GATHER command to reload the database record. This is similar

to the dBXL and Quicksilver AUTOMEM capability.

Example 2—An edit routine in a library management system lets the librarian change book

descriptions. To edit a record, the program SCATTERs the current values into an array. The

librarian then edits the data. When done, he or she saves it. The program GATHERs the array back

into the current record.

DIMENSION SECTION 2

The dBASE® Language Handbook 180 Back to CONTENTS

USE booklist

GOTO 5

SCATTER FIELDS title,desc,isbn TO listedit

CLEAR

* LISTEDIT is the name of the array. In this application,

* the arrays have only one dimension

@ 01,01 SAY "Title: " GET listedit(1)

@ 02,01 SAY " Desc: " GET listedit(2)

@ 03,01 SAY " ISBN: " GET listedit(3)

READ

GATHER FROM listedit FIELDS title,desc,isbn

VARIATIONS:
Clipper: Has one dimensional arrays using DECLARE instead of DIMENSION.

dBASE IV: Has two dimensional arrays using DECLARE instead of DIMENSION.

SEE ALSO:
Commands APPEND FROM ARRAY, COPY TO ARRAY, DECLARE, GATHER, and

SCATTER.

DIR/DIRECTORY SECTION 2

The dBASE® Language Handbook 181 Back to CONTENTS

DIR/DIRECTORY

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DIR [[ON] <drive:><path>] [[LIKE [<pattern>] [TO PRINT]

DEFINITION:
DIR (DIRECTORY) displays information about files located on the designated disk drive. DIR

alone displays the record count, the last update, and the file size in bytes for all database files

(DBF). With a <pattern> (asterisks and question marks), DIR can show files of all types.

Changes in the DIRECTORY record count are not recorded until the listed file is closed.

DEFAULT:
DIR displays a directory listing. The TO PRINT option also produces a printed version.

RECOMMENDED USE:
Use DIR to get detailed information about database files in the specified directory. With a

<pattern>, DIR acts much like the MS-DOS DIR command.

Example 1—A magazine publisher wants to find the latest payroll information stored on drive C.

She issues the DIR command and sees filenames, record counts, dates of last update, and file sizes

in bytes.

 . DIR C:

 Database Files # Records Last Update Size

 ACCTSRCV.DBF 48 11/17/87 1106

 PAYRLL.DBF 6 10/15/87 132

 PAYRLL2.DBF 11 12/15/87 329

 INVENT.DBF 3 11/16/87 146

 1713 bytes in 4 files.

11333632 bytes remaining on drive.

DIR/DIRECTORY SECTION 2

The dBASE® Language Handbook 182 Back to CONTENTS

Example 2—Using DIR with a <pattern>, the publisher searches for program files on the current

drive. The TO PRINT option produces a printed directory.

 . DIR *.prg TO PRINT

POST.PRG CALL.PRG INVENT.PRG

 380 bytes in 3 files.

 11331584 bytes remaining on drive.

VARIATIONS:
Clipper: Use the ADIR() function to store directory information in arrays. You can then create

sophisticated file selection and maintenance menus. The ON and LIKE options are not available.

dBASE IV: You can display a directory with a POPUP menu using the DEFINE POPUP...FILES

command.

If you SET AUTOSAVE ON, dBASE IV will update the directory after every change, even if the

file is not closed. Otherwise, it updates the directory only when you close the file.

dBXL/Quicksilver: Unlike dBASE III PLUS and FoxBASE+, dBXL and Quicksilver update the

directory record count after a change, even if the file is not closed. Also, only the command DIR

is valid, not the word DIRECTORY. The ON and LIKE options are not available.

FoxBASE+: ON and LIKE options not available.

SEE ALSO:
Commands DEFINE POPUP and DISPLAY/LIST FILES; function ADIR().

DISPLAY SECTION 2

The dBASE® Language Handbook 183 Back to CONTENTS

DISPLAY

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DISPLAY [<scope>] [[FIELDS] <expression list>] [WHILE <condition>]

 [FOR <condition>] [OFF] [TO PRINT]

DEFINITION:
Selects records in a database file for viewing on the screen or for printing. If you DISPLAY many

records, dBASE III PLUS, dBASE IV, and FoxBASE+ show only 20 at a time, prompting you to

"Press any key to continue..." for every screen.

DEFAULT:
Shows the current record, unless you specify a scope or other condition with a FOR or WHILE

clause.

Shows all fields, except memo fields, unless you specify otherwise with the FIELDS expression.

You must name memo fields explicitly. When displaying them, the text width defaults to 50

characters. Use the SET MEMOWIDTH command to change it.

Sends output to the screen, unless you add TO PRINT. It sends output to the printer and to the

screen.

OPTIONS:
Normally, the record number precedes each line displayed. OFF omits record numbers.

RECOMMENDED USE:
Use DISPLAY to query unindexed files in which many records may satisfy the selection criteria.

Example 1—An employment agency wants to DISPLAY all applicants with M.S. degrees. The

database file SCI_APPS contains employment applications for positions in scientific research.

 . USE sci_apps

 . DISPLAY lname,fname,degree,area FOR degree="MS"

Record# lname fname degree area

 11 Robinson Stuart MS Electrical Engineering

 28 Martinez Jorge MS Environmental Sciences

 37 Marzo Elaine MS Computer Science

 49 Elgin Robin MS Oceanography

DISPLAY SECTION 2

The dBASE® Language Handbook 184 Back to CONTENTS

VARIATIONS:
Clipper: DISPLAY requires a field list and does not include field name headings with the data.

The TO FILE <filename> option sends the output to a text file.

Example 2—Sending DISPLAY output to a text file called MSFILE.

USE sci_apps

DISPLAY ALL lname,area FOR degree = "MS" TO FILE msfile

Clipper, Quicksilver: No automatic pause after 20 records. The following program simulates the

effect.

Example 3—You can simulate a DISPLAY pause with a brief program.

USE sci_apps

yourpres = " "

* Displaying 10 records at a time. The loop repeats when the user

* presses any key except X or until the end of file is reached

DO WHILE UPPER(yourpres) #"X" .AND. .NOT. EOF()

 DISPLAY NEXT 10

 WAIT 'Press SPACE BAR to continue, or X to exit' TO yourpres

ENDDO

dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+: SET HEADING OFF omits the field

names.

dBASE IV: The TO FILE <filename> option sends the output to a text file.

SEE ALSO:
Commands LIST, SET HEADING, SET MARGIN, and SET MEMOWIDTH.

DISPLAY FILES SECTION 2

The dBASE® Language Handbook 185 Back to CONTENTS

DISPLAY FILES

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DISPLAY FILES [ON <drive/dir>] [LIKE <pattern>] [TO PRINT]

DEFINITION:
Lists names of files on the specified disk drive and directory.

DEFAULT:
Unless you specify a <pattern>, DISPLAY FILES shows only database files (extension DBF),

their sizes, and the dates when they were last changed. If you do not specify a drive or directory,

DISPLAY FILES shows files in the current directory.

OPTIONS:
DISPLAY FILES LIKE <pattern> displays files that match the pattern.

TO PRINT sends output to the screen and the printer.

EXAMPLES:
Example 1—A user wants to reindex database files but cannot remember the filenames.

 . DISPLAY FILES ON C:

Database Files # Records Last Update Size

JKDPOLIC.DBF 6 02/06/88 1229

TEMP.DBF 3 02/06/88 775

SCI_APPS.DBF 5 02/06/88 457

 2461 bytes in 3 files.

 9330688 bytes remaining on drive.

Example 2—After reindexing, the user wants to make a note in a text file called NDXNOTE.TXT.

He verifies the name by displaying all filenames that end with ".TXT".

 . DISPLAY FILES LIKE *.TXT

 MV.TXT BIZ.TXT OP.TXT ACCT.TXT

 NDXNOTE.TXT

 383488 bytes in 5 files.

 9330688 bytes remaining on drive.

SPECIAL USES:
DISPLAY FILES can determine whether a database file (extension DBF) is in the dBASE III

PLUS format. An unrecognized filetype will appear with the message "Not a dBASE III PLUS

DISPLAY FILES SECTION 2

The dBASE® Language Handbook 186 Back to CONTENTS

file" (or dBXL, dBASE IV, FoxBASE+, etc.). A dBASE II file will appear with an identifying

message.

VARIATIONS:
Clipper: Use DIR instead.

dBASE IV: The TO FILE <filename> option sends output to the specified text file and gives it a

TXT extension.

SEE ALSO:
Commands DIR/DIRECTORY and LIST FILES; function FILE().

DISPLAY HISTORY SECTION 2

The dBASE® Language Handbook 187 Back to CONTENTS

DISPLAY HISTORY

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
DISPLAY HISTORY [LAST <expN>] [TO PRINT]

DEFINITION:
Shows the latest commands in order, with the most recently executed ones at the bottom.

DEFAULT:
The buffer size defaults to 20 commands. You can change this number with the command SET

HISTORY TO.

SET HISTORY OFF prevents the storage of commands. SET DOHISTORY ON includes

commands issued from a program.

OPTIONS:
TO PRINT sends output to the screen and to the printer.

LAST <expN> shows only the latest <expN> commands.

VARIATIONS:
dBASE IV: The TO FILE <filename> option sends output to a file with a TXT extension.

SEE ALSO:
Commands LIST HISTORY, SET DOHISTORY, and SET HISTORY.

DISPLAY MEMORY SECTION 2

The dBASE® Language Handbook 188 Back to CONTENTS

DISPLAY MEMORY

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DISPLAY MEMORY [TO PRINT]

DEFINITION:
Displays information about active memory variables. dBASE III PLUS, dBASE IV, dBXL, and

FoxBASE+ show name, type, size, and status (public or private) of active memory variables, plus

the number of variables, the number of additional variables available, the number of bytes used,

and the number of bytes still available for memory variables.

OPTIONS:
TO PRINT sends output to the screen and to the printer.

RECOMMENDED USE:
Use DISPLAY MEMORY during debugging to display active memory variables. You may put it

at strategic points in your program during debugging, or you may SUSPEND execution to view

memory variables. Cancelling program execution releases memory variables defined within the

program.

Example 1—During debugging, a manual check of a billing program discovers an incorrect

amount on an invoice. An inspection of the memory variables shows that variable SALESTAX

has an incorrect value.

. DISPLAY MEMORY

AMT pub N 19292.22 (19292.22000000)

LNAME pub C "Sevrinson"

LOOKUP pub L .F.

SALESTAX pub N 0.08 (0.08000000)

 4 variables defined, 31 bytes used

 252 variables available, 5969 bytes available

VARIATIONS:
dBASE IV: Shows active memory variables, arrays, system memory variables, menu, pad, popup,

and window definitions. It also shows memory variable and runtime symbol space allocation and

the amount of available memory in bytes.

The TO FILE <filename> option sends output to a text file with a TXT extension.

FoxBASE+: Shows active arrays and screen memory variables created with the SAVE SCREEN

TO command.

DISPLAY MEMORY SECTION 2

The dBASE® Language Handbook 189 Back to CONTENTS

Example 2—DISPLAYing MEMORY in FoxBASE+. Note the variable names, their scopes

(PUBLIC or PRIVATE), their types, and their values. The types shown here include numeric,

character, array, date, and screen. Note that TARRAY uses only one memory variable name, but

has many elements. The elements do not count toward the number of variables defined.

. DISPLAY MEMORY

X Pub N 192929 (192929.00000000)

NAME Pub C "Johnson"

TARRAY Pub A

 (1, 1) L .F.

 (1, 2) L .F.

MDATE Pub D 08/23/87

OPEN_SCR Pub S

 5 variables defined, 14 bytes used

 251 variables available, 5986 bytes available

Quicksilver: Also shows the states of environmental variables, and memory variable names, types,

and contents, plus whether they are public or private.

SEE ALSO:
Commands LIST, LIST MEMORY, PRIVATE, PUBLIC, and STORE.

DISPLAY STATUS SECTION 2

The dBASE® Language Handbook 190 Back to CONTENTS

DISPLAY STATUS

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
DISPLAY STATUS [TO PRINT]

DEFINITION:
Displays general information about open database files, function key assignments, and the state of

SET commands.

dBASE III PLUS displays the following status information:

Database filename, drive, directory

Open alternate file

Current work area number and alias

Active relations

Open index filenames and keys

Open memo filenames

Active filters

Open format files

Loaded modules

Margin settings

Active work area

Current file path

ON KEY command settings

Default disk drive

Print destination

Open procedure file

Settings for SET commands

DEVICE selection (SCREEN or PRINT)

Function key assignments

The following SET commands also appear:

DISPLAY STATUS SECTION 2

The dBASE® Language Handbook 191 Back to CONTENTS

OPTIONS:
TO PRINT sends output to both the printer and the screen.

VARIATIONS:
dBASE IV: The option TO FILE <filename> sends output to a text file with a TXT extension.

DISPLAY also shows current reprocess count, refresh count, currency symbol, delimiter symbol,

and complete NDX/MDX information, including filenames, TAGs, and key expressions. The

following SET commands also appear:

On a local area network, locked files and records also appear.

Files created with the DISTINCT option of the SQL SELECT command appear as read-only.

dBXL also shows:

Prompt setting

Margin

Decimals

FoxBASE+ also shows:

Current processor

Margin, Decimals, Memowidth, Typeahead, and History settings

Date format

DISPLAY STATUS SECTION 2

The dBASE® Language Handbook 192 Back to CONTENTS

SEE ALSO:
Commands DIR, DISPLAY FILES, LIST STATUS, SAVE STATUS, and SET; functions

ALIAS(), FILE(), MEMORY(), NDX(), ORDER(), OS(), PROGRAM(), and TAG().

DISPLAY STRUCTURE SECTION 2

The dBASE® Language Handbook 193 Back to CONTENTS

DISPLAY STRUCTURE

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DISPLAY STRUCTURE [TO PRINT]

DEFINITION:
Shows the database name, number of records, date of last update, number of bytes per record, and

fields of each record for the active database. Also shows each field's name, number, length, and

type.

DISPLAY STRUCTURE prints until the screen is full. It then prompts the user to press a key to

continue the display.

OPTIONS:
TO PRINT sends output to the printer as well.

RECOMMENDED USE:
Use DISPLAY STRUCTURE during interactive use of dBASE III PLUS, dBASE IV, dBXL, or

FoxBASE+ to review a file structure.

Example—A police department maintains a dBASE IV database of local law enforcement

agencies. The key field for the production MDX file is AG_ZIP. DISPLAY STRUCTURE shows

the structure of the main file:

. USE jkdpolic

. DISPLAY STRUCTURE

Structure for database: C:\MAIN.DBF

Number of data records: 180

Date of last update : 02/09/88

Field Field Name Type Width Dec Index

 1 OURCOUNTY Character 1

 2 AGENCY Character 30

 3 AG_ADRES Character 20

 4 AG_CITY Character 15

 5 AG_STATE Character 2

 6 AG_ZIP Character 10 Y

 7 AG_PHONE Character 12

 8 AG_PERSON Character 30

 9 AG_COMNT Character 30

** Total ** 151

DISPLAY STRUCTURE SECTION 2

The dBASE® Language Handbook 194 Back to CONTENTS

dBASE IV: Also shows which fields are tags in the production MDX file.

SEE ALSO:
Commands COPY STRUCTURE, CREATE, LIST STRUCTURE, and MODIFY STRUCTURE.

DISPLAY USERS SECTION 2

The dBASE® Language Handbook 195 Back to CONTENTS

DISPLAY USERS

DIALECTS:
dBASE IV only.

SYNTAX:
DISPLAY USERS

DEFINITION:
Shows the assigned workstation names of users logged in on a local area network.

The workstation data is stored in a file called LOGIN.DB in the default directory.

If two stations have the same name, it appears only once in the list.

The listing pauses when the screen is full. You can then press a key to continue. The LIST USERS

command scrolls the listing non-stop.

If there are no users on the system, nothing appears.

RECOMMENDED USE:
Use DISPLAY USERS to monitor multiuser applications. This is helpful when doing system

maintenance, backups, or other operations that might affect other users. Workstations are often

hundreds of feet apart, and sometimes at different sites. It's better to DISPLAY USERS than run a

marathon to find out who's on the system. Arbitrarily shutting down the system without notification

is likely to lead to an old-fashioned lynch mob.

SEE ALSO:
Commands DISPLAY and DISPLAY STATUS; functions NETNAME() and NETWORK().

DO SECTION 2

The dBASE® Language Handbook 196 Back to CONTENTS

DO

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DO <filename>/<procedure name> [WITH <parameter list>]

DEFINITION:
Executes a program file or a procedure. It allows the passing of parameters in a list. If one exists,

the program file or procedure must contain a PARAMETERS <parameter list> as its first

statement. A parameter may be any valid expression. The number of parameters in the

PARAMETERS statement must match the number of arguments in the DO...WITH statement.

The program file name may include a drive designator. It must include an extension if it is not

PRG.

When the program file or procedure is complete, control returns to the caller or to the keyboard in

the interactive mode.

Example 1—A publishing company wants to compute the weekly gross pay of its employees. The

program E_PAY.PRG computes it based on parameters passed from another program.

 * E_PAY.PRG

 * Computes an employee's pay

 * Hours and rate are numeric memory variables

 PARAMETERS hours,rate

 tot_pay = hours * rate && Multiply HOURS times RATE and

 && store the value in TOT_PAY

 ? tot_pay

For an employee making $5.00 per hour for 20 hours, the parameters 20 and 5.00 are passed to

E_PAY.PRG as follows:

* Execute E_PAY with a parameter list corresponding to

* its PARAMETER statement

DO e_pay WITH 20,5.00

The result goes in memory variable TOT_PAY:

 100.00

DO SECTION 2

The dBASE® Language Handbook 197 Back to CONTENTS

LIMITS/WARNINGS:
dBASE III PLUS, dBASE IV, and dBXL: Consider a program file executed with a DO as one

open file. They also consider an open procedure file containing a collection of programs as one

open file.

The number of open files can increase quickly, so procedure files can help you keep within system

limits.

The systems have varying limits on recursive DO commands (programs DOing themselves).

Recursive programming can be a powerful technique; however, nesting levels are limited.

dBXL: Limit of 25 DO <filename> statements in a program.

VARIATIONS:
dBASE IV: All program files should have unique names. Do not rename DBO files, since they

will no longer correspond to their source PRG files.

If a program has not been compiled, DO automatically compiles it into an object file (extension

DBO) and then executes it. dBASE IV follows a specified search order when you issue the DO

command. It searches for:

1. A procedure in the open, executing DBO file.

2. A procedure in SET PROCEDURE TO file.

3. A procedure in other open DBO files.

4. A DBO file.

5. A PRG file

6. A PRS file (SQL file).

If SET DEVELOPMENT is ON, DO automatically recompiles a program if it has been edited

since the last time it was compiled.

SEE ALSO:
Commands CANCEL, COMPILE, PARAMETERS, PRIVATE, PUBLIC, SET

DEVELOPMENT, and SET PROCEDURE.

DO CASE...CASE...ENDCASE SECTION 2

The dBASE® Language Handbook 198 Back to CONTENTS

DO CASE...CASE...ENDCASE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DO CASE

 CASE <expL_1>

 <statements>

 [CASE <expL_N>

 <statements>]

 [OTHERWISE

 <statements>]

ENDCASE

DEFINITION:
DO CASE starts a decision making structure that selects an action to execute from a list. It selects

the first one for which the given expression is true (.T.).

If an expression is true, the computer executes all subsequent statements until it reaches a CASE,

OTHERWISE, or ENDCASE. If the expression is false, the computer evaluates the next CASE

expression.

If no expression is true, the computer executes the OTHERWISE statement. The ENDCASE

statement marks the end of the CASE structure. If there is no OTHERWISE statement, the

computer executes the statement immediately following ENDCASE.

RECOMMENDED USE:
Use the CASE structure in menu systems to analyze users' responses to prompts.

Example 1—A program that moves through database records examines users' input with a CASE

structure to determine the proper action. Pressing "F" skips forward a record. "B" skips backward

a record. "D" deletes the current record. "R" returns control to the calling program. If the user

enters an invalid letter, the OTHERWISE statement executes, alerting the user to the mistake.

 CLEAR

 USE acct_feb

 DO WHILE .t. && Perpetual DO WHILE loop (condition always true)

 @ 05,10 say "(F)orward one record"

 @ 06,10 say "(B)ack one record"

 @ 07,10 say "(D)elete record"

 @ 08,10 say "(R)eturn to previous menu"

 choice = " "

 @ 10,10 SAY "Your Choice? (F/B/D/R) " GET choice PICTURE "!"

 READ

DO CASE...CASE...ENDCASE SECTION 2

The dBASE® Language Handbook 199 Back to CONTENTS

 DO CASE

 CASE choice = "F"

 IF .NOT. EOF()

 SKIP

 ENDIF

 IF EOF()

 SKIP-1

 ENDIF

 CASE choice = "B"

 IF .NOT. BOF()

 SKIP-1

 ENDIF

 CASE choice = "D"

 DELETE && Delete current record

 CASE choice = "R"

 USE

 RETURN

 OTHERWISE

 WAIT "INVALID ENTRY, PRESS A KEY TO CONTINUE"

 @ 24,00

 ENDCASE

 @ 24,00 SAY RECNO()

 ENDDO

NOTE: The CASE structure is like an IF/ELSE/ENDIF structure, but it allows more than two

alternatives.

You may nest CASE statements, as long as you terminate each DO CASE properly with an

ENDCASE. The allowed levels of nesting vary among systems. Clipper allows up to 63 levels.

dBASE III PLUS, dBASE IV, and FoxBASE+ allow an unspecified number. dBXL allows up to

20, and Quicksilver up to 39.

VARIATIONS:
Clipper: The ELSEIF statement makes IF...ENDIF structures work like DO CASE...ENDCASE.

SEE ALSO:
Commands IF, ELSEIF, and ENDIF.

DO WHILE...ENDDO SECTION 2

The dBASE® Language Handbook 200 Back to CONTENTS

DO WHILE...ENDDO

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DO WHILE <condition>

 <statements>

 [LOOP]

 <statements>

 [EXIT]

 <statements>

ENDDO

DEFINITION:
The paired DO WHILE... ENDDO commands repeat program statements located between them

as long as the <condition> is true.

We call the DO WHILE...ENDDO structure a "control structure" because it regulates program

flow.

ENDDO terminates the DO WHILE.

DO WHILE...ENDDO statements may be nested.

DO WHILE makes the computer do the following:

1. Evaluate the condition.

2. Exit if the condition is false.

3. Execute the statements up to ENDDO.

4. Return to step 1.

Note that the computer never executes the statements if the condition is false initially.

OPTIONS:
LOOP returns control to the beginning of the DO WHILE/ENDDO. The computer does not

execute any commands following it.

EXIT ends execution of the DO WHILE, and passes control to the statement immediately

following ENDDO.

Example 1—A menu in an accounting program prompts the user for input. As the menu is in a

DO WHILE/ENDDO loop, it repeats until the user tells it to EXIT. Within the main loop, a smaller

loop repeats a GET and a READ until the user enters a valid character.

DO WHILE...ENDDO SECTION 2

The dBASE® Language Handbook 201 Back to CONTENTS

* Set DO WHILE expression to logical true. This expression stays true

* The only ways to leave this loop are with EXIT, CANCEL, RETURN, or QUIT

DO WHILE .t.

 @ 10,10 SAY "A. Print end of month report"

 @ 11,10 SAY "B. Print end of year report"

 @ 12,10 SAY "X. Leave this menu"

 * This DO WHILE repeats the prompt and the GET/READ until the user

 * enters A, B, or X, making the expression true

 action = " "

 DO WHILE .NOT. action$"ABX" && Repeat until ACTION contains A, B, or X

 @ 14,10 SAY "Your choice? (1-3) " GET action PICTURE "!"

 READ

 ENDDO

 DO CASE

 CASE action = "A"

 DO eom_rpt && Execute subroutine EOM_RPT

 CASE action = "B"

 DO eoy_rpt && Execute subroutine EOY_RPT

 * When user enters "X," the DO WHILE loop terminates and control

 * passes to the first command immediately following ENDDO

 CASE action = "X"

 EXIT

 ENDCASE

ENDDO

? "This statement executes upon EXIT"

VARIATIONS:
dBASE III PLUS, dBXL, and FoxBASE+: Macros in a DO WHILE statement are not

reevaluated during iterations. Therefore, you cannot redefine the macro value within the loop.

Clipper, dBASE IV, and Quicksilver reevaluate macros in the DO WHILE statement.

Example 2—In designing a modular reporting program, a programmer stores the DO WHILE

<condition> in a variable, then uses the macro (&) to evaluate it. If the user redefines the

<condition> within the DO WHILE loop, Clipper, dBASE IV, and Quicksilver reevaluate it.

mcondit = "LNAME = 'SMITH'" && Store a condition in MCONDIT

DO WHILE &mcondit && Evaluate MCONDIT with a macro

 * <Report statements>

 SKIP

 * Get new condition from user

 newcond = .F.

 @ 23,03 SAY "Enter a new condition? " GET newcond PICT "Y"

 READ

 IF newcond

 mcondit = "POSTCODE = '92116'"

 ENDIF

ENDDO

DO WHILE...ENDDO SECTION 2

The dBASE® Language Handbook 202 Back to CONTENTS

SEE ALSO:
Command FOR...NEXT; function &.

DOS SECTION 2

The dBASE® Language Handbook 203 Back to CONTENTS

DOS

DIALECTS:
dBXL only.

SYNTAX:
DOS

DEFINITION:
Stops execution of dBXL and displays a DOS prompt. You can then enter DOS commands and

run external programs. The only limitation is available memory. To return to dBXL, type EXIT.

RECOMMENDED USE:
Use DOS to run external programs that interact with dBXL data files or incidental programs such

as text editors, directory utilities, or other applications.

VARIATIONS:
You can simulate the DOS command in systems other than dBXL. To do so, use the RUN

command to execute a batch file that loads COMMAND.COM. Include the following command

in your program:

RUN DOS.BAT

Place the following DOS batch file in the search path:

:DOS.BAT -- shell to DOS -- this batch file is used

: only to change the DOS prompt, otherwise you can just RUN COMMAND

PROMPT Type EXIT to return to dBASE $_$n$g

:Give a normal prompt with our message above it

COMMAND

:Preceding line just loads COMMAND.COM -- must be found on DOS PATH

SEE ALSO:
Commands !/RUN.

DOSINT SECTION 2

The dBASE® Language Handbook 204 Back to CONTENTS

DOSINT

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
DOSINT <expN>, [<memory variable list>]

DEFINITION:
Allows direct execution of DOS and BIOS interrupts.

<expN> is the interrupt number.

You may pass up to six numeric memory variable parameters. Their values are placed in the

microprocessor's registers before executing the specified interrupt, and the register values are

copied back into the memory variables afterward.

RECOMMENDED USE:
Only programmers who are familiar with DOS and BIOS interrupts should use DOSINT. Direct

access to hardware, low-level file I/O, and other low-level functions could cause an application to

fail or corrupt its environment.

Memory variable parameters are loaded into the following registers (in order): AX, BX, CX, DX,

SI, and DI. Interrupts that use SI and DI usually require addresses to be placed in them. As this is

difficult to do, SI and DI are seldom used.

Only order is important in the memory variable parameter list, not the names of the variables.

DOSINT copies values into registers according to the number of parameters passed. For instance,

if you pass only one parameter, it goes in AX. If you pass two, they go in AX and BX, respectively,

and so on.

To load only AX and DX, you must supply dummy values for BX and CX (see Example 2). Only

16-bit registers may be specified, although you can use MOD() to separate out the low byte (AL,

BL, CL, or DL) and subtract to find the high byte value (AH, BH, CH, or DH).

The HTOI() and ITOH() functions (hexadecimal to decimal conversion and vice versa) are useful

for setting initial register values and examining return values (see Example 2). The BITSET()

function is also useful for examining return values (see Example 3).

Example 1—When an error occurs in a financial application, the program automatically prints the

screen using DOSINT in an ON ERROR routine.

DOSINT SECTION 2

The dBASE® Language Handbook 205 Back to CONTENTS

On IBM and compatible PCs, BIOS interrupt 5 prints the screen just as if the user had pressed the

PrtSc key. Note that the interrupt routine does no error checking. Before calling it, you should

check printer readiness with the PRINTER() function.

* PRTSC.PRG -- Print the screen

* <error-checking statements>

DOSINT 5 && Prints the screen in most situations, but does

 && no error checking

Example 2—To determine which disk drives are valid on the system, use DOS function calls 0eh

and 19h. Function 0eh selects a drive as the default. Function 19h determines the current drive,

and also returns the top "selectable" drive which is set up with the CONFIG.SYS "lastdrive"

parameter (defaults to E in DOS 3).

* VALDRIVE.PRG

valdrives = "" && Store null in valid drive string

abyte = 256 && Largest value stored in one byte,

 && plus 1 for MOD()

doscall = HTOI("21")

cur_disk = HTOI("1900") && AX=1900h = current disk DOS call

sel_drive = HTOI("0E00") && AX=0e00h = select drive DOS call

axreg = cur_disk

DOSINT doscall,axreg && call DOS (get current drive)

init_drive = MOD(axreg,abyte) && MOD() removes AH value,

 && reports current drive from AL

* Now setup for first "drive select" call, which returns the

* "top" drive letter (from CONFIG.SYS) in AL as a fringe benefit

axreg = sel_drive

dxreg = 0 && Select A: first, DL=0

STORE 0 to bxreg,cxreg && Store dummy parameters

DOSINT doscall,axreg,bxreg,cxreg,dxreg

top_drive = MOD(axreg,abyte)-1 && Save top drive number

DO WHILE dxreg <= top_drive

 axreg = cur_disk && Find out what default is now

 DOSINT doscall,axreg && Make DOS function call

 IF MOD(axreg,abyte) = dxreg && If they match, add to string

 valdrives = valdrives + CHR(dxreg+65) && CHR(0+65)="A", etc

 ENDIF

 dxreg = dxreg + 1 && Test next drive

 axreg = sel_drive

 DOSINT doscall,axreg,bxreg,cxreg,dxreg

ENDDO

dxreg = init_drive && Cleanup,

axreg = sel_drive && select original drive

DOSINT doscall,axreg,bxreg,cxreg,dxreg

? "Valid drives: "+valdrives+"...CONFIG.SYS top end is: "+ CHR(top_drive+65)

DOSINT SECTION 2

The dBASE® Language Handbook 206 Back to CONTENTS

WAIT ''

Example 3—Widely distributed programs must adapt to different hardware configurations. By

using DOSINT to check system equipment, you can can avoid subjecting end users to tedious

installation programs.

This example uses BIOS interrupt 11 hex to determine what equipment is installed. Information is

returned in the AX register. The BITSET() function is used to extract bits from it.

* EQUIP.PRG — Use DOSINT to check equipment using BIOS interrupt 11h

* (see your system's hardware reference manual for details)

ax = 0 && Initialize variable AX as numeric

DOSINT HTOI("11"),ax && Get configuration with BIOS call

IF BITSET(ax,0)

 IF BITSET(ax,6)

 diskettes = '2'

 ELSE

 diskettes = '1'

 ENDIF

ELSE

 diskettes = "none"

ENDIF

IF BITSET(ax,4)

 IF BITSET(ax,5)

 videomode = "80x25 monochrome"

 ELSE

 videomode = "40x25 color"

 ENDIF

ELSE

 videomode = "80x25 color"

ENDIF

 rs232 = 0

IF BITSET(ax,9)

 rs232 = rs232 + 1

ENDIF

IF BITSET(ax,10)

 rs232 = rs232 + rs232 + 2

ENDIF

IF BITSET(ax,11)

 rs232 = rs232 + 4

ENDIF

rs232 = LTRIM(STR(rs232)) && Convert to string value

printers = 0

IF BITSET(ax,14)

 printers = printers + 1

ENDIF

IF BITSET(ax,15)

 printers = printers + 2

ENDIF

DOSINT SECTION 2

The dBASE® Language Handbook 207 Back to CONTENTS

printers = LTRIM(STR(printers)) && Convert to string value

? "Diskettes on the system = " + diskettes

? "Initial video mode = " + videomode

? "Number of RS232 ports = " + rs232

? "Number of printer ports = " + printers

WAIT

RETURN

SEE ALSO:
Functions BITSET(), IN(), and OUT().

DOWNSCROLL SECTION 2

The dBASE® Language Handbook 208 Back to CONTENTS

DOWNSCROLL

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
DOWNSCROLL <expN>

DEFINITION:
Moves the current screen or window area down <expN> lines. If <expN> is a negative number or

0, the screen does not move.

If you move the text off the screen or window area, it will be erased.

RECOMMENDED USE:
Use DOWNSCROLL with UPSCROLL to provide scrollable help screens or lookup windows.

Example—An invoicing application requires the entry of a customer account number for each

invoice. If the operator forgets a number, he or she can look it up in a scrollable help window.

* HELPWIN.PRG

WSET WINDOW acctlook TO 10,01,23,40 && Create window specification

WSELECT 1 && Select window area

WUSE acctlook && Use acctlook window

USE sales

keypress = 0

? "Account number" && List account numbers

LIST accounts

DO WHILE keypress # 32 && DO WHILE user does not press space bar

 keypress = INKEY() && Store INKEY() to KEYPRESS variable

 DO CASE

 CASE keypress = 5 && If user presses up arrow,

 UPSCROLL 1 && scroll up 1

 CASE keypress = 24 && If user presses down arrow,

 DOWNSCROLL 1 && scroll down 1

 ENDCASE

ENDDO

SEE ALSO:
Commands UPSCROLL, WSELECT, WSET WINDOW, and WUSE.

EDIT SECTION 2

The dBASE® Language Handbook 209 Back to CONTENTS

EDIT

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
EDIT [scope] [FIELDS <field list>] [WHILE <condition>] [FOR <condition>]

DEFINITION:
Allows full-screen editing of fields in the database in use.

DEFAULT:
Displays all fields unless otherwise specified in the FIELDS option. Selects all records unless

otherwise specified by SCOPE, FOR, or WHILE conditions.

EDIT is the same as CHANGE.

SEE ALSO:
Command CHANGE.

EJECT SECTION 2

The dBASE® Language Handbook 210 Back to CONTENTS

EJECT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
Sends the printer a form feed character (ASCII 12), advancing the paper one page. Refer to your

printer's manual to change the number of lines per page.

EJECT resets the printer to the top of the new page (row 0, column 0).

Note: Be sure the printer is ready before issuing EJECT. It does not require SET PRINT ON or

SET DEVICE TO PRINT.

SEE ALSO:
Commands ENDPRINTJOB, PRINTJOB, SET DEVICE, and SET PRINT; functions PCOL() and

PROW().

ENDPRINTJOB SECTION 2

The dBASE® Language Handbook 211 Back to CONTENTS

ENDPRINTJOB

DIALECTS:
dBASE IV only.

SYNTAX:
ENDPRINTJOB

DEFINITION:
Marks the end of a PRINTJOB construct. See PRINTJOB for more information.

SEE ALSO:
Commands ON PAGE, PRINTJOB, and SET PRINT.

ENDTEXT SECTION 2

The dBASE® Language Handbook 212 Back to CONTENTS

ENDTEXT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
TEXT

 <Unformatted text>

ENDTEXT

DEFINITION:
Marks the end of an unformatted text block set off by the TEXT command. See TEXT for more

information.

ENDTEXT has no function alone.

SEE ALSO:
Command TEXT.

END TRANSACTION SECTION 2

The dBASE® Language Handbook 213 Back to CONTENTS

END TRANSACTION

DIALECTS:
dBASE IV only.

SYNTAX:
BEGIN TRANSACTION

 * <Database operations>.

END TRANSACTION

DEFINITION:
Terminates transaction logging initiated by the BEGIN TRANSACTION command.

SEE ALSO:
Commands BEGIN TRANSACTION, RESET, RETRY, and ROLLBACK; functions

COMPLETED(), ISMARKED(), and ROLLBACK().

ELSE SECTION 2

The dBASE® Language Handbook 214 Back to CONTENTS

ELSE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ELSE

DEFINITION:
Indicates an alternate course of execution when an IF <condition> is false.

SEE ALSO:
Command IF.

ELSEIF SECTION 2

The dBASE® Language Handbook 215 Back to CONTENTS

ELSEIF

DIALECTS:
Clipper only.

SYNTAX:
IF <condition>

 * <statements>

ELSEIF <condition>

 * <statements>

ELSEIF <condition>

 * <statements>

ENDIF

DEFINITION:
Evaluates multiple conditions in an IF...ENDIF, much like a CASE statement in a DO CASE

structure.

If the first IF <condition> is false, the first ELSEIF <condition> to evaluate true executes.

Afterward, program control continues with the first statement after the matched ENDIF.

RECOMMENDED USE:
Use IF...ELSEIF instead of DO CASE...ENDCASE. It simplifies coding by reducing the number

of statements by one. Use ELSE to indicate an exception (instead of OTHERWISE in the CASE

structure).

Example 1—A program examines users' input with an IF...ELSEIF structure to determine the

proper action. Pressing "F" skips forward a record. "B" skips backward. "D" deletes the current

record. "R" returns control to the calling program. If the user enters an invalid letter, the LOOP

statement after the ELSE returns control to the menu that got the user's response.

DO WHILE .t.

 * <GET user's response>

 IF choice = "F"

 * <code to move forward>

 ELSEIF choice = "B"

 * <code to move backward>

 ELSEIF choice = "D"

 * <code to delete>

 ELSEIF choice = "R"

 RETURN

 ELSE

 @ 23,01 SAY "Invalid selection, please re-enter"

 ENDIF

ELSEIF SECTION 2

The dBASE® Language Handbook 216 Back to CONTENTS

ENDDO

SEE ALSO:
Commands CASE, DO CASE, ENDIF, and IF; function IIF().

END SECTION 2

The dBASE® Language Handbook 217 Back to CONTENTS

END

DIALECTS:
Clipper only.

SYNTAX:
END

DEFINITION:
Marks the end of a DO CASE, DO WHILE, or IF structure. This is an

abbreviated version of ENDCASE, ENDDO, and ENDIF.

RECOMMENDED USE:
END is a convenient command for terminating control structures; however, using it makes them

less readable.

SEE ALSO:
Commands DO CASE, DO WHILE, ENDCASE, ENDDO, ENDIF, and IF.

ENDCASE SECTION 2

The dBASE® Language Handbook 218 Back to CONTENTS

ENDCASE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ENDCASE

DEFINITION:
Ends a DO CASE structure.

SEE ALSO:
Commands DO CASE and END.

ENDDO SECTION 2

The dBASE® Language Handbook 219 Back to CONTENTS

ENDDO

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ENDDO

DEFINITION:
Ends a DO WHILE structure.

VARIATIONS:
Clipper: You can substitute END.

SEE ALSO:
Commands DO WHILE and END.

ENDIF SECTION 2

The dBASE® Language Handbook 220 Back to CONTENTS

ENDIF

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ENDIF

DEFINITION:
Ends an IF structure.

VARIATIONS:
Clipper: You can substitute END.

SEE ALSO:
Commands END and IF.

ENDSCAN SECTION 2

The dBASE® Language Handbook 221 Back to CONTENTS

ENDSCAN

DIALECTS:
dBASE IV only.

SYNTAX:
ENDSCAN

DEFINITION:
Ends a SCAN structure.

SEE ALSO:
Commands DO WHILE, END, and SCAN.

ERASE SECTION 2

The dBASE® Language Handbook 222 Back to CONTENTS

ERASE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ERASE <filename>

DEFINITION:
Same as DELETE FILE.

SEE ALSO:
Command DELETE FILE.

EXIT SECTION 2

The dBASE® Language Handbook 223 Back to CONTENTS

EXIT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
EXIT

DEFINITION:
Terminates a DO WHILE/ENDDO loop, passing program control to the first statement following

the ENDDO.

VARIATION:

Clipper: Also terminates a FOR...NEXT loop.

dBASE IV: Also terminates a SCAN...ENDSCAN loop.

dBXL: Also terminates a FOR...NEXT loop. When used with FOR...NEXT, EXIT is the same as

BREAK.

SEE ALSO:
Commands BREAK, DO WHILE, FOR...NEXT, and SCAN.

EXPORT SECTION 2

The dBASE® Language Handbook 224 Back to CONTENTS

EXPORT

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and Quicksilver.

SYNTAX:
EXPORT TO <filename> [TYPE] PFS (dBASE III PLUS)

EXPORT TO <filename> [TYPE] PFS/DBASEII/FW2/RPD (dBASE IV)

 [FIELDS <field list>] [<scope>][FOR <condition>]

[WHILE <condition>]

EXPORT TO <filename> TYPE VENTURA (dBXL/Quicksilver)

DEFINITION:
Copies the open database file to a foreign format.

DEFAULT:
Unless you limit the scope or provide a condition, EXPORT TO copies all records to the new file.

OPTIONS:

PFS (dBASE III PLUS and dBASE IV)

Creates a pfs:File data file (pfs:File is a product of Software Publishing, Inc.). EXPORT TO copies

files in indexed order if an index file is in use. It also exports the screen form of an open format

file.

DBASEII (dBASE IV only)

Creates a dBASE II (Ashton-Tate) database and gives it a DB2 extension.

FW2 (dBASE IV only)

Creates a Framework II (Ashton-Tate) database frame.

RPD (dBASE IV only)

Creates a Rapidfile (Ashton-Tate) database with a RPD extension.

VENTURA (dBXL and Quicksilver)

Creates a file for Xerox's Ventura Publisher. If you do not provide an extension, it defaults to TAG.

Copies all fields except memos. Records in the TAG file have the format:

 @<fieldname> = <field contents>

The <field contents> are not delimited.

EXPORT SECTION 2

The dBASE® Language Handbook 225 Back to CONTENTS

From Ventura Publisher, open the TAG file as a WordStar file.

LIMITS/WARNINGS:
You can use a format file (extension FMT) for EXPORTing to PFS:File. If you don't use one, the

default APPEND or EDIT screen becomes the PFS:File screen format.

Format files to be EXPORTed may not have more than 200 @ commands. The form must also be

limited to screen rows 0 through 20.

With SET SAFETY ON, EXPORT prompts the user before overwriting files.

SEE ALSO:
Commands COPY TO, IMPORT, SET FORMAT, and SET SAFETY.

EXTERNAL SECTION 2

The dBASE® Language Handbook 226 Back to CONTENTS

EXTERNAL

DIALECTS:
Clipper only.

SYNTAX:
EXTERNAL <procedure list>

DEFINITION:
Declares the names of undefined procedures for the linker. This lets you execute procedures in

overlay files using a procedure name stored in a memory variable.

Overlay files reduce the memory requirements of Clipper applications by segmenting them.

Application segments load into memory only when required. Putting a procedure name in a

memory variable and executing it with a macro leaves the name unknown to the linker.

EXTERNAL solves this problem by declaring undefined procedure names. You can then execute

procedures in overlay files using a filename stored in a memory variable.

Example—A programmer writes a program to execute procedures based on certain conditions.

Rather than write a CASE structure, she uses a single DO statement and passes the procedure name

to it in a memory variable. Because she does not explicitly reference the procedure name in the

DO statement, she must declare EXTERNAL any procedures located in overlays. Note that Clipper

allows parentheses around filenames in lieu of the macro (&) symbol.

* At start of program, declare three procedures EXTERNAL

EXTERNAL totcalc,subcalc,salestax

** <statements>

** Program stores a procedure name in memory variable RUNPROC

DO (runproc)

SEE ALSO:
Command DO.

FIND SECTION 2

The dBASE® Language Handbook 227 Back to CONTENTS

FIND

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
FIND <character string>/<expN>

DEFINITION:
Does a fast search in an indexed database file using a character string or numeric argument. The

argument corresponds only to the index key value. FIND does not work on unindexed fields.

FIND finds only the first matching record.

If the search succeeds, the record pointer points to the record, and FOUND() returns true (.T.). If

the search fails, the pointer moves to the End of File and FOUND() returns false (.F.).

Note that FOUND() does not always work properly in dBASE III PLUS and FoxBASE+. Instead,

you should use EOF() to test for the end-of-file. If EOF() is true, the FIND did not succeed.

RECOMMENDED USE:
Use FIND in applications requiring rapid retrieval. Even in files containing thousands of records,

FIND takes only a few seconds.

Example 1—A customer service agent handles consumer complaints. When someone calls, the

agent searches for his or her last name with FIND. To minimize errors, the program assumes that

the operator will enter the name in uppercase.

. USE complaints INDEX con_lname

. FIND "GRISWOLD"

. ? FOUND()

.T.

. EDIT

If the search fails and TALK is SET ON, dBASE III PLUS and FoxBASE+ display the terse,

ungrammatical message "No Find." dBXL displays the more proper "Key not found." dBASE IV

reports "Find not successful."

FIND does not require delimiters on character string searches; however, the character expression

begins with the first non-blank character. If your search string contains leading blanks, you must

use delimiters. You must also use them if the string begins with a delimiter, such as a single or

double quotation mark.

FIND SECTION 2

The dBASE® Language Handbook 228 Back to CONTENTS

You can use memory variables in FIND arguments. When using a character variable, you must

use the macro (&) function. If the argument contains leading blanks, enclose the & and the memory

variable in quotation marks.

Example 2—In the same customer service application as Example 1, a program GETs the last

name in a memory variable. The variable

is then used with the FIND command using a macro (&).

USE complaints INDEX con_lname

* Create memory variable SRCH_NAME in which to GET last name

srch_name = SPACE(15)

* PICTURE function "@!" forces uppercase

@ 10,10 SAY "Enter last name to find:

" GET srch_name PICTURE "@!"

READ

* Requires the macro function when FINDing a memory variable

FIND &srch_lname

* If search succeeds, display record on screen

* <more statements>

FIND can also search for partial keys, starting with the leftmost character. In this respect, it

conforms to the rules of SET EXACT ON/OFF. When SET EXACT is OFF, a partial match counts

as FOUND. When SET EXACT is ON, the search argument and the index key must match

character for character.

Example 3—The customer service agent does not remember how to spell WILTENBACHER (or

is it WILTINBOCHER or perhaps WILTUNBECKER). He enters only the first part of the namea

partial key. Note that EXACT cannot be SET ON when doing partial key searches.

. USE complaints INDEX con_lname

. SET EXACT off

. FIND WILT

. ? FOUND()

 .T.

. EDIT

Note that the first "WILT" in the index could also be WILTON, WILTOWSKI, WILT, or

WILTCHER.

SEEK is like FIND, except that its search argument may be any valid expression of type numeric,

character, or date. SEEK also requires the delimiting of characters with single quotation marks,

double quotation marks, or square brackets. You do not have to delimit memory variables.

VARIATIONS:
dBASE IV: If you SET NEAR ON, an unsuccessful FIND moves the pointer to the record with

the next highest key value. If there is no higher key value, the pointer moves to the end-of-file.

FIND SECTION 2

The dBASE® Language Handbook 229 Back to CONTENTS

LIMITS/WARNINGS:
FIND is a carryover from dBASE II included in later versions for compatibility.

SEE ALSO:
Commands SEEK, SET NEAR, and SET SOFTSEEK; functions EOF() and FOUND().

FLUSH SECTION 2

The dBASE® Language Handbook 230 Back to CONTENTS

FLUSH

DIALECTS:
dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
FLUSH

DEFINITION:
Writes all active database file buffers to disk without closing the open files.

To improve performance, changes and additions are retained in memory buffers. They are stored

on disk only when you issue a command, such as USE, CLOSE DATABASES, or CLOSE, that

closes the database file, or when the buffer becomes full.

The drawback to keeping data in memory is the risk of power loss or computer error. Either

problem causes the loss of data retained in the buffers.

FLUSH does not affect record pointers, open indexes, or format files.

VARIATIONS:
Clipper: COMMIT is similar to FLUSH.

dBASE IV: To protect data, SET AUTOSAVE ON writes data at regular intervals.

SEE ALSO:
Commands CLOSE DATA, COMMIT, SET AUTOSAVE, and USE.

FOR SECTION 2

The dBASE® Language Handbook 231 Back to CONTENTS

FOR

DIALECTS:
Clipper, dBXL, and Quicksilver.

SYNTAX:
FOR <numeric memory variable> = <expN> TO <expN> [STEP <expN>]

 <statements>

 [BREAK] (dBXL/Quicksilver)

 [EXIT] (Clipper/dBXL)

 <statements>

 NEXT [<memory variable>]

DEFINITION:
Repeats statements while incrementing or decrementing a memory variable through a numeric

range. FOR...NEXT creates the specified memory variable itself. The computer repeats the

statements between FOR and NEXT until it exhausts the range.

OPTIONS:
STEP steps the variable by a value other than 1.

BREAK or EXIT ends the FOR...NEXT before the specified range is exhausted. Control passes to

the statement following the NEXT statement.

To improve readability, you can put the memory variable's name after NEXT. This does not affect

execution.

RECOMMENDED USE:
FOR...NEXT replaces DO WHILE...ENDDO in cases where the loop executes a fixed number of

times. Use FOR...NEXT in any application where you would use a counter. It is especially helpful

in manipulating arrays.

Example 1—A Clipper program scans a database file, storing part numbers in an array called

PART for later use in a menu. The program loads the array by incrementing a FOR...NEXT

counter, SKIPping a record in each pass. If the record pointer reaches the end-of-file before the

counter expires, the EXIT option cancels the FOR...NEXT, passing control to the statement after

NEXT.

USE invent INDEX invdex && Open accounts database

DECLARE part[23] && Declare array PART

 FOR ctr = 1 TO 23 && Stop counting at 23

 part[ctr] = partno && Load data from each record until

 SKIP && array is full

 IF eof() && If end of file, end array loading

FOR SECTION 2

The dBASE® Language Handbook 232 Back to CONTENTS

 EXIT

 ENDIF

NEXT

FOR...NEXT works just like its namesake in BASIC.

VARIATIONS:
Clipper: The EXIT option ends execution of FOR...NEXT.

dBXL: Both BREAK and EXIT end execution of FOR...NEXT. You can also use BREAK to

terminate a DO...ENDDO loop.

Quicksilver: BREAK ends execution of FOR...NEXT.

SEE ALSO:
Commands DECLARE, DIMENSION, DO WHILE, and EXIT.

FUNCTION SECTION 2

The dBASE® Language Handbook 233 Back to CONTENTS

FUNCTION

DIALECTS:
Clipper, dBASE IV, dBXL, and Quicksilver.

SYNTAX:
FUNCTION <user defined function name>

 [PARAMETERS <expression list>]

 <statements>

RETURN <exp>

DEFINITION:
Marks the beginning of a user defined function (UDF), a procedure that returns a value.

Call UDFs with the standard function syntax <function name>(). For example, to call a UDF with

the name MSTRING, use the statement:

? MSTRING()

You can use an optional PARAMETERS statement to pass values to the function. Put parameters

inside parentheses in a list, as in the following example:

? MSTRING(p1,p2,p3)

Memory variables are passed by value, not by reference. Therefore, changing a parameter does not

change the variable after a return to the caller.

RECOMMENDED USE:
Write user defined functions for repetitive operations that return values. They increase readability

by reducing the amount of code in the main program. They also save development time since you

can reuse them in many applications.

Example 1—A programmer designs several reports for a financial application. Each one has an

uppercase, centered heading. Rather than repeat the centering code, the programmer writes a user

defined function UPCTR().

UPCTR() accepts two arguments, a string (STG) and the length in which to center it (LNG).

Subtracting the length of STG from LNG and dividing by two produces the starting position of the

centered string. STUFF() then inserts STG into a blank string with length LNG at the computed

starting position. UPPER() converts the result to uppercase.

FUNCTION upctr

* Syntax: UPCTR(<expC>,<expN>)

* Return <expC> centered in a line with a length <expN>

FUNCTION SECTION 2

The dBASE® Language Handbook 234 Back to CONTENTS

PARAMETERS stg,lng

*

RETURN UPPER(SUBS(STUFF(SPACE(lng),(lng-(LEN(stg)))/2,len(stg),stg),1,lng))

To display a report heading in Clipper using CENTER(), use the following statements:

mheading = "Babbitt Corporation Sales Report"

@ 01,00 SAY UPCTR(mheading,80)

 Babbitt Corporation Sales Report

Example 2—User defined functions can help maintain compatibility between implementations of

dBASE. dBASE IV's SEEK() function searches for an expression and returns true if found and

false if not. It replaces several statements, making the code more concise. It also lets you SEEK()

from a VALID clause. You can simulate it with a Clipper, dBXL, FoxBASE+, or Quicksilver user

defined function called MSEEK():

FUNCTION mseek && Make a PROCEDURE in FoxBASE+

PARAMETERS mexp,malias

oldalias = STR(SELECT()) && Save original work area

SELECT &malias && SELECT new work area

SEEK mexp && SEEK search expression

isfound = FOUND() && Save FOUND() value after a SEEK since a

SELECT &oldalias && subsequent change in areas will

 && reset it

RETURN isfound && Return .T. or .F.

See SEEK() for more examples.

UDFs are also useful in the interactive modes of dBASE IV, dBXL, or FoxBASE+. From the dot

prompt, you can use them to analyze data. For example, you may have a UDF "library" file of

financial functions. To make them available in dBASE IV or FoxBASE+, SET PROCEDURE

TO <filename>. In dBXL, SET UDF TO <filename>.

VARIATIONS:
Clipper: A UDF that begins a line acts like a command. For example, a UDF BOXDRAW() clears

a box on the screen and draws a double line border around it. It returns a null string to satisfy the

RETURN <exp> requirement.

FUNCTION boxdraw

PARAMETERS tr,tc,br,bc && Top row,top column,bottom row,bottom column

@ tr,tc CLEAR TO br,bc

@ tr,tc TO br,bc DOUBLE

RETURN ""

You can call BOXDRAW() like a command, as in

BOXDRAW(5,5,10,20)

FUNCTION SECTION 2

The dBASE® Language Handbook 235 Back to CONTENTS

Clipper lets you pass a parameter by reference, instead of by value, in two ways:

• Precede it with @ in the parameter list.

• Pass an array element.

See the command PARAMETERS for more information.

Clipper lets user defined functions appear nearly anywhere an internal function can appear. For

example, you can use one in an index key. However, be sure the function is available whenever

the index is updated. The UDF becomes part of the internal index key.

Example 3—Clipper doesn't display record numbers when indexing. The following user defined

function in an index key (character type only) compensates for the omission. You must set a logical

flag YESDEX = .t. to indicate that you are creating an index. Otherwise, the record number will

appear whenever the index is used.

FUNCTION ixnum

IF yesdex && Check to see if indexing. If so, then

 @ 1,1 SAY RECNO() && display record number

ENDIF &&

RETURN "" && Return null value. Doesn't affect index order

To use IXNUM, create the index as follows:

USE prospects && Sample database

yesdex = .t. && Set flag to indicate indexing

* Index on character string key plus the IXNUM function

INDEX ON names+IXNUM() TO namedex

When indexing, the record number will appear at 1,1. As long as you do not set the logical flag

YESDEX to true (.T.), it will not appear on subsequent index updates. Remember to include

IXNUM in all applications using the indexes it creates.

dBASE IV: You can put user defined functions in a program file or PROCEDURE file. In a

program, user defined functions go at the end. Statements after a FUNCTION...RETURN, except

for other PROCEDUREs and FUNCTIONs, will never execute.

You may execute a user defined function in the current program file, or in the active PROCEDURE

file. From a subroutine, you may also execute a FUNCTION located in a calling program.

dBASE IV searches places for the named function in the following order:

1. Currently executing object file (extension DBO).

2. Procedure file opened with SET PROCEDURE TO.

3. Another open, calling, object file, starting with the most recently opened.

dBASE IV prohibits the following commands in user defined functions:

FUNCTION SECTION 2

The dBASE® Language Handbook 236 Back to CONTENTS

& (macro)

APPEND

AVERAGE

BROWSE

CHANGE

COPY

CREATE

DELETE

DIR

DIRECTORY

DISPLAY

EDIT

EXPORT

HELP

IMPORT

INDEX

INPUT

INSERT

JOIN

LABEL

LIST

LOAD

LOGOUT

MODIFY

PACK

PROCEDURE

REINDEX

REPORT

SAVE

SET CATALOG

TO

SET FIELDS TO

SET FILTER TO

SET ORDER TO

SET RELATION

TO

SET VIEW TO

SORT

SUM

TOTAL

UPDATE

ZAP

dBXL: You must put user defined functions in a separate function file, then SET UDF TO

<function filename>. A file may contain up to 32 functions.

FoxBASE+: User defined functions do not use the word FUNCTION. Instead, a UDF can be a

PROCEDURE or program, provided it RETURNs a value. UDFs count toward the limit of 128

procedures per procedure file.

User defined functions are limited to:

• ?/?? statements

• Arguments of DISPLAY and LIST commands

• Control statements

• STORE and REPLACE statements

• @...SAY...VALID clauses

Quicksilver: You must put user defined functions in a separate function file, then SET UDF TO

<function filename>. A file may contain up to 127 functions, and you may have an unlimited

number of files. Defining function names with more than eight characters causes a runtime error.

When creating memory variables in user defined functions, first declare them PRIVATE to avoid

overwriting variables in the calling program.

LIMITS/WARNINGS:
User defined functions cannot have the same names as internal commands or functions.

If you change the states of open databases in user defined functions, be sure to restore them before

RETURNing.

SEE ALSO

Commands PARAMETERS, PROCEDURE, SET PROCEDURE, SET UDF; function SEEK ().

GATHER SECTION 2

The dBASE® Language Handbook 237 Back to CONTENTS

GATHER

DIALECTS:
FoxBASE+ only.

SYNTAX:
GATHER FROM <array> [FIELDS <field list>]

DEFINITION:
Transfers the contents of a memory variable array into the current database record.

Elements in the array fill the fields sequentially.

GATHER defaults to all fields if you do not specify a field list.

If you specify a field list, the first element goes into the first field, the second element goes into

the second field, etc., until the specified fields are filled or the array is exhausted.

Note that GATHER ignores memo fields.

RECOMMENDED USE:
Use GATHER to reduce the amount of programming required to initialize arrays.

SCATTER works with GATHER. SCATTER moves data from the current record of the active

database to an array.

Together, they provide a simple way to edit database records in memory without making explicit

declarations for each field.

Example—In dBASE III PLUS, moving data from a record to memory variables requires that you

initialize a variable for each field. A record with 40 fields requires 40 STORE or = statements.

After changing the variables, you must then REPLACE each one into its original field. SCATTER

and GATHER reduce the amount of code by eliminating these steps.

* Without SCATTER and GATHER

USE acctnames

* Initalize memory variables mname = name

maddress = address

mcity = city

mstate = state

mzip = zip

* Edit memory variables with GET

@ 05,01 SAY " Name: " GET mname

@ 06,01 SAY "Address: " GET maddress

@ 07,01 SAY " City: " GET mcity

GATHER SECTION 2

The dBASE® Language Handbook 238 Back to CONTENTS

@ 08,01 SAY " State: " GET mstate

@ 09,01 SAY " Zip: " GET mzip

READ

REPLACE name WITH mname,address WITH maddress,city WITH mcity,;

 state WITH mstate,zip WITH mzip

Use SCATTER and GATHER to simplify the code by eliminating memory variable assignments:

USE acctnames

SCATTER TO acctedit && Initialize array

* Edit array

@ 05,01 SAY " Name: " GET acctedit(1)

@ 06,01 SAY "Address: " GET acctedit(2)

@ 07,01 SAY " City: " GET acctedit(3)

@ 08,01 SAY " State: " GET acctedit(4)

@ 09,01 SAY " Zip: " GET acctedit(5)

READ

GATHER FROM acctedit && Write array back to record

The benefit of this technique increases with the number of fields.

VARIATIONS:
dBASE IV: COPY TO ARRAY is similar to SCATTER; however, dBASE IV has no equivalent

to GATHER. (APPEND FROM ARRAY adds a record with the contents of the specified array).

dBXL, Quicksilver: The REPLACE AUTOMEM command is similar to GATHER.

SEE ALSO:
Commands APPEND FROM ARRAY, COPY TO ARRAY, DIMENSION, REPLACE, and

SCATTER.

GENERATE SECTION 2

The dBASE® Language Handbook 239 Back to CONTENTS

GENERATE

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
GENERATE [<expN>]

DEFINITION:
Adds records to the current database and fills them with random data. GENERATE does not affect

existing records.

<expN> ranges from 1 to 1 billion, subject to the database size limit of 2 billion bytes.

If you issue GENERATE without an argument, dBXL asks for the number of records.

RECOMMENDED USE:
Use GENERATE to create sample databases for debugging applications.

Example—To test a data entry screen and a report module, a programmer GENERATEs 1000

records. The sample data fills each field, making it easy to find alignment problems in reports and

data entry screens.

USE maillist

GENERATE 1000

DISPLAY name, city, state

Record# NAME CITY STATE

 14 wMFNbctiePiyufMwSdiNHEsav tJbIHengGcwocgZWL

SEE ALSO:
Command APPEND BLANK; functions RECCOUNT(), RECNO(), and RAND()

GET SECTION 2

The dBASE® Language Handbook 240 Back to CONTENTS

GET

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

DEFINITION:
Displays a variable, and accepts input when activated with the READ command. Works with the

@ command.

SEE ALSO:
Command @...GET.

GO SECTION 2

The dBASE® Language Handbook 241 Back to CONTENTS

GO

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
GO[TO] TOP/BOTTOM/<expN>

DEFINITION:
Moves the record pointer. GO and GOTO are synonyms. If <expN>'s value is a valid record

number, the pointer moves to it. Otherwise, the error message "Record is out of Range" appears.

Note: GOTO can access deleted records hidden by the SET DELETED ON command or by a filter.

GOTO TOP moves the pointer to the first record in the database. GOTO BOTTOM moves it to

the last record. When an index file is in use, TOP is the record with the lowest key value and

BOTTOM the one with the highest.

Note: In all systems except Clipper, a number or numeric expression alone on the command line

indicates a record number to GOTO.

RECOMMENDED USE:
GO can rapidly traverse a database using the TOP and BOTTOM options.

Example—In a database of company employees indexed on last name, GOTO TOP moves the

pointer to the record with the lowest key value—"Adams." GOTO BOTTOM moves the pointer

with the highest key value—"Zoeller." In an unindexed file, TOP is record 1 and BOTTOM is the

last record.

 . USE employ INDEX emplname

 . GOTO TOP

 . ? lname

 Adams

 . ? RECNO()

 223

 . GOTO BOTTOM

 . ? lname

 Zoeller

 . ? RECNO()

 9

VARIATIONS:
dBASE IV: The option IN <alias> lets you GOTO a record in an unselected database. <alias> is

the actual database name or its full alias.

GO SECTION 2

The dBASE® Language Handbook 242 Back to CONTENTS

SEE ALSO:
Commands SET DELETED and SET FILTER.

GRAPH FORM SECTION 2

The dBASE® Language Handbook 243 Back to CONTENTS

GRAPH FORM

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
GRAPH FORM <file1> [<scope>] [WHILE <condition>] [FOR <condition>]

 [HATCH] [TO PRINT] [TO FILE <file2> [IMAGE/PAINT]]

DEFINITION:
Processes the current database file and graphs its data based on the graph format file <file1>. Graph

types include bar graphs, line graphs, pie charts, regression lines, scatter plots, and step graphs.

GRAPH FORM uses the first 40 records in the current database unless you limit records with a

<scope>, WHILE, or FOR clause.

<file1> is the graph format (extension GRF) file defined with dBXL's CREATE/MODIFY

GRAPH command or Quicksilver's MODIGRF.EXE program.

GRAPH FORM can display up to 40 records.

You can use the same graph format file with different databases, as long as they contain all the

fields used in the graph.

OPTIONS:
<scope>, WHILE, and FOR limit the records to display.

HATCH determines whether enclosed parts of a graph have cross-hatching. It only works on

computers with Enhanced Graphics Adapter (EGA) cards. Omit it when using color to represent

parts of a graph. You can define colors when you create or modify a graph. Color is only available

on EGA systems.

Because color graphs are not available on CGA or Hercules systems, cross-hatching always

appears, and the HATCH option has no effect.

TO FILE <file2> lets you save the graph image, like a snapshot, in a form that you can restore

later with RESTORE GRAPH. The new file has a BIT extension. RESTORE GRAPH simply

redisplays the graph image without processing data. You do not need to open a database, and

execution is much faster than with GRAPH FORM.

TO FILE <file2> IMAGE saves the graph in a Xerox Ventura Publisher format (extension IMG).

TO FILE <file2> PAINT saves the graph in a PC Paintbrush/Aldus Pagemaker format (extension

PCX).

GRAPH FORM SECTION 2

The dBASE® Language Handbook 244 Back to CONTENTS

The TO PRINT option prints the graph. To use a printer other than the default (IBM Graphics

Printer), you must first select it with the SET GRAPHPRINT command or Quicksilver's INSTALL

program. The supported printers are:

• Epson FX (or LX86)

• Epson MX/IBM Graphics Printer (the default)

• Hewlett Packard LaserJet

• Okidata dot matrix

The manual also lists an HPGL Plotter option, but it does not work.

RECOMMENDED USE:
Use GRAPH FORM to display simple business graphs based on live data. The graph format file

defines the graph type, titles, expressions, and color, but the plotting conforms to the open

database.

Also use GRAPH FORM to export graphs for use in desktop publishing or graphics software such

as Aldus Pagemaker, PC Paintbrush, and Xerox Ventura Publisher.

Example—A pie chart shows a company's growth percentage. Database file GAINS contains five

years' worth of quarterly data. GRAPH FORM displays the chart for each year, processing four

records at a time.

USE gains

DO WHILE .NOT. EOF()

 GRAPH FORM gaingraf NEXT 4

 SKIP

ENDDO

The 1989 graph appears as follows:

GRAPH FORM SECTION 2

The dBASE® Language Handbook 245 Back to CONTENTS

To export a graph to Ventura Publisher, the program issues

GRAPH FORM gaingraf NEXT 4 TO FILE IMAGE

To export a graph to Aldus' PageMaker, the program issues

GRAPH FORM gaingraf NEXT 4 TO FILE PAINT

LIMITS/WARNINGS:
dBXL and Quicksilver do not display graphs within the active window. The screen blanks briefly,

then the graph fills it. When the user presses a key, the graph disappears and the previous screen

is erased as well. To preserve the previous screen, issue WSAVE before displaying the graph. To

restore the previous screen, issue WRESTORE afterward.

SEE ALSO:
Commands CREATE GRAPH, RESTORE GRAPH, SET GRAPHPRINT, WRESTORE, and

WSAVE.

HELP SECTION 2

The dBASE® Language Handbook 246 Back to CONTENTS

HELP

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
HELP [keyword]

DEFINITION:
Displays a help screen or menu.

VARIATIONS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+ provide information about specific

commands or topics, specified by [keyword]. HELP alone displays generalized help menus.

dBASE III PLUS, dBASE IV, and dBXL have interactive modes with help screens. To invoke

them, type ASSIST (dBASE III PLUS and dBASE IV) or INTRO (dBXL).

SEE ALSO:
Commands ASSIST, INTRO, and SET FUNCTION TO.

IF...ELSE...ENDIF SECTION 2

The dBASE® Language Handbook 247 Back to CONTENTS

IF...ELSE...ENDIF

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
IF <condition>

 <statements>

[ELSE

 <statements>]

ENDIF

DEFINITION:
Evaluates an expression and does one of two actions, depending on whether the condition is true

or false.

If it is true, the computer executes the statements following IF until it encounters an ELSE or

ENDIF. Control then passes to the statement immediately following ENDIF.

If the condition is false, the computer executes the statements following the ELSE until it

encounters an ENDIF. Again, control passes to the statement immediately following ENDIF. If no

ELSE exists, control passes to the statement immediately following ENDIF.

You can nest IF/ENDIF constructs as long as each IF has a matching ENDIF. ELSEs go with the

most recent unsatisfied IF.

RECOMMENDED USE:
Use IF/ELSE/ENDIF to make "either/or" decisions in programs. When choosing among more than

two decisions, a DO CASE structure is more convenient and easier to understand, and requires

less programming.

Example 1—A sales application computes invoice totals depending on whether payment is to be

cash or credit. Cash sales earn a 3% discount. Cash sales over $1000 earn an extra 3% discount.

IF/ELSE/ENDIF determines the total discount.

IF method = "CASH"

 IF sale_amt > 1000

 subtotal = sale_amt - (sale_amt * .06)

 ELSE

 subtotal = sale_amt - (sale_amt * .03)

 ENDIF

ELSE

 subtotal = sale_amt

ENDIF

total = subtotal + (subtotal * salestax)

IF...ELSE...ENDIF SECTION 2

The dBASE® Language Handbook 248 Back to CONTENTS

WARNINGS/SPECIAL CASES:

IF/ELSE/ENDIF works only in programs. In the interactive mode, use the IIF() (immediate IF)

function to emulate it. IIF() performs either/or decision-making on one line. In the previous

example, you could replace the lines:

IF sale_amt > 1000

 subtotal = sale_amt - (sale_amt * .06)

ELSE

 subtotal = sale_amt - (sale_amt * .03)

ENDIF

with a single line using IIF():

subtotal = sale_amt - (sale_amt * IIF(sale_amt > 1000,.06,.03))

IIF() tests SALE_AMT. If it exceeds 1000, a discount of .06 applies. Otherwise, a discount of .03

applies.

Using IIF() results in fewer program lines and faster execution; however, the code is somewhat

more difficult to understand.

VARIATIONS:
Clipper: The ELSEIF structure lets you specify several alternatives within an IF...ENDIF

structure. ELSEIF has the form:

IF <condition>

 <statements>

[ELSEIF]

 <statements>

[ELSEIF]

 <statements>

[ELSE]

ENDIF

IF...ELSEIF...ENDIF is the same as the DO CASE structure. The IF statement is like the first

CASE, ELSEIFs act like subsequent CASEs, and ELSE acts like the OTHERWISE option.

DO WHILE .t.

 CLEAR

 resp = " "

 @ 10,01 SAY "Print (L)abels (I)nvoices (R)eminders (L/I/R)" ;

 GET resp PICTURE "!"

 READ

 IF resp = "L"

 DO labels

 ELSEIF resp = "I"

 DO invoices

IF...ELSE...ENDIF SECTION 2

The dBASE® Language Handbook 249 Back to CONTENTS

 ELSEIF resp = "R"

 DO reminders

 ELSE

 ?? CHR(7)

 @ 24,03 SAY "Invalid key, try again."

 WAIT ""

 ENDIF

ENDDO

SEE ALSO:
Commands DO CASE and ELSEIF; function IIF().

IMPORT SECTION 2

The dBASE® Language Handbook 250 Back to CONTENTS

IMPORT

DIALECTS:
dBASE III PLUS and dBASE IV.

SYNTAX:
IMPORT FROM <filename> [TYPE] PFS (dBASE III PLUS)

IMPORT FROM <filename> [TYPE] PFS/DBASEII/FW2/RPD/WK1 (dBASE IV)

DEFINITION:
Creates a database file (extension DBF) from a foreign file format.

The new file has the same name as the original (with a DBF extension added). If a catalog is open,

the new file is added to it. When importing from a PFS format, dBASE III PLUS automatically

creates FORMAT (extension FMT) and VIEW (extension VUE) files. dBASE IV creates just a

FORMAT file. These files are added to the open catalog as well.

DEFAULT:
IMPORT copies all records from the source file.

OPTIONS:

DBASEII

Imports a dBASE II (Ashton-Tate) database, and gives it a DB2 extension.

FW2

Imports an Ashton-Tate Framework II (extension FW2) file.

PFS

Imports a pfs:File data file (Software Publishing, Inc.) and creates a matching format file

(extension FMT).

RPD

Imports an Ashton-Tate Rapidfile database (extension RPD).

WK1

Imports a Lotus 1-2-3 Release 2.x worksheet (extension WK1).

RECOMMENDED USE:
Use IMPORT to get data from another application.

IMPORT SECTION 2

The dBASE® Language Handbook 251 Back to CONTENTS

Example—Becky uses Lotus 1-2-3 Release 2.0 to manage data. To use the data in a dBASE report,

she IMPORTs it in the WK1 format.

. IMPORT FROM payroll TYPE WK1

 15 records added

LIMITS/WARNINGS:
The file you import must not exceed the dBASE limits of 255 fields per form and 254 characters

per field.

SEE ALSO:
Commands APPEND FROM, COPY, EXPORT, and SET FORMAT.

INDEX SECTION 2

The dBASE® Language Handbook 252 Back to CONTENTS

INDEX

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
INDEX [ON <exp> TO <filename> [UNIQUE]]

DEFINITION:
Reorders the database in the current work area in numeric, character, or date order, according to a

key expression. It does not alter the records in the database physically. Instead, INDEX creates a

separate index file with references, or "pointers," to the key fields in the database file that make it

appear to be rearranged physically.

An index key expression usually consists of a field, parts of a field, or combinations of fields in

the active database file (See Special Uses for exceptions). You can combine any fields using the +

or - operators. You can combine numeric and date fields using the STR() (string conversion) and

DTOC() (date conversion) functions. Mixing data types in a key expression causes a "Data type

mismatch" error.

The index file actually contains the key value and number of each record in its associated database

file. The index file becomes active as soon as it is created. The index order is maintained as long

as the index is active, or made active prior to changes to the database. You can reactivate the index

file with the command:

SET INDEX TO <filelist>

or by USEing a database file with indexes as follows:

USE <database file> INDEX <filelist>

In both cases, the <filelist> may include up to seven names. When several index files are active,

all are updated when their associated key fields are changed; however, the index order corresponds

only to the first one in the list. We call it the primary index. The index name must be a legal DOS

filename.

If you SET TALK ON in dBASE III PLUS, dBASE IV, dBXL, or FoxBASE+, a counter showing

the INDEX's progress appears. SET ODOMETER TO <expN> controls how often the counter is

updated (except in dBXL).

DEFAULT:
If you enter INDEX alone, dBASE III PLUS, dBASE IV, and dBXL prompt for a key expression

and destination filename.

INDEX SECTION 2

The dBASE® Language Handbook 253 Back to CONTENTS

OPTIONS:
UNIQUE makes the index include only the first of a group of records with duplicate keys. It works

the same as the SET UNIQUE ON command. Records with duplicate keys remain in the database,

but they are effectively hidden from most operations. If you recreate the index without the

UNIQUE option, or if you USE the database file without the index, the records with duplicate keys

appear as usual.

RECOMMENDED USE:
Use an index file when doing searches with the FIND and SEEK commands. They let you do rapid

searches for key expressions. Also, use index files to group data within a file. For example, in a

file indexed on a date, all records with the same date stay together.

Create indexes with the UNIQUE option to hide duplicate records. To remove them from a

database file permanently, first INDEX the file with the UNIQUE option (or SET UNIQUE ON).

Then COPY the file to a temporary database file. Because UNIQUE hides duplicate records,

COPY copies only the visible, unique records. Delete your original database and rename the

temporary file to its name. Don't forget to reindex the new file.

Example 1—Creating an index using UNIQUE to hide records with duplicate keys. To save

mailing costs, a promotions director wants to send only one flyer to each household. Because many

families have the same last name, the index key also includes the address. The combination ensures

unique records.

 USE employ

 LIST lname,address

 Record # lname address

 1 Smith 189 S. Windsor Dr.

 2 Adams 237 Charleston Ave.

 3 Randall 88 Morena Blvd.

 4 Randall 88 Morena Blvd.

 5 Bailey 3101 S. Pedro St.

 6 Adams 8 Main St.

 INDEX ON lname + address TO lnamedex UNIQUE

 100% indexed 5 records indexed

 LIST lname,address

 Record # lname address

 2 Adams 237 Charleston Ave.

 6 Adams 8 Main St.

 5 Bailey 3101 S. Pedro St.

 3 Randall 88 Morena Blvd.

 1 Smith 189 S. Windsor Dr.

Note that before indexing, two records contain LNAME "Adams" and two contain "Randall."

Because ADDRESS is part of the key expression, after indexing with UNIQUE, only one

"Randall" appears, but two "Adams" remain.

INDEX SECTION 2

The dBASE® Language Handbook 254 Back to CONTENTS

Example 2—By indexing on compound keys, files can appear in groups and subgroups. A

transaction file in a sales application records buyers and the amounts of their purchases. The sales

manager wants to view the data in NAME order, with the amount purchased appearing in

descending order, within NAME.

Note: To arrange a list in descending order, you must subtract AMOUNT from a number higher

than any other in the database.

Because AMOUNT and NAME are different data types, the elements must be converted to a

common type. The STR() function

converts AMOUNT to character type.

 . USE employ

 . INDEX ON name + STR(99999-amount,7,2) TO empdex

 100% indexed 9 Records indexed

 . LIST name,amount

Record# name amount

 8 Hobek 145.32

 2 Hobek 2.23

 5 Rosner 999.44

 6 Rosner 383.00

 3 Rosner 33.00

 4 Rosner 23.99

 1 Sherman 2222.20

 7 Sherman 1.22

STR(amount,7,2) specifies a total length of seven digits (including the decimal point), with two

decimal places.

SPECIAL USES:
Index keys can contain any valid expression, including functions, memory variables, and fields

from other open databases (using the ALIAS -> operator). However, the index order will not

change unless the expression includes a field, or part of a field, from the selected database. Also,

the index will not be properly updated if data in the unselected database is changed.

Indexing on a date field that has been converted to a character string does not produce true date

order. INDEX treats a date converted with DTOC() like any other string. Indexing in true date

order requires reordering of the date string itself, i.e., year, month, and day (YYMMDD). You can

do this with the SUBSTR() (substring) function. The index expression is

. INDEX ON SUBSTR(DTOC(today),7,2) + SUBSTR(DTOC(today),4,2)+ ;

 SUBSTR(DTOC(today),1,2) TO empdex

100% indexed 8 Records indexed

. LIST today

Record# TODAY

 6 03/25/84

 1 02/18/85

INDEX SECTION 2

The dBASE® Language Handbook 255 Back to CONTENTS

 2 02/11/86

 4 02/13/86

 7 03/16/86

 5 04/16/86

 8 02/17/87

 3 01/12/88

Clipper, dBASE IV, dBXL, FoxBASE+, and Quicksilver have other methods of indexing on dates.

See Variations below.

Key expressions may not involve logical or MEMO fields. However, you can simulate an index

on a logical field by using the IIF() function to check the key field.

Example 3—An airline application marks passengers true (.T.) for smoking, and false for non-

smoking. To group passengers by smoking preference, you must simulate an index on a logical

field.

In this example, IIF() evaluates SMOKING. If it is true, IIF() assigns 1 to the index key. If false,

it assigns 2. The result is a binary (2 element) numeric index, 1 representing true and 2 false.

 . USE testfile

 . LIST smoking

 Record# smoking

 1 .T.

 2 .F.

 3 .F.

 4 .T.

 5 .F.

 . INDEX ON IIF(smoking,1,2)

 . LIST smoking

INDEX SECTION 2

The dBASE® Language Handbook 256 Back to CONTENTS

 Record# in

 1 .T.

 4 .T.

 2 .F.

 3 .F.

 5 .F.

Index expressions may involve functions, such as string and date conversion functions. Clipper,

dBXL, and Quicksilver even allow user defined functions (UDFs) in index expressions. If you

create an index using a UDF, it must be available whenever you open that index. If not, the index

will be unusable.

LIMITS/WARNINGS:
TRIM() causes problems in index expressions because it reduces an empty field to length 0,

creating a null index key.

You can avoid this situation by padding the expression with spaces to the length of the untrimmed

fields.

Example 4—A magazine for car aficionados maintains a list of classic roadsters in CARS.DBF.

The goal is to SEEK a car in the database without worrying about trailing blanks in the index key.

To achieve this, the managing editor creates an index on the TRIM() of three fields, permitting

SEEKs for keys like "FORD, THUNDERBIRD,57".

Field Fieldname Type Width

1 MAKE Character 15

2 MODEL Character 15

3 YEAR Character 2

INDEX ON SUBSTR(TRIM(make) + TRIM(model) + TRIM(year)+;

 SPACE(32),1,32) TO car_ntx

The SUBSTR() function treats the compound key as a single string. The SPACE() function pads

the key to the untrimmed length of the fields.

VARIATIONS:
Blank date fields are handled inconsistently. When indexed on a date field, dBASE III PLUS,

dBASE IV, and dBXL put blanks at the end.

Clipper, FoxBASE+, and Quicksilver put them at the beginning.

Clipper: In versions before Summer '87, the current UNIQUE setting affects all open index files

regardless of their UNIQUE status at creation. This error was fixed in Summer '87.

Clipper, dBASE IV, dBXL, Quicksilver: The DTOS() function (date-to-string) lets you index

on dates as character strings in true date order as follows:

INDEX SECTION 2

The dBASE® Language Handbook 257 Back to CONTENTS

* mdate is a field

INDEX ON DTOS(mdate) TO datedex

This produces an index in ascending date order, in the form YYYYMMDD.

dBASE IV: The INDEX command also supports multiple index (MDX) format, with the syntax:

 INDEX ON TAG <tag name> [OF <MDX filename>] [UNIQUE] [DESCENDING]

A multiple index file is a collection of indexes in a single DOS file. Each index has a TAG, a name

of up to ten characters. TAGs follow the naming conventions for memory variables.

A database can also have a production multiple index file. This is an MDX with the database's

name that automatically becomes active when you USE the database. If you erase a production

MDX file, dBASE IV issues a warning the next time you USE the associated database file. You

can then cancel the USE, or reset the production MDX flag in the database header.

If you INDEX with a TAG, but do not specify an MDX name with the OF option, INDEX checks

for a production MDX. If one exists, INDEX adds the new TAG to it. If not, INDEX creates one

and adds the TAG.

If you use the OF <MDX filename> option and the specified MDX file does not exist, INDEX

creates a new one. If the MDX exists, but is not open, INDEX opens it.

INDEX creates separate NDX files if you do not use the TAG option.

Indexes default to ASCENDING order. When you use multiple index files, you can specify

DESCENDING order. Note that the DESCENDING option applies to the entire key expression.

A compound expression cannot combine DESCENDING and ASCENDING keys. NDX format

indexes do not support the DESCENDING option.

The UNIQUE option works the same for MDX files as for NDX files.

Example—An order entry program tracks machine parts. For reporting, it creates two TAGs in a

multiple index file, using ORDERED and PARTNUM.

 USE parts

 * Create TAG on part number

 INDEX ON partnum TAG partnum && If no production MDX exists,

 && one will be created

 * Create TAG on descending order date

 INDEX ON ordered TAG ordered DESCENDING

A third TAG is created in a second MDX file, TRANS_MDX, using the part NAME:

INDEX ON name TAG name OF trans_mdx

INDEX SECTION 2

The dBASE® Language Handbook 258 Back to CONTENTS

dBXL, Quicksilver: WordTech recommends avoiding TRIM() in index key expressions.

FoxBASE+: An optional numeric argument (1) in the DTOC() function permits direct date

indexing, as follows:

* mdate is a field

INDEX ON DTOC(mdate,1) TO datedex

This produces an index in ascending date order, in the form YYYYMMDD.

In multiuser applications, you must have exclusive use of a database before INDEXing.

Quicksilver allows the index status to be displayed, but only when selected as a library-installed

option.

INDEX COMPATIBILITY:

Clipper: Default indexes have an NTX extension. They are not compatible with dBASE III PLUS

index files. You can specify compatible (NDX) indexes by linking NDX.OBJ (on the system disk)

to your application.

dBASE III PLUS: Creates index files with an NDX extension.

dBXL and Quicksilver: Both use dBASE III PLUS compatible indexes; however, WordTech

notes some differences between the two in evaluating numeric keys. To avoid discrepancies,

convert numeric keys to character using the STR() function.

FoxBASE+: Indexes have an IDX extension. They are not compatible with dBASE III PLUS

index files. However, when FoxBASE+ detects a dBASE III PLUS index, it automatically builds

a matching index in its own format.

SEE ALSO:
Commands REINDEX, SET INDEX TO, SET ODOMETER, SET ORDER, SET UNIQUE,

SORT, and USE; functions DTOS(), NDX(), MDX(), SPACE(), SUBSTR(), TAG(), and TRIM().

INPUT SECTION 2

The dBASE® Language Handbook 259 Back to CONTENTS

INPUT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
INPUT [<expC>] TO <memory variable>

DEFINITION:
Prompts the user to enter data into a memory variable. The data may be any valid expression, and

its type determines the variable's type.

All character data must be delimited with double quotation marks, single quotation marks, or

square brackets.

Numeric data does not require delimiters.

To terminate data entry, press the Enter key. If the user presses Enter without entering any data,

the INPUT command repeats.

OPTIONS:
PROMPT displays a message. If the prompt is a character string, you must surround it with square

brackets, single quotation marks, or double quotation marks. If it is a memory variable, do not use

delimiters.

Without the PROMPT option, only the cursor appears on the screen.

RECOMMENDED USE:
Use INPUT to gather data for simple applications that do not require validation.

Example 1—A school administrator uses INPUT when computing students' grade point averages.

* Capture the grade for each class

INPUT "Enter the grade for Math 2A: " to math2A

INPUT "Enter the grade for Chem 1C: " TO chem1C

INPUT "Enter the grade for Microbiology: " TO micro

INPUT "Total number of courses: " TO courses

gpa = (math2A + chem1C + micro) / courses

? "Grade point average is: " + STR(gpa,4,2)

On the screen, the output from this program would appear as follows (with the user's input):

Enter the grade for Math 2A: 3

Enter the grade for Chem 1C: 3.33

INPUT SECTION 2

The dBASE® Language Handbook 260 Back to CONTENTS

Enter the grade for Microbiology: 2

Total number of courses: 3

Grade point average is: 2.78

Note: INPUT is like ACCEPT. However, ACCEPT allows only character data, whereas INPUT

accepts any valid expression.

SEE ALSO:
Command ACCEPT.

INSERT SECTION 2

The dBASE® Language Handbook 261 Back to CONTENTS

INSERT

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
INSERT [BEFORE] [BLANK]

DEFINITION:
Adds a record to the active database file just after the current record.

 After you INSERT a record, the computer displays it for full-screen data entry. If you SET

CARRY ON, the display shows the contents of the preceding record.

To enter data into a memo field, place the cursor on the memo label and press Ctrl-PgDn. To save

the memo, press Ctrl-End. Press ESC to exit and abandon changes.

INSERT works like APPEND on an indexed file.

OPTIONS:
BEFORE puts the new record ahead of the current one. For example, if the pointer is at record 99

when you issue INSERT BEFORE, the new record becomes record 99, the old 99 becomes record

100, and all succeeding records have their numbers increase by 1.

BLANK adds a new record, but does not open it for full-screen editing.

RECOMMENDED USE:
Use INSERT primarily during interactive use of dBASE III PLUS, dBASE IV, FoxBASE+, or

dBXL. You can use INSERT BLANK in programs, but it works only with unindexed files (with

an active index, a new blank record immediately changes position).

VARIATIONS:
dBXL, Quicksilver: INSERT AUTOMEM sets the fields to the values of the corresponding

AUTOMEM variables (they have the same names as fields in the current database).

When there are no variables, INSERT AUTOMEM inserts a blank record. The BEFORE option

works with either AUTOMEM or BLANK.

Quicksilver: Requires either the BLANK or the AUTOMEM option.

SEE ALSO:
Commands APPEND and SET CARRY ON.

INTRO SECTION 2

The dBASE® Language Handbook 262 Back to CONTENTS

INTRO

DIALECTS:
dBXL only.

SYNTAX:
INTRO

DEFINITION:
Starts the menu help system, providing an interactive user interface.

INTRO works like ASSIST in dBASE III PLUS.

SEE ALSO:
Commands ASSIST and HELP.

JOIN SECTION 2

The dBASE® Language Handbook 263 Back to CONTENTS

JOIN

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
JOIN WITH <alias> TO <filename> FOR <condition> [FIELDS <field list>]

DEFINITION:
Merges selected records from two databases to create a third database. Using an expression, such

as ACCOUNTNO = "A2347" or AMOUNT = 1259.99, the JOIN command tests conditions in

both database files. It creates a record in the new file for every combination of records for which

the expression is true.

JOIN pairs every record in the active database file with every record of another open file. For

example, given an expression that is true for all records, every record in file TEST1 will JOIN with

every record in file TEST2. If TEST1 and TEST2 each contain 100 records, their JOIN file will

contain 10,000 records.

In dBASE III PLUS and dBASE IV, JOIN causes a catalog to be updated if SET CATALOG is

ON.

OPTIONS:
A FIELD <field list> limits the fields put in the new JOIN file. Without it, the JOIN file contains

everything except memo fields from both database files. (A field list defined by the SET FIELDS

command also limits the fields put in the new JOIN file.)

The FIELD list may contain any type of field except memo.

In the FIELD list, you must use ALIAS->fieldname to refer to a field in the unselected database

with a duplicate fieldname.

RECOMMENDED USE:
To use JOIN, open a database file in the selected work area, and another in an unselected work

area. To refer to fields from the unselected area, use the SYNTAX:

ALIAS->fieldname

Use JOIN to merge databases that have records related by a key field, such as an account number

or identification number.

Example 1—A hardware store manager wants to list power tools and the customers who have

bought them. As is common in multi-file applications, different types of data are stored in separate

files. This is useful for storage efficiency and performance; however, it

JOIN SECTION 2

The dBASE® Language Handbook 264 Back to CONTENTS

can make reporting difficult. Tool information is in TOOLS.DBF. Customer transactions are in

SALES.DBF. In both files, field PARTNO identifies the tool. By JOINing for PARTNO in SALES

equal to PARTNO in TOOLS, the manager creates a summary file. He or she can then produce

the desired report with a simple LIST command.

. USE tools

. LIST

Record# TOOL PARTNO

 1 B&D Electric Drill 1001

 2 Band Saw 1111

 3 Chain Saw 3222

 4 Table Saw 3331

 5 Drill Press 5455

. SELECT 2

. USE sales

. LIST

Record# CUSTOMER AMOUNT PARTNO

 1 Barnard 122.77 1111

 2 Hawkins 888.76 1001

 3 Jimenez 211.22 3331

 4 King 283.33 5455

 5 Sanchez 2838.00 3222

. SELECT 1

. JOIN WITH sales TO history FOR partno = sales->partno

 5 records joined

. USE history

. LIST

Record# TOOL PARTNO CUSTOMER AMOUNT

 1 B&D Electric Drill 1001 Hawkins 888.76

 2 Band Saw 1111 Barnard 122.77

 3 Chain Saw 3222 Sanchez 2838.00

 4 Table Saw 3331 Jimenez 211.22

 5 Drill Press 5455 King 283.33

LIMITS/WARNINGS:
Use JOIN carefully. A simple JOIN of two 100-record database files could create a file with 10,000

records. JOIN is an extremely time-consuming activity, and it could create a file larger than your

computer's disk storage capacity.

In practice, you can ensure reasonable file size only by not using JOIN on large files.

JOIN begins with the first record in the active database and evaluates the expression for every

record in the second database. It then moves to the next record in the active database, and so on.

The process continues until the computer reaches the end of the active file.

JOIN can also easily exceed a database's field limits. When no field list is specified, JOIN first

merges fields from the first database. It then starts selecting fields from the second database.

JOIN SECTION 2

The dBASE® Language Handbook 265 Back to CONTENTS

SEE ALSO:
Command SELECT and SET RELATION.

KEYBOARD SECTION 2

The dBASE® Language Handbook 266 Back to CONTENTS

KEYBOARD

DIALECTS:
Clipper, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
KEYBOARD <expC>

DEFINITION:
Inserts the specified character expression into the keyboard buffer. For example, the command

KEYBOARD "A" + CHR(13) + "C" + CHR(13)

puts the letters "A" and "C" into the keyboard buffer, each followed by a carriage return.

RECOMMENDED USE:
Use KEYBOARD to automate menu selections or to create self-running demonstration programs.

In effect, you can write programs that control other programs through the keyboard (like keyboard

macro programs such as ProKey and SmartKey).

Example 1—An applications developer sells a demonstration version of a real estate program.

The KEYBOARD command automates menu selections so the prospective buyer can watch the

program execute. The command

KEYBOARD "1" + CHR(13) + "1" + CHR(13) + "D"

selects option 1 from the first program menu, option 2 from the second program menu, and

selection "D" from the third program menu.

SPECIAL USES:
Clipper (pre-Summer '87 versions): You can use KEYBOARD to emulate CLEAR TYPEAHEAD

by inserting a null string. Use the command

KEYBOARD ""

to clear the buffer before a READ and a GET to keep the user from entering data before reading

the prompt. CLEAR TYPEAHEAD was added to Clipper Summer '87.

You can also use KEYBOARD to complete a GET with data from a HELP or SETKEY procedure.

In Clipper, pressing F1 from a GET executes a procedure HELP. The SETKEY command

designates a "hot key" the user can press to execute any procedure. In the HELP or SETKEY

procedure, you can display a menu and KEYBOARD an item into the current GET.

KEYBOARD SECTION 2

The dBASE® Language Handbook 267 Back to CONTENTS

Example 2—A data entry screen in a sales application lets the user press F1 to display customer

names. The user can then move the cursor to a name and press Enter to complete the current GET

with the name.

* ENTRY.PRG--Main data entry screen

CLEAR

CLEAR ALL

SET TALK off

PUBLIC inhelp && Set flag INHELP to prevent HELP from calling itself

mcust = SPACE(30)

@ 10,32 SAY "Enter customer" GET mcust

* <More GETs>

READ

PROCEDURE help

PARAMETERS p1,p2,p3 && Parameters automatically sent, but not used here

IF inhelp && INHELP is true only if user presses F1 while HELP is

 RETURN && already executing. If true, RETURN to previous level

ENDIF && (Recursive calls to HELP cause memory errors)

inhelp = .t. && Set INHELP to true. (Will be reset before RETURNing)

oldalias= STR(SELECT()) && Save work area number

SELECT 9 && SELECT an unused work area

USE custfile && File contains menu data

ctr = 1

DO WHILE ctr < 10 .AND..NOT.EOF() && Repeat 10 times or until end-of-file

 @ ctr,1 PROMPT customer && Display PROMPT for each record

 SKIP && SKIP to next record

 ctr = ctr + 1 && Increase counter

ENDDO

MENU TO choice && Activate PROMPT menu and get result

IF choice # 0 && If CHOICE is 0, do not KEYBOARD anything

 GO choice && GOTO record number matching CHOICE

 KEYBOARD author && KEYBOARD author field

ENDIF

@ 0,0 CLEAR TO 11,31 && Clear display area

USE && Close the database

SELECT &oldalias && Restore original work area

inhelp = .f. && Reset INHELP flag to false

RETURN && RETURN to data entry screen

In dBXL and Quicksilver, the HELP option of the @...SAY...GET command can execute a user

defined function. When entering data, the user can press F1 to open a help window containing a

"pick list." KEYBOARD puts the user's selection into the current GET.

* ENTRY.PRG--Main data entry screen

CLEAR

CLEAR ALL

SET TALK off

KEYBOARD SECTION 2

The dBASE® Language Handbook 268 Back to CONTENTS

SET UDF TO ufuncs

SET USERHELP TO 1,1,20,40 DOUBLE

mcust = SPACE(30)

@ 10,32 SAY "Enter customer " GET mcust HELP MHELP()

* <More GETs>

READ

* UFUNCS.PRG--User defined function file

FUNCTION mhelp

USE custfile && Contains a field CUSTOMER, character, 30

DO WHILE recno() < 5

 ? STR(RECNO(),1,0) + " " + customer

 SKIP

ENDDO

INPUT "Enter a number " TO choice

GOTO choice

KEYBOARD " " + customer && KEYBOARD customer field

USE && Close the database

RETURN "" && RETURN to data entry screen

LIMITS/WARNINGS:
dBXL, Quicksilver: When you KEYBOARD a string from a USERHELP window, the first

character is truncated. (It is used to close the window). To solve this problem, add a blank to the

beginning of strings KEYBOARDed from a USERHELP window, as follows:

customer = "Kalman Communications"

KEYBOARD " " + customer

or

KEYBOARD " Kalman Communications"

SEE ALSO:
Commands @...PROMPT, CLEAR KEY, CLEAR TYPEAHEAD, and SET KEY.

LABEL FORM SECTION 2

The dBASE® Language Handbook 269 Back to CONTENTS

LABEL FORM

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LABEL FORM <filename>/? [SAMPLE] [WHILE <condition>]

[FOR <condition>]

 [TO PRINT/TO FILE <filename>]

DEFINITION:
Displays or prints mailing labels from the active database file using a special template file created

by the CREATE/MODIFY LABEL command.

DEFAULT:
Without any options, LABEL FORM displays labels on the screen for all records in the database.

Use the <scope>, WHILE, and FOR options to select records.

OPTIONS:
TO PRINT prints labels. TO FILE <filename> saves them in an ASCII text file. The file's

extension is TXT unless you specify otherwise.

SAMPLE prints one label so the user can check and adjust alignments.

? presents a menu of available label forms.

RECOMMENDED USE:
LABEL FORM provides an easy to use, but limited, label printing capability. Sophisticated

applications that involve repeating labels or multiple-across labels must be programmed.

Example—Print labels from file CLIENTS with label file CLABELS. STATE is a field in

CLIENTS. Print labels for which the STATE field is "CA" in the NEXT 10 records.

USE clients

LABEL FORM clabels SAMPLE NEXT 10 FOR state = "CA" TO PRINT

VARIATIONS:
dBASE IV: LABEL FORM searches first for a file with an LBO extension (a compiled label

form), then LBG (a generated form), then LBL (source form).

If you have installed a printer driver other than ASCII.DPR, the TO FILE option produces a file

with a TXT extension. (Text files created for a printer driver have a PRT extension and may contain

escape codes for special print attributes.)

LABEL FORM SECTION 2

The dBASE® Language Handbook 270 Back to CONTENTS

When you first CREATE or MODIFY LABEL, dBASE IV creates an LBL file and an LBG file.

When you print labels with LABEL FORM, dBASE IV compiles the LBG file into an LBO file

and runs the LBO file.

SEE ALSO:
Commands CREATE/MODIFY LABEL.

LIST SECTION 2

The dBASE® Language Handbook 271 Back to CONTENTS

LIST

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LIST [OFF] [<scope>] [<expression list>] [WHILE <condition>]

 [FOR <condition>] [OFF] [TO PRINT]

DEFINITION:
Selects records in a database file for viewing on the screen or for printing. It works like DISPLAY,

except that it does not pause when the screen is full. To pause a LIST, type Ctrl-S. To cancel it,

press ESCape. Press any other key to continue.

You must SET ESCAPE ON to pause or cancel a list.

DEFAULTS:
Shows all fields, except memos, unless otherwise specified in the expression list. You must name

memo fields explicitly. When LISTing them, the text width defaults to 50 characters. Use the SET

MEMOWIDTH command to change it.

Displays all records unless you specify a <scope>, FOR, or WHILE clause.

OPTIONS:
The expression list may contain field names and expressions separated by commas, or

concatenated with plus and minus signs. Using commas lets you LIST fields of different data types

because each expression is independent. Using plus or minus signs to concatenate creates a single

expression within which data types must agree.

Use <scope>, the FOR clause, and the WHILE clause to select records to LIST.

OFF omits record numbers at the start of each line.

RECOMMENDED USE:
Use LIST with scopes and conditions to formulate database queries.

Example—An employment agency wants to LIST all applicants with B.A. degrees. The database

file APLCANT contains employment applications for positions in literary research. The TO

PRINT option prints the listing.

 . USE aplcant

 . LIST lname,fname,degree,area FOR degree = "BA" TO PRINT

LIST SECTION 2

The dBASE® Language Handbook 272 Back to CONTENTS

 Record# lname fname degree area

 13 Salinger James BA Modern British Fiction

 29 Blackmoor Susan BA Shakespearean Drama

 36 Edelstein Edward BA Walt Whitman

 52 D'Gregorio Alfredo BA Middle English Studies

VARIATIONS:
Clipper: Requires a field list. Clipper does not display the field names with the data. The TO FILE

option sends the results to a text file.

Clipper, dBXL, FoxBASE+, Quicksilver: SET ESCAPE OFF does not deactivate Ctrl-S (pause).

dBASE III PLUS/dBASE IV/dBXL/FoxBASE+: SET HEADING OFF omits the field names.

dBASE IV: The TO FILE <filename> option sends results to a text file with a TXT extension.

SEE ALSO:
Commands DISPLAY, SET HEADING, and SET MEMOWIDTH.

LIST FILES SECTION 2

The dBASE® Language Handbook 273 Back to CONTENTS

LIST FILES

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LIST FILES [ON <drive/dir>] [LIKE <skeleton>] [TO PRINT]

DEFINITION:
Lists names of files on the specified disk drive and directory. Same as DISPLAY FILES, except

that it does not pause when the screen fills.

VARIATIONS:
dBASE IV: The TO FILE <filename> option sends output to a text file with a TXT extension.

SEE ALSO:
Commands DIR/DIRECTORY and DISPLAY FILES.

LIST HISTORY SECTION 2

The dBASE® Language Handbook 274 Back to CONTENTS

LIST HISTORY

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
LIST HISTORY [LAST <expN>] [TO PRINT]

DEFINITION:
Shows the latest commands in order, with the most recently executed ones at the bottom. Same as

DISPLAY HISTORY, except that it does not pause when the screen fills.

VARIATION:

dBASE IV: The TO FILE <filename> option sends output to a text file with a TXT extension.

SEE ALSO:
Commands DISPLAY HISTORY, SET DOHISTORY, and SET HISTORY.

LIST MEMORY SECTION 2

The dBASE® Language Handbook 275 Back to CONTENTS

LIST MEMORY

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LIST MEMORY [TO PRINT]

DEFINITION:
Displays information about active memory variables. Same as DISPLAY MEMORY, except that

it does not pause when the screen fills.

VARIATION:

dBASE IV: The TO FILE <filename> option sends output to a text file with a TXT extension.

SEE ALSO:
Command DISPLAY MEMORY.

LIST STATUS SECTION 2

The dBASE® Language Handbook 276 Back to CONTENTS

LIST STATUS

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LIST STATUS [TO PRINT]

DEFINITION:
Displays general status information such as open database files, function key assignments, and the

state of SET commands. Same as DISPLAY STATUS, except that it does not pause when the

screen fills.

VARIATION:

dBASE IV: The TO FILE <filename> option sends output to a text file with a TXT extension.

SEE ALSO:
Command DISPLAY STATUS.

LIST STRUCTURE SECTION 2

The dBASE® Language Handbook 277 Back to CONTENTS

LIST STRUCTURE

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LIST STRUCTURE [TO PRINT]

DEFINITION:
Shows the database name, number of records, date of last update, number of bytes per record, and

fields of each record for the active database. Same as DISPLAY STRUCTURE, except that it does

not pause when the screen fills.

VARIATION:

dBASE IV: The TO FILE <filename> option sends output to a text file with a TXT extension.

The IN <alias> option lets you LIST the STRUCTURE of an unselected database.

SEE ALSO:
Command DISPLAY STRUCTURE.

LIST USERS SECTION 2

The dBASE® Language Handbook 278 Back to CONTENTS

LIST USERS

DIALECTS:
dBASE IV only.

SYNTAX:
LIST USERS

DEFINITION:
Shows workstations currently logged into dBASE IV on a local area network.

Same as DISPLAY USERS, except that it does not pause when the screen fills.

SEE ALSO:
Command DISPLAY USERS; functions NETNAME() and NETWORK()

LOAD

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LOAD <filename>

DEFINITION:
Puts a binary program (extension BIN) in memory for CALL to execute. The use of assembly

language binary programs allows advanced programmers to access operating system functions and

hardware operations that the dBASE language does not support. For example, they can check the

system for valid disk drives, determine whether communications ports are available, or identify

the type of display.

You can remove binary programs from memory with the RELEASE MODULE <module name>

command.

VARIATIONS:
Clipper: Lets you link external programs. dBASE III PLUS, FoxBASE+: Limit of 16 binary

programs. dBXL, Quicksilver: Limit of 10 binary programs.

SEE ALSO:
Commands CALL/CCALL and RELEASE MODULE.

LOGOUT SECTION 2

The dBASE® Language Handbook 279 Back to CONTENTS

LOGOUT

DIALECTS:
dBASE IV only.

SYNTAX:
LOGOUT

DEFINITION:
Ends a user's session and presents a security login screen for the next user.

LOGOUT resets dBASE IV to its startup condition. It clears the screen, clears memory, and closes

all files. It then presents the login screen, which asks for group name, user name, and password.

You must first define login security with the PROTECT command. Otherwise LOGOUT resets

dBASE IV to its startup condition and returns you to the dot prompt.

RECOMMENDED USE:
Use LOGOUT when a new user takes over at a workstation or to change workgroups during a

session.

SEE ALSO:
Commands PROTECT and SET ENCRYPTION; functions ACCESS() and USER().

LOOP SECTION 2

The dBASE® Language Handbook 280 Back to CONTENTS

LOOP

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LOOP

DESCRIPTION:

Returns program control to the top of DO WHILE... ENDDO loop.

VARIATIONS:
dBASE IV: LOOP also works with SCAN...ENDSCAN.

SEE ALSO:
Commands DO WHILE and SCAN...ENDSCAN.

MENU TO SECTION 2

The dBASE® Language Handbook 281 Back to CONTENTS

MENU TO

DIALECTS:
Clipper and FoxBASE+.

SYNTAX:
MENU TO <memory variable> [MESSAGE <expC>]

DEFINITION:
Creates a "bounce bar" menu that lets users point to selections with a highlighted cursor bar. They

can make choices from the menu by moving the bar to a prompt with the arrow keys, and then

pressing the Enter, PgUp, or PgDn keys. Alternatively, pressing the first character of a selection

will highlight and select it.

MENU TO requires a series of @PROMPT commands. It invokes the menu, allowing the cursor

to move between PROMPTs. Upon selection, MENU TO stores the PROMPT's relative number

in a memory variable. You can then use the number in a CASE expression. Pressing ESCape stores

0 in the memory variable. You can use this as an alternate exit condition.

OPTIONS:
When the menu bar moves to a prompt, you can display an associated MESSAGE. The MESSAGE

option prints a character string on the line specified in the SET MESSAGE TO command (the

default is line 24, column 0).

RECOMMENDED USE:
Use the MENU TO command to provide menus that require minimal typing skill. Users find such

menus friendly and easy to use.

Example—A payroll program contains a menu with four options. By moving the cursor bar with

the arrow keys, the bookkeeper can make selections easily. When he or she presses Enter, the

relative number of the prompt is saved in the variable ACTION. The first prompt stores 1 in

ACTION, the second 2, and so on. The DO CASE structure evaluates ACTION and does the

appropriate program. Selecting prompt 4, EXIT TO MAIN MENU, stores 4 in ACTION and

RETURNs control to the previous menu. Pressing the ESCape key has the same effect except that

it stores 0 in ACTION.

SET MESSAGE TO 1 && Display optional prompt message

@ 05,10 PROMPT "Maintenance Menu " MESSAGE "Reindex files"

@ 06,10 PROMPT "Query Menu " MESSAGE "Ask questions"

@ 07,10 PROMPT "Post Payroll " MESSAGE "Update main database"

@ 09,10 PROMPT "Exit to Main Menu" MESSAGE "Return to start point"

MENU TO action

DO CASE

 CASE action = 1 && User selected first prompt

MENU TO SECTION 2

The dBASE® Language Handbook 282 Back to CONTENTS

 DO maint

 CASE action = 2 && User selected second prompt

 DO query

 CASE action = 3 && User selected third prompt

 DO post

 CASE action = 0 .OR. action = 4 && Exit program on 0 (ESC) or 4

 RETURN

ENDCASE

LIMITS:
The number of PROMPTs cannot exceed 32; however, you can nest them to allow more selections.

VARIATIONS:
Clipper: The cursor bar stops at the top and bottom of menus by default; however, you can SET

WRAP ON to make it "wrap" between them. Also, pressing F1 from a MENU TO menu executes

a help procedure or program HELP and sends it three parameters: the calling program or procedure

name, the line number in the caller, and the MENU TO variable name. This lets you write context

sensitive help programs. Pressing F1 from an active GET...READ also calls HELP and sends the

same parameters.

FoxBASE+: The cursor bar always "wraps" between the top and bottom prompts.

SEE ALSO:
Commands @...GET, @...PROMPT,PARAMETERS, and SET MESSAGE.

MODIFY SECTION 2

The dBASE® Language Handbook 283 Back to CONTENTS

MODIFY

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
MODIFY LABEL <label form>

MODIFY QUERY <query file>

MODIFY REPORT <report form>

MODIFY SCREEN <screen file>

MODIFY STRUCTURE <filename>

MODIFY VIEW <view file>

DEFINITION:
Invokes interactive programs to change label forms, query files, report forms, screen files, database

files, and view files.

See the corresponding CREATE commands for more details.

SEE ALSO:
Commands CREATE and CREATE COMMAND/LABEL/QUERY/REPORT/ SCREEN/VIEW.

MODIFY COMMAND SECTION 2

The dBASE® Language Handbook 284 Back to CONTENTS

MODIFY COMMAND

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
MODIFY COMMAND/FILE <filename>

DEFINITION:
Calls up the full-screen program editor. If the file does not exist, MODIFY COMMAND creates

it. If it exists, MODIFY COMMAND displays it for editing.

If you do not specify an extension, MODIFY COMMAND assumes PRG (that is, a dBASE

command file).

MODIFY COMMAND uses WordStar-like Ctrl-key combinations and cursor keys to navigate

through and manipulate text. Ctrl-W or Ctrl-End exits and saves changes. ESC or Ctrl-Q exits

without saving changes. F1 toggles the help menu.

You may substitute a word processor or other text editor by modifying the CONFIG file. Add the

following line to the dBASE III PLUS or dBASE IV CONFIG.DB file, the FoxBASE+

CONFIG.FX file, or the dBXL CONFIG.XL file:

TEDIT=<external word processor>

For example, to use WordStar to edit programs, enter:

TEDIT=WS

Do not put quotation marks around the word processor's name. You can specify any word

processor or text editor that produces ASCII text files, as long as enough memory is available to

run it.

LIMITS/WARNINGS:
Note: You cannot edit memo fields with MODIFY COMMAND. Use the CHANGE or EDIT

commands, move the cursor to the memo field, and press Ctrl-PgUp to begin editing.

MODIFY COMMAND has an annoying 68 character word wrap feature that cannot be disabled.

VARIATIONS:
dBASE III PLUS: The largest file you can edit is 5K bytes, unless you specify an external word

processor. This restriction militates against using the internal text editor. You will get a warning

message if a file exceeds the limit, but only after the file is loaded and susceptible to damage.

MODIFY COMMAND SECTION 2

The dBASE® Language Handbook 285 Back to CONTENTS

dBASE IV: After editing a program, MODIFY COMMAND automatically erases its associated

object file (extension DBO). The next time you DO the edited program, dBASE IV creates a new

object file.

If you replace the MODIFY COMMAND editor with an external editor, you must then manually

delete related DBO files, or SET DEVELOPMENT ON. With SET DEVELOPMENT ON, the

next time you DO <program>, dBASE IV compares the dates of the PRG and DBO file. If the

PRG file is newer, dBASE will recompile it, producing a new DBO file. You can also SET

DEVELOPMENT in the CONFIG.DB file with the statement:

DEVELOPMENT = ON

MODIFY COMMAND files are limited to 32 megabytes, effectively removing all restrictions.

MODIFY COMMAND operates in the active window; however, you can specify an alternate

window with the syntax:

MODIFY COMMAND/FILE <filename> WINDOW <window name>

An error message appears if the window does not exist.

dBXL: CREATE COMMAND is the same as MODIFY COMMAND, except that it assumes you

are creating a new program. CREATE FILE is also similar, except that it does not assume a default

extension of PRG.

The MODIFY COMMAND editor offers menu prompting, plus access to disk and environment

information using the F1 key. It is also more reliable. It only loads a file if there is enough room

in memory to accommodate it safely. If a file is too big, an error message appears before it is

loaded. You can execute a program statement by putting the cursor on it and pressing Alt-E.

Control returns to the editor afterward.

FoxBASE+: MAXMEM in the CONFIG.FX file sets the maximum file size. Like dBASE III

PLUS, FoxBASE+ does not protect oversized files from inadvertent damage. An error message

appears stating that "data may be lost," but this does not prevent the damaged file from being saved

on disk. When you see the message, you must either continue, knowing that a portion of your

program may be lost, or abandon the file without saving it.

SEE ALSO:
Commands CHANGE/EDIT, COMPILE, CREATE, CREATE COMMAND, CREATE FILE,

RUN, and SET DEVELOPMENT.

MODIFY FILE SECTION 2

The dBASE® Language Handbook 286 Back to CONTENTS

MODIFY FILE

DIALECTS:
dBXL only.

SYNTAX:
MODIFY/CREATE FILE <filename>

DEFINITION:
Creates or changes ASCII text files. Same as MODIFY COMMAND.

SEE ALSO:
Command MODIFY COMMAND.

MODIFY GRAPH

DIALECTS:
dBXL only.

SYNTAX:
MODIFY/CREATE GRAPH <filename>

DEFINITION:
Starts an interactive program for defining pie charts, bar graphs, step graphs, line graphs, scatter

plots, and regression lines. Same as CREATE GRAPH.

SEE ALSO:
Command CREATE GRAPH.

MOVE WINDOW SECTION 2

The dBASE® Language Handbook 287 Back to CONTENTS

MOVE WINDOW

DIALECTS:
dBASE IV only.

SYNTAX:
MOVE WINDOW <window name> TO <row>,<col> /

 BY <relative row>,<relative col>

DEFINITION:
Moves a window to a new position.

You can move the specified window to exact coordinates with the TO <row>,<col> option. You

can move it relative to its position with the BY <row>,<col> option. For example, TO 01,01 moves

the window's top left corner to coordinate 01,01. BY 01,01 moves the window's top left corner

down one row and right one column.

If the window is active, MOVE WINDOW makes it seem to jump across the screen. If the window

is in memory, but not active, it appears in the new position the next time you ACTIVATE it.

The new coordinates remain associated with the specified window until you change them again,

or DEACTIVATE the WINDOW.

The BY option may use negative row and column numbers. Both the TO and BY <row>,<col>

ranges depend on the window's size. Windows may not extend beyond the screen boundary.

RECOMMENDED USE:
Use MOVE WINDOW to animate screen displays without DEACTIVATing and ACTIVATing

windows.

Example—The greeting message of an accounting program moves around the screen to catch the

user's attention.

DEFINE WINDOW greeting FROM 4,5 TO 10,60

ACTIVATE WINDOW greeting

@ 2,2 SAY "Welcome to Account Tracker"

ctr = 1

DO WHILE ctr <= 5

 MOVE WINDOW greeting BY ctr,1 && Each time CTR increases by 1, the

 ctr = ctr + 1 && window moves down one row

ENDDO

ctr = 1

DO WHILE ctr => -5

 MOVE WINDOW greeting BY ctr,1 && Each time CTR decreases by 1, the

 ctr = ctr - 1 && window moves up one row

MOVE WINDOW SECTION 2

The dBASE® Language Handbook 288 Back to CONTENTS

ENDDO

MOVE WINDOW greeting TO 5,5 && Finally, move window directly to 5,5

ACTIVATE SCREEN && Select the full screen

SEE ALSO:
Commands ACTIVATE SCREEN, ACTIVATE WINDOW, DEFINE WINDOW, RESTORE

WINDOW, and SAVE WINDOW.

NOTE/*/&& SECTION 2

The dBASE® Language Handbook 289 Back to CONTENTS

NOTE/*/&&

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
NOTE [<text>]

or

* [<text>]

or

[<statement>] && [<text>]

DEFINITION:
Lets you add program documentation or notes to programs.Any form will do at the beginning of a

line. You may use only && to put text after a statement; the program statement must come first.

RECOMMENDED USE:
Notes and documentation are invaluable for maintaining programs. With time, you will surely

forget what program segments and procedures do. Notes act as reminders, and let you track

changes.

Also, you can use asterisks to make programs more legible by using them to delineate sections.

Example—Part of a scrolling program that illustrates different ways to add notes. Use whichever

form seems most legible and sensible.

 * PAGE.PRG—A program for scrolling through records

 * in a name and address database file

 CLEAR

 USE NAMES && Contains membership information

 @ 10,10 SAY "NAME: "

 @ 11,10 SAY "ADDRESS: "

 *

 DO WHILE .T.

 @ 10,16 SAY NAME && Show full name

 @ 11,16 SAY ADDRESS

 action = " "

 @ 12,10 SAY "(F)wd (B)wd (R)eturn? (F/B/R) " GET action PICT "!"

 READ

 * <More statements>

NOTE/*/&& SECTION 2

The dBASE® Language Handbook 290 Back to CONTENTS

LIMITS/WARNINGS:
A semicolon at the end of a line continues the note onto the next line. Be careful—if you put a

valid command on the next line, dBASE ignores it. (The semicolon is the line continuation

character).

Notes can slow the execution of dBASE III PLUS and dBXL programs. Such slowing is negligible

unless you use extensive notes between commands, or within DO WHILE loops that parse them

repeatedly.

Clipper, dBASE IV, FoxBASE+, and Quicksilver strip program notes from their runtime modules.

VARIATIONS:
Clipper: The semicolon does not continue a note onto the next line.

dBXL/Quicksilver: *\ indicates a comment in Clipper, dBASE III PLUS, dBASE IV, and

FoxBASE+, but is a valid command in Quicksilver and dBXL. It lets programmers include

Quicksilver- and dBXL-specific commands in programs that will be run with other systems.

The Quicksilver compiler option -\ turns off the special handling of *\. Quicksilver then treats *\

as a comment. Add the statement COMMENT=ON to the dBXL configuration file (CONFIG.XL)

to turn off the special handling of *\. dBXL then treats *\ as a comment.

Quicksilver: The commands *QSOFF and *QSON let you compile and run applications that

contain unsupported commands. All text between *QSOFF and *QSON is ignored. For example:

 IF xquicks

 @ 10,10 SAY "Description " GET descrip

 @ 11,10 SAY "Serial number" GET serial

 READ

 ELSE

 *QSOFF

 BROWSE

 *QSON

 ENDIF

lets you include the BROWSE statement in a Quicksilver program. The other systems treat

*QSOFF and *QSON like program notes.

SEE ALSO:
Commands *, &&, and PUBLIC.

ON ERROR/ON ESCAPE/ON KEY SECTION 2

The dBASE® Language Handbook 291 Back to CONTENTS

ON ERROR/ON ESCAPE/ON KEY

DIALECTS:
Clipper (except ON KEY), dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ON ERROR [<command>]

ON ESCAPE [<command>]

ON KEY [<command>]

DEFINITION:
Execute a command on a condition. ERROR refers to DBMS errors, such as "Syntax error" or

"File Not Found." ON ERROR does not detect operating system or hardware errors. ESCAPE

refers to a press of the ESC key. KEY refers to a press of any key. ON's common use is to cause a

branch to another program or procedure using the DO command.

ON remains active until you specify another ON with the same condition. You can check which

ON statements are active with the DISPLAY STATUS command. To deactivate an ON command,

issue ON ERROR, ON ESCAPE, or ON KEY by itself. You can also disable ON ESCAPE with

SET ESCAPE OFF.

RECOMMENDED USE:
With ON KEY, a command that is executing when a key is pressed, such as COPY, LOCATE, or

SORT, will finish before the program stops.

When using ON KEY, be sure to clear the keyboard buffer with an INKEY() or a READ in the

program to which you branch. Failure to do so may cause ON KEY to repeat indefinitely when a

key is pressed. Some commands, such as ON KEY WAIT TO <memory variable>, clear the

keyboard buffer automatically. The WAIT TO clears the KEY and STOREs its value in the

specified memory variable.

When using ON ERROR, note that IFs and DO WHILEs are not re-evaluated upon return to the

erroneous program.

The three ON commands may be active simultaneously. ON ESCAPE takes precedence over ON

KEY. That is, pressing the ESCape key makes the computer execute its command. When ESCAPE

is SET OFF and ON KEY is active, the ESCape key acts like any other key and ON KEY will

detect it.

Example 1—An error condition can sometimes damage or destroy data. A programmer may prefer

to be notified when an error occurs, rather than have a user try to correct it. In this example, ON

ERROR executes a generic error-handling procedure that tells the user what has happened.

ON ERROR/ON ESCAPE/ON KEY SECTION 2

The dBASE® Language Handbook 292 Back to CONTENTS

 * MAIN.PRG

 CLEAR

 ON ERROR DO gen_err && GEN_ERR is a program that lets user

 && exit without damaging data files

 USE lmain && Try to use a file that does not exist

 @ 10,10 SAY "************ AGED RECEIVABLES ************"

 @ 11,10 SAY "* *"

 ** <more statements>

 * GEN_ERR.PRG

 CLEAR

 ON ERROR && Disable succeeding ON ERRORs to avoid repeating GEN_ERR

 @ 10,10 SAY "The program has run into a little trouble."

 @ 11,10 SAY "Please notify the programmer that an error exists."

 @ 12,10 SAY "Exiting now until the problem can be determined."

 CLEAR ALL

 CANCEL

Example 2—Programmers often use ESCape as a convenient way to exit a menu. ON ESCAPE

lets the programmer execute a command with the ESCape key, without SETting ESCAPE OFF.

In this example, ESC stores "R" in the variable ACTION, and returns control to the main menu.

 * MAINMENU.PRG

 * The ESC key stores the character "R" in memory variable ACTION

 CLEAR

 ON ESCAPE action = "R"

 action = " "

 @ 1,1 SAY "<N>ew record"

 @ 2,1 SAY "<E>dit record"

 @ 3,1 SAY "<R>eturn to main menu"

 @ 5,1 SAY "Your Choice (N/E/R)? " GET action pict "!"

 READ

 * When memory variable ACTION equals "R", the program executes RETURN

 DO CASE

 CASE action = "N"

 DO newrec

 CASE action = "E"

 DO edrec

 CASE action = "R"

 RETURN

 ENDCASE

Example 3—ON KEY is useful for interrupting an automated process such as a print job. It lets

the user pause the job to adjust paper, load labels, etc. In this example, the program lists records

on the printer. When the user presses a key, procedure PAUSE pauses the program and prompts

for a response of (R)esume or (Q)uit. If you select "R", the listing resumes with the next record.

ON ERROR/ON ESCAPE/ON KEY SECTION 2

The dBASE® Language Handbook 293 Back to CONTENTS

* LISTREC.PRG

* Show a list of records, or jump to a particular record under program

control

* Processing is interrupted when a key is pressed. This is commonly used

* to interrupt print routines

SET TALK on

SET PROCEDURE TO mainproc

USE prospects

ON KEY DO pause && When a key is pressed, do procedure PAUSE

SET PRINT on

DO WHILE .NOT. eof()

 ? lastname && Display last name

 SKIP && Move ahead one record

ENDDO

ON KEY && Clear ON KEY after use

SET PRINT off

* MAINPROC.PRG

PROCEDURE pause

SET PRINT off

CLEAR

* Clear the keypress so procedure JUMP does not repeat

? INKEY()

response = " "

DO WHILE .not. response$"RQ"

 @ 10,10 SAY "(R)esume or (Q)uit" GET response PICTURE "!"

 READ

ENDDO

IF response = "R"

 SET PRINT on

 RETURN

ELSE

 CLEAR ALL

 CANCEL

ENDIF

VARIATIONS:
Unfortunately, no two implementations of ON KEY are alike.

Clipper: ON KEY not available.

dBASE IV: ON KEY can detect specific keystrokes with the syntax

ON KEY LABEL <key>

where <key> is a specific key.

ON KEY lets you redefine many keys simultaneously. Use the following key labels:

ON ERROR/ON ESCAPE/ON KEY SECTION 2

The dBASE® Language Handbook 294 Back to CONTENTS

F1 - F10

CTRL-F1 - CTRL-F10

ALT-F1 - ALT-F10

ALT-A - ALT-Z

CTRL-A - CTRL-Z

LEFTARROW

DNARROW

UPARROW

RIGHTARROW

HOME

END

PGDN

PGUP

DEL

BACKSPACE

TAB

BACKTAB

CTRL-LEFTARROW

CTRL-RIGHTARROW

CTRL-HOME

CTRL-END

CTRL-PGUP

CTRL-PGDN

You can specify other keys with their labels. Labels are not case sensitive. Do not use quotation

marks. Typical examples are:

ON KEY LABEL CTRL-A CLEAR

ON KEY LABEL DNARROW SKIP

ON KEY LABEL X DO BACKUP

dBXL: ON KEY can detect a specific keystroke. The syntax is:

 ON KEY <key> <command>

where <key> is a specific key. Specify function keys with the letter F and the key number (e.g.,

F9). Do not put quotation marks around function key labels. Specify control keys with the caret

symbol (^) and the key letter (e.g., ON KEY ^C DO BACKUP). Do not use quotation marks. You

can also specify key values as two-byte hardware-specific scan codes. The dBXL manual indicates

that you can specify other keys as literal strings, such as "X" or "Y". This does not work.

FoxBASE+: A variation of ON KEY lets you specify a particular key:

ON KEY = <expN> <command>

<expN> is either:

1. the ASCII value of a printable character, or

2. the IBM PC-specific scan code assigned to the control key plus 256.

NOTE: Unlike the other systems, FoxBASE+ does not save the keystroke that activates ON KEY

in the keyboard buffer; therefore, it is unnecessary to clear the buffer with INKEY() or READ.

Quicksilver: You may specify a particular key to activate ON KEY as follows:

ON KEY ["<key>"] [<command>]

"<key>" is a string constant containing the key's letter or number. Specify function keys with F

and the key number without quotation marks, for example, ON KEY F2. Specify control key

sequences with the caret symbol (^) and a letter or number (e.g., ON KEY "^C" DO BACKUP)

ON ERROR/ON ESCAPE/ON KEY SECTION 2

The dBASE® Language Handbook 295 Back to CONTENTS

with quotation marks. Note: ON KEY assignments are case sensitive. Quicksilver and dBXL differ

on this command.

SEE ALSO:
Command SET KEY; function INKEY().

ON EVENT SECTION 2

The dBASE® Language Handbook 296 Back to CONTENTS

ON EVENT

DIALECTS:
Quicksilver only.

SYNTAX:
ON EVENT [<command>]

DEFINITION:
Executes a command on the condition specified in SET EVENT. ON EVENT checks continuously

for the condition while the application is doing other operations.

<command> is any valid Quicksilver command.

ON EVENT with no <command> argument turns ON EVENT off.

RECOMMENDED USE:
Use ON EVENT and SET EVENT to monitor the clock, keyboard, serial ports, and other system

devices. You can also use it to simply monitor conditions within your application, such as EOF()

or LASTNAME = "Smith."

Example—A scheduling application uses ON EVENT to remind users of important appointments.

By monitoring the system clock, the application can display a message and ring the bell at a

specific time of day.

* APPT.PRG--Appointment scheduler

WSET WINDOW evnt TO 1,1,20,60 DOUBLE

SET EVENT TO TIME()="15:30:00" && 3:30 p.m.

ON EVENT DO reminder

* <Statements>

* End of program

* REMINDER.PRG

oldselect = WSELECT() && Save old window area

WSELECT 98 && Select any unused window area

WUSE evnt

?? + CHR(7) + CHR(7) + CHR(7) + CHR(7)

@ 10,05 SAY "Don't forget your appointment at: " + TIME()

@ 11,05 SAY "Press a key to continue"

WAIT ""

WCLOSE

WSELECT oldselect && Restore previous window area

RETURN

ON EVENT SECTION 2

The dBASE® Language Handbook 297 Back to CONTENTS

With ON EVENT and SET EVENT, you can use binary programs (extension BIN) to monitor

system devices, such as a modem. For example, WordTech provides two programs

CHECKCOM.BIN and GETCOM.BIN. CHECKCOM monitors serial port COM1 for input.

When it detects an incoming character, GETCOM captures it and saves it in the file

XMODEM.RCV. Use these commands as follows:

LOAD GETCOM

SET EVENT TO FILE CHECKCOM

ON EVENT CALL GETCOM

See SET EVENT for another example.

LIMITS/WARNINGS:
Writing binary programs for use with ON EVENT and SET EVENT requires advanced

programming skills.

Quicksilver continuously executes SET EVENT between other commands and during wait states.

To avoid noticeable slowing of your application, make your logical expressions and binary

programs as short and efficient as possible.

SEE ALSO:
Commands LOAD and SET EVENT.

ON PAD SECTION 2

The dBASE® Language Handbook 298 Back to CONTENTS

ON PAD

DIALECTS:
dBASE IV only.

SYNTAX:
ON PAD <pad name> OF <menu name> [ACTIVATE POPUP <popup name>]

DEFINITION:
Activates a POPUP when you move the cursor bar to the specified menu PAD. The PAD is from

an active menu created with the DEFINE MENU command.

When a popup appears, you can use the up and down arrow keys to move among its BARs. You

can then select a BAR by pressing Enter.

ON PAD without the ACTIVATE POPUP option disables the specified PAD.

RECOMMENDED USE:
Use ON PAD to associate a popup menu with a bar menu's selection. As the user moves the cursor

from pad to pad, the associated popups appear.

Example—An inventory program uses a bar menu with the prompts "Inventory," "Operator," and

"Exit." The ON PAD command associates POPUP INVENT with the "Inventory" selection and

POPUP OPERATOR with the "Operator" selection.

CLEAR

SET SCOREBOARD OFF && Disable line 0 status messages

DEFINE MENU master

DEFINE PAD sel1 OF master PROMPT "Inventory"

DEFINE PAD sel2 OF master PROMPT "Operator"

DEFINE PAD sel3 OF master PROMPT "Exit"

DEFINE POPUP invent FROM 02,01 TO 10,20

DEFINE BAR 1 OF invent PROMPT "Add new items"

DEFINE BAR 2 OF invent PROMPT "Edit items"

DEFINE BAR 3 OF invent PROMPT "Reports"

DEFINE POPUP operator FROM 02,22 TO 10,42

DEFINE BAR 1 OF operator PROMPT "Add new operator"

DEFINE BAR 2 OF operator PROMPT "Delete operator"

DEFINE BAR 3 OF operator PROMPT "Usage Reports"

ON PAD sel1 OF MASTER ACTIVATE POPUP invent

ON PAD sel2 OF MASTER ACTIVATE POPUP operator

ON SELECTION PAD sel3 OF MASTER RETURN

ACTIVATE MENU master

This program produces the following menu:

ON PAD SECTION 2

The dBASE® Language Handbook 299 Back to CONTENTS

LIMITS/WARNINGS:
Do not confuse ON PAD with ON SELECTION PAD. ON SELECTION PAD requires you to

press Enter to make a PAD selection, whereas ON PAD requires only that you move the cursor to

a PAD.

A PAD can have only one ON PAD or ON SELECTION PAD command.

SEE ALSO:
Commands DEFINE BAR, DEFINE MENU, DEFINE PAD, DEFINE POPUP, ON SELECTION

PAD, and SET SCOREBOARD.

ON PAGE SECTION 2

The dBASE® Language Handbook 300 Back to CONTENTS

ON PAGE

DIALECTS:
dBASE IV only.

SYNTAX:
ON PAGE [AT LINE <expN> <command>]

DEFINITION:
Executes a command when a PRINTJOB reaches the specified line number. It is typically used to

print report headers and footers.

ON PAGE monitors the system memory variable _plineno. When it determines that _plineno has

reached <expN>, it executes the <command>.

ON PAGE with no argument disables the previous setting.

ON PAGE works only within an active PRINTJOB...ENDPRINT.

RECOMMENDED USE:
Use ON PAGE to execute header and footer procedures that print titles, page numbers, dates, and

other data.

Example—An application managing a database of accredited universities uses PRINTJOB and

ON PAGE to control output. Search results print on 40-line custom forms, with page footers.

 mregion = "NORTHEAST" && User enters region to search

 _peject = "NONE" && Disable page ejects

 _plength = 40 && Set page length to 40 lines

 _pageno=1 && Set page number to 1

 USE colleges

 ON PAGE AT LINE 37 DO footer && When at line 37, DO FOOTER procedure

 SET PRINT on

 PRINTJOB && Begin printjob

 DO WHILE .NOT. EOF()

 ? school,city,state,specialty

 SKIP

 ENDDO

 ENDPRINT

 SET PRINT off

 PROCEDURE footer

 ?

 ? _pageno PICTURE [999] AT 05, "Region Search: "+mregion " AT 30

 ?

ON PAGE SECTION 2

The dBASE® Language Handbook 301 Back to CONTENTS

 ?

RETURN

SPECIAL USE:
You can also use ON PAGE with LIST and DISPLAY.

REPORT FORMs do not require ON PAGE, since they have "built-in" headers and footers.

LIMITS/WARNINGS:
Be sure to avoid running your footers over the page break. For example, if page length is 50

(_plength=50), and you specify ON PAGE AT LINE 48 DO footer, the footer should not have

more than two lines. The third line will print on the next page.

SEE ALSO:
Commands ?/??, LIST, PRINTJOB, PROCEDURE, REPORT FORM, SET PRINT, and SET

PRINTER.

ON READERROR SECTION 2

The dBASE® Language Handbook 302 Back to CONTENTS

ON READERROR

DIALECTS:
dBASE IV only.

SYNTAX:
ON READERROR [<command>]

DEFINITION:
Executes a command when the user enters invalid data in an input field. Such data includes invalid

dates and RANGEs, and unsatisfied VALID clauses of the @...SAY...GET command.

ON READERROR alone resets error handling to the default messages. ON READERROR

overrides the @...SAY...GET ERROR clause.

RECOMMENDED USE:
Use ON READERROR to execute custom error handling routines for data entry screens. Use it as

an alternative to the @...SAY...GET ERROR clause when you want to execute several statements

in response to an error.

Also, ON READERROR does not force the user to press the space bar to recover from unsatisfied

VALID, invalid RANGE, and invalid DATE errors. The user can reenter continuously until the

input criteria are satisfied.

Example—An inventory system data entry screen uses ON READERROR to DO an error-

handling procedure. The VARREAD() function tells the procedure which memory variable is

active.

CLEAR

SET TALK OFF

ON READERROR DO rerror

qty = 0

desc = SPACE(20)

@ 10,10 SAY "Enter quantity: " GET qty RANGE 0,9

@ 11,10 SAY "Enter description: " GET desc VALID LEN(TRIM(desc))>0

* <More GETs>

READ

* <More statements>

PROCEDURE rerror

mvar = VARREAD() && VARREAD() returns the name of the active

* && memory variable

DO CASE

 CASE mvar = "QTY"

 ?? CHR(7) && Ring the bell

ON READERROR SECTION 2

The dBASE® Language Handbook 303 Back to CONTENTS

 SET COLOR TO R* && Change color of message

 msg = "If there are more than 9 items to enter, go to Menu 1A."

 CASE mvar = "DESC"

 SET COLOR TO B+ && Change color of message

 msg = "Please don't leave the description blank!"

 * <More cases>

 *

ENDCASE

@ 23,00

@ 23,01 SAY msg

SET COLOR TO

RETURN

SEE ALSO:
Commands @...SAY and READ; function VARREAD().

ON SELECTION PAD SECTION 2

The dBASE® Language Handbook 304 Back to CONTENTS

ON SELECTION PAD

DIALECTS:
dBASE IV only.

SYNTAX:
ON SELECTION PAD <pad name> OF <menu name> [<command>]

DEFINITION:
Executes a command when the user presses Enter to make a pad menu selection.

You create pad menus with the DEFINE MENU command. You define PADs with DEFINE PAD.

ON SELECTION PAD <pad name> OF <menu name> without a command deactivates the

specified PAD.

RECOMMENDED USE:
When you make a menu selection, program control branches to the <command> you specify

(usually DO procedure or DO program). When the procedure, program, or command finishes,

control returns to the menu. In this respect, the pad menu has a built-in DO WHILE and DO CASE

mechanism.

Example—An inventory program uses a pad menu to do control procedures. When the user moves

the cursor and makes a selection by pressing Enter, the ON SELECTION PAD commands execute

the appropriate command or procedure.

SET SCOREBOARD OFF

CLEAR

USE parts && Has two fields, PART (character), and QTY (numeric)

DEFINE MENU mparts

DEFINE PAD sel1 OF mparts PROMPT "Stock numbers for refill" AT 0,0

DEFINE PAD sel2 OF mparts PROMPT "Overstock" AT 0,30

DEFINE PAD sel3 OF mparts PROMPT "Exit" AT 0,50

ON SELECTION PAD sel1 OF mparts DO rquery

ON SELECTION PAD sel2 OF mparts DO oquery

ON SELECTION PAD sel3 OF mparts DEACTIVATE MENU

ACTIVATE MENU mparts

USE

PROCEDURE rquery && Sample query program

DISPLAY part,qty FOR qty < 5 WAIT

CLEAR

RETURN

PROCEDURE oquery && Sample query program

DISPLAY part,qty FOR qty > 100

ON SELECTION PAD SECTION 2

The dBASE® Language Handbook 305 Back to CONTENTS

WAIT

CLEAR

RETURN

When you have several menus, use the functions MENU() and PAD() to determine which one

selected a procedure. See MENU() and PAD() for more information.

LIMITS/WARNINGS:
Don't confuse ON SELECTION PAD with ON PAD. ON PAD executes a command as soon as

the cursor touches the specified PAD. With ON SELECTION PAD, the user must press Enter. ON

PAD is typically used to display popup menus as the user moves the cursor.

SEE ALSO:
Commands DEFINE MENU, DEFINE PAD, ON PAD, and PROCEDURE; functions MENU(),

PAD(), and PROMPT().

ON SELECTION POPUP SECTION 2

The dBASE® Language Handbook 306 Back to CONTENTS

ON SELECTION POPUP

DIALECTS:
dBASE IV only.

SYNTAX:
ON SELECTION POPUP <popup name> /ALL [<command>]

DEFINITION:
Executes a command when a user presses Enter to make a POPUP menu selection. ON

SELECTION POPUP executes the command when the user presses any selection. The command

is typically a procedure or subroutine. The subroutine must determine which BAR the user selected

with the BAR() function.

RECOMMENDED USE:
Use ON SELECTION POPUP after you DEFINE POPUP and before you ACTIVATE POPUP.

Use BAR() to get the user's menu selection. You can then execute a CASE or use the result as the

argument of another function.

Example 1—An educational program uses popup menus. When the user makes a selection, the

program uses the bar number to execute the appropriate CASE. Each CASE executes a subroutine.

DEFINE POPUP educ FROM 03,05 TO 15,30

DEFINE BAR 1 OF educ PROMPT "Display students"

DEFINE BAR 2 OF educ PROMPT "Change student data"

DEFINE BAR 3 OF educ PROMPT "Delete Students"

ON SELECTION POPUP educ DO pcase && Execute PROCEDURE pcase

ACTIVATE POPUP educ

PROCEDURE pcase

pbar = BAR() && Store BAR() in a variable

DO CASE

 CASE pbar = 1

 * <do display program>

 CASE pbar = 2

 * <do change program>

 CASE pbar = 3

 * <delete students>

ENDCASE

If you have multiple POPUPS, use the POPUP() function to identify the active one.

Example 2—An auto parts inventory program has a procedure containing a CASE structure that

is called by two different POPUPs. To identify the calling POPUP, the procedure uses the

POPUP() function.

ON SELECTION POPUP SECTION 2

The dBASE® Language Handbook 307 Back to CONTENTS

DEFINE POPUP autos FROM 01,01 TO 10,30

DEFINE BAR 1 OF autos PROMPT "Search for pistons"

DEFINE BAR 2 OF autos PROMPT "Search for brakes"

DEFINE BAR 3 OF autos PROMPT "Transmissions parts"

ON SELECTION POPUP autos DO acase

ACTIVATE POPUP autos

DEFINE POPUP amaint FROM 11,01 TO 20,30

* <Define more bar statements>

PROCEDURE acase

mbar = BAR()

popcall = POPUP() && Get name of calling popup

DO CASE

 CASE mbar = 1 .AND. popcall = "AUTOS"

 * <Search for pistons>

 CASE mbar = 2 .AND. popcall = "AUTOS"

 * <Search for brakes>

 CASE mbar = 3 .AND. popcall = "AUTOS"

 * <Transmission parts>

 CASE mbar = 1 .AND. popcall = "AMAINT"

 *

 CASE mbar = 2 .AND. popcall = "AMAINT"

ENDCASE

SEE ALSO:
Commands ACTIVATE POPUP, DEFINE BAR, DEFINE POPUP, and ON SELECTION PAD;

functions MENU(), PAD(), and PROMPT().

OTHERWISE SECTION 2

The dBASE® Language Handbook 308 Back to CONTENTS

OTHERWISE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
OTHERWISE

DEFINITION:
Indicates an alternative action in a CASE structure when no CASE applies.

VARIATIONS:
Clipper: The ELSE statement in an IF...ELSEIF...ENDIF structure is equivalent to OTHERWISE.

SEE ALSO:
Commands DO CASE and ELSE.

OUT SECTION 2

The dBASE® Language Handbook 309 Back to CONTENTS

OUT

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
OUT <port#, expN>

DESCRIPTION:

Sends a single numeric value to a specified output port (device) such as the speaker. OUT lets

advanced programmers control hardware features not otherwise accessible in the dBASE

language.

All values must be decimal, not hexadecimal, octal, or binary.

RECOMMENDED USE:
OUT is for advanced programmers who need access to functions dBASE does not support.

Possible applications include telephone dialers, graphics displays, and sound generation.

Example—Routine for generating tones as signals or prompts. This is an alternative to using

CHR(7) to produce a beep.

* ENDTONE.PRG

* Generates tones as signals or prompts

SET TALK OFF

CLEAR

* Save original speaker status using IN() function

ostat = IN(97)

snum = 5

DO WHILE snum > 0

 * Designate speaker frequency in decimal

 OUT 66,151 && Speaker controller is port 66

 OUT 66,snum

 newstat = (INT(IN(97)/4)) * 4 + 3

 OUT 97,newstat && System speaker is port 97

 snum = snum - 1

ENDDO

OUT 97,ostat

WARNINGS/LIMITS:
Port numbers vary with computer makes, models, and configurations. See the DOS Technical

Reference and your computer's technical reference manual for the numbers and valid expressions.

IBM PC and PS/2 assignments are in Norton, P. and R. Wilton, Programmer's Guide to the IBM

PC and PS/2, (Microsoft Press, Redmond, WA, 1989).

OUT SECTION 2

The dBASE® Language Handbook 310 Back to CONTENTS

SEE ALSO:
Command DOSINT; functions IN() and TONE().

PACK SECTION 2

The dBASE® Language Handbook 311 Back to CONTENTS

PACK

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
PACK

DEFINITION:
Purges deleted records from the active database file.

The records may no longer be RECALLed. PACK automatically rebuilds all open index files.

When the PACK is completed, the pointer moves to the first record in the file or in the index.

RECOMMENDED USE:
Although you may hide deleted records with SET DELETED ON, file sizes increase and

processing speed degrades as their number increases.

PACK removes them from the file permanently and reclaims used disk space.

Example —A simple name and address application contains two deleted records, 3 and 4 (marked

by asterisks). PACK removes them from the active database file, and automatically rebuilds the

open index file NAMEDEX.

 . USE names INDEX namedex

 . LIST

 Record# NAME ADDRESS

 2 Adams, Rollie 3333 Normal Street

 4 *Josephs, Robert 456 Edwards

 1 Ralphson, Ralph 222 Main Street

 5 Stanley, Stan 5 Old Mill

 3 *Zoohaus, Bernard 333 South Adams

 . PACK

 3 records copied

 Rebuilding index - C:name.ndx

 100% indexed 3 Records indexed

SEE ALSO:
Commands DELETE, RECALL, and ZAP.

PARAMETERS SECTION 2

The dBASE® Language Handbook 312 Back to CONTENTS

PARAMETERS

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
PARAMETERS <parameter list>

DEFINITION:
A parameter is a data item sent by a calling program to a subprogram. PARAMETERS is the

subprogram command that receives the items and gives them local variable names. The calling

program passes the parameters with the command

DO <program or procedure> WITH <expression list>

The list may include any valid expressions separated by commas. You can pass constants, fields,

memory variables, or the result of any function or operation.

In programs, PARAMETERS must be the first executable command. In procedures, it must be the

first executable command after the PROCEDURE statement.

Changing the value of a passed memory variable in the subprogram (except in a user defined

function) changes the value in the calling program. We refer to this as call by reference.

In contrast, when you use a fieldname in an expression list, changing its value in the subprogram

does not change its value in the database. We refer to this as call by value. You must use the

REPLACE command to update the database field.

Clipper, dBASE IV, dBXL, FoxBASE+, and Quicksilver allow parameter passing to user defined

functions using the syntax:

? FUNCTION(parameter1,parameter2,...)

By default, memory variable parameters are passed to user defined functions by value, instead of

by reference. See Variations for exceptions.

The number of parameters sent and received must agree.

RECOMMENDED USE:
Use parameter passing to transfer data to a subroutine. The PARAMETERS statement clarifies

which data items a subroutine needs. Parameter passing is useful in writing modular applications.

It lets you write and test subprograms separately, then pass data to them in a structured way.

PARAMETERS SECTION 2

The dBASE® Language Handbook 313 Back to CONTENTS

Example 1—A calling program passes data to a search subprogram. MAINFIND.PRG requests a

file name and a last name to search. It passes the user's response to SUBFIND.PRG which opens

the specified file and does a SEEK. If the name is found, MAINFIND DISPLAYs the record.

* MAINFIND.PRG

CLEAR

ACCEPT "Enter file name: " TO mfile && Request a file name

ACCEPT "Last name to search: " TO msearch && Request name to search

DO subseek WITH mfile,msearch

* SUBSEEK.PRG Accept data from MAINFIND and store it in local variables

PARAMETERS rfile,rsearch

* Assume the DBF and INDEX files have the same name. Use the

* macro function to use the file name within the memory variable

USE &rfile INDEX &rfile

SEEK rsearch && Do a rapid search for the last name

IF FOUND()

 DISPLAY lname,fname,company,ssn

ELSE

 ? "Name not found. Press SPACE BAR to continue"

 WAIT ""

ENDIF

Example 2—User defined functions pass data as function arguments that are received in

PARAMETERS. A box drawing function accepts five parameters (two screen coordinate pairs,

and a single character, "S" or "D", for single or double lines).

 BOX(1,2,20,30,"D")

 FUNCTION BOX

 PARAMETERS r1,c1,r2,c2,char

 PRIVATE mchar

 mchar = (char="D")

 IF mchar && If MCHAR is true, make DOUBLE lines

 @ r1,c1 TO r2,c2 DOUBLE

 ELSE

 @ r1,c1 TO r2,c2

 ENDIF

 RETURN ""

LIMITS/WARNINGS:
If you intend to change a passed memory variable in a procedure and don't want the original to

change, save it under another name.

VARIATIONS:
Clipper: Agreement in the numbers of parameters sent and received is not required. The

PCOUNT() function indicates how many parameters were passed. You may also specify character

PARAMETERS SECTION 2

The dBASE® Language Handbook 314 Back to CONTENTS

parameters on the DOS command line. Strings or character expressions (strings in quotation

marks) must be separated by spaces, in the form

C> <program name> p1 p2 p3

For example, to run a program called INVENTRY with parameters for PARTNAME and

PARTNO, issue the command

C> INVENTRY screwdriver 1243

Clipper lets you pass a parameter to a function by reference by preceding its name with @, as in

FUNCTION(@memvar). By default, Clipper passes array elements to UDFs by reference.

For example, a user defined function CONVERT() converts U.S. dollars to Canadian dollars. The

numeric variable AMOUNT is passed by reference. As a result, changing the receiving parameter

FAMOUNT changes AMOUNT.

 amount = 4562.22

 ? CONVERT(@amount)

 ? amount && Result is 5292.18

 FUNCTION convert

 PARAMETERS famount

 famount = famount * 1.16

 RETURN famount

dBASE III PLUS: User defined functions not available.

Quicksilver: The compiler reserves 6K bytes of memory for command line parameters, limiting

their number to approximately 42. Note that Quicksilver uses Environmental Variables to handle

command line arguments.

SEE ALSO:
Commands DO, FUNCTION, PROCEDURE, and RETURN; function PCOUNT().

PLAY MACRO SECTION 2

The dBASE® Language Handbook 315 Back to CONTENTS

PLAY MACRO

DIALECTS:
dBASE IV only.

SYNTAX:
PLAY MACRO <macro name>

DEFINITION:
Replays a macro, a series of recorded keystrokes.

Macros recorded in the current work session remain in memory until you QUIT. You can save

them with SAVE MACROS, then later RESTORE MACROS.

RECOMMENDED USE:
You can record keystrokes entered in the interactive mode. Later, you can replay them (the macro)

to automate repetitive operations. You begin recording, end recording, and playback with the

macro menu, accessed by pressing SHIFT-F10. You can also replay macros by typing a macro key

(an Alt-function key combination followed by a letter), or by using the command PLAY MACRO.

Use PLAY MACRO when executing a macro from a dBASE program.

Example—While generating reports from the dot prompt, Arthur records the keystrokes in a

macro. He later wants to use a dBASE program to replay the keystrokes, so he saves them in a

macro file.

* <Begin recording from SHIFT-F10 menu>

. CLEAR

. CLEAR ALL

. USE grades INDEX student,class

. LIST ALL grades FOR grades ="A" .AND. class = "6" TO PRINT

. USE

. CLEAR

* <End recording and give macro the name GRADERPT>

. SAVE MACROS TO macpupil

. QUIT

The program later RESTOREs the MACRO file, then issues PLAY MACRO to repeat the earlier

procedure.

* RPT.PRG

RESTORE MACROS FROM macpupil

PLAY MACRO graderpt

* <More program statements>

PLAY MACRO SECTION 2

The dBASE® Language Handbook 316 Back to CONTENTS

LIMITS/WARNINGS:
Macro files can contain up to 35 macros.

RESTORE MACROS erases macros in memory with the same names as ones in the macro file.

Do not use the extension MAC for macro files, since it conflicts with the extension used by dBASE

IV's applications generator.

PLAY MACRO, RESTORE MACROS, and SAVE MACROS have nothing to do with the macro

function (&).

SEE ALSO:
Commands RESTORE MACROS and SAVE MACROS.

PRINTJOB...ENDPRINTJOB SECTION 2

The dBASE® Language Handbook 317 Back to CONTENTS

PRINTJOB...ENDPRINTJOB

DIALECTS:
dBASE IV only.

SYNTAX:
PRINTJOB

 <statements>

ENDPRINTJOB

DEFINITION:
Identifies a program section as a report, invoking the print controls set in the system memory

variables. PRINTJOB also enables ON PAGE, the command that defines report headers and

footers.

PRINTJOB...ENDPRINT is valid only in programs.

PRINTJOB does the following:

• Sends the printer control codes defined in the _pscode (printstart) system variable.

• Checks _peject. If it contains "BEFORE" or "BOTH", dBASE IV sends a page eject.

• Resets _pcolno, the print head column counter, to 0.

• Activates _plineno, the line number counter.

• Activates ON PAGE. ON PAGE monitors the line count, executing a command when it

reaches the number defined by the programmer.

ENDPRINTJOB does the following:

• Sends the print codes defined in the _pecode (print end) system memory variable.

• Checks _peject again. If it contains "AFTER" or "BOTH", dBASE IV sends a page eject.

• Checks _pcopies (number of copies to print). If it is greater than 1, the PRINTJOB repeats

until all copies are printed.

• Resets _plineno and deactivates ON PAGE.

RECOMMENDED USE:
Use PRINTJOB...ENDPRINTJOB to print list-oriented reports. Otherwise, they are difficult to

format since they print in a stream and page breaks are not explicit. Commands such as ?/?? and

LIST produce list-oriented reports.

Example 1—A library management system uses PRINTJOB to control output. Book search results

print on 12-line custom forms, with page footers.

msubject = "SCIENCE" && User enters subject to search

_peject = "AFTER" && Issue eject after printing

PRINTJOB...ENDPRINTJOB SECTION 2

The dBASE® Language Handbook 318 Back to CONTENTS

_plength = 12 && Set page length to 12 lines

SET HEADING off && Omit field headings in LIST command

 _pageno=1 && Set page number to 1

ON PAGE AT LINE 09 DO footer && When at line 09, DO FOOTER procedure

PRINTJOB && Begin printjob

 LIST ALL title,author FOR subject=msubject

ENDPRINTJOB

PROCEDURE footer

?

? _pageno PICTURE [999] AT 01, "Library Search: "+msubject" AT 40

?

?

RETURN

SPECIAL USE:
PRINTJOB is not necessary when using REPORT FORM, as it is built into the command.

LIMITS/WARNINGS:
You cannot nest PRINTJOBs.

For more precise control over reports, avoid the EJECT command. EJECT depends on the printer's

page length setting, not the report's line count. Instead, keep tight control over line count and do

page breaks with the ? command. For example, if you have 50-line reports, and 60-line paper, feed

the printer ten lines for a page break instead of an EJECT.

SEE ALSO:
Commands ?/??, LIST, ON PAGE, REPORT FORM, SET PRINT, and SET PRINTER.

PRIVATE SECTION 2

The dBASE® Language Handbook 319 Back to CONTENTS

PRIVATE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
PRIVATE <memory variable list>/[ALL [LIKE/EXCEPT <pattern>]]

DEFINITION:
Lets you create memory variables in a subprogram with the same names as PUBLIC variables or

ones declared in the calling program. PRIVATE does not create the specified memory variables.

After declaring variables PRIVATE, you must still initialize them with STORE or =.

PRIVATE hides the previous variables until the subprogram terminates. Then, PRIVATE

variables are released automatically, leaving previous ones with the same names intact.

LISTing MEMORY from within a program displays both PUBLIC and PRIVATE variables. When

they have the same names, the PUBLIC ones are listed as "Hidden," and the PRIVATE ones show

the name of the program that created them.

OPTIONS:
You can declare variables PRIVATE in groups, using ALL LIKE <pattern> and ALL EXCEPT

<pattern>, where <pattern> is a string using asterisks and question marks as "wildcards."

RECOMMENDED USE:
PRIVATE is particularly useful for building programs from subroutines. You do not have to worry

about conflicting variable names.

Example 1—Often, programmers build libraries of subroutines to use in many applications. To

write subroutines that will not conflict with other applications, the programmer declares memory

variables PRIVATE. In this example, program MAINACCT calls program NEW_RPT, a

subroutine that prints data in columnar format. NEW_RPT uses PRIVATE variables to avoid

conflict with its caller.

* MAINACCT.PRG

PUBLIC bold_on,bold_off && Declare printer setup codes in main app

* Store printer control codes in memory variables

bold_on = chr(27) + chr(69) && Epson FX-80 setup codes

bold_off = chr(27) + chr(70)

** <more statements>

DO new_rpt && Execute subroutine NEW_RPT

* BOLD_ON and BOLD_OFF return to original PUBLIC value

* <more statements>

PRIVATE SECTION 2

The dBASE® Language Handbook 320 Back to CONTENTS

* NEW_RPT.PRG

PRIVATE bold_on,bold_off

bold_on = CHR(27) + CHR(77) && Change codes for a different type style

bold_off = CHR(27) + CHR(80)

** <print a report>

RETURN && Return to MAINACCT.PRG

SPECIAL USE:
Always declare variables in user defined functions PRIVATE. This prevents name conflicts with

existing variables.

VARIATIONS:
Clipper: The memory variable list may also contain arrays. Declaring a PRIVATE array creates

it with the specified number of elements. All elements are initially false. The following statement

creates two memory variables and an array with nine elements:

PRIVATE mdate, muser, rptarray[9]

SEE ALSO:
Commands DO and PUBLIC.

PROCEDURE SECTION 2

The dBASE® Language Handbook 321 Back to CONTENTS

PROCEDURE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
PROCEDURE <procedure name>

DEFINITION:
Marks the beginning of a program within a procedure file. A procedure file consists of a program,

or collection of programs, in a single file. It is loaded into memory using the command SET

PROCEDURE TO.

Procedures are executed like any program using the command DO <program name>. If a procedure

file containing the designated program is active, it will be executed. Procedures take precedence

over programs. If one has the same name as a program, it is executed and the program is ignored.

RECOMMENDED USE:
Using PROCEDUREs improves program performance and allows larger applications. Because the

procedures, or information about them, are pre-loaded into memory, they are executed

instantaneously. Otherwise, issuing the DO <program name> command causes dBASE III PLUS,

dBASE IV, dBXL, or FoxBASE+ to search the disk for the designated program. It then loads from

disk and executes, all with slight delays. You will notice longer delays in large applications with

many disk files.

Also, PROCEDUREs allow more open files. A procedure file containing many programs counts

as only one open file. You can thus use more programs without exceeding system limitations.

Example —An airline maintenance program stores commonly used subroutines in a procedure

file MAINPROC. Upon starting up a maintenance logging module, the program SETs

PROCEDURE TO MAINPROC, then executes PROCEDURE chekdate to confirm the system

date. With the date confirmed, the program prompts the user to enter the weekly log update disk

created off site.

* AIRLINE.PRG

SET PROCEDURE TO mainproc

DO chekdate && Procedure to verify system date

DO l_update && Procedure alerts user to insert disk to update log

* MAINPROC.PRG

* Contains two procedures, CHEKDATE and LUPDATE

*

PROCEDURE chekdate

PUBLIC mdate

mdate = DATE()

PROCEDURE SECTION 2

The dBASE® Language Handbook 322 Back to CONTENTS

@ 10,10 SAY "Press ENTER key to verify today's date: " GET mdate

READ

CLEAR

*

PROCEDURE l_update

@ 22,01 SAY "Insert log update disk in drive A and shut drive door."

@ 23,01 SAY "Press SPACE BAR when ready to update."

* When user presses a key, open AIR_LOG database with active index

* LOG_DEX. Check for the existence of the file on drive A. If the

* update file exists, APPEND records from A into the main database

WAIT ""

USE air_log INDEX log_dex

IF FILE("A:L_UPDATE.DBF")

 APPEND FROM A:l_update

 USE

ELSE

 * If file L_UPDATE is missing, generate error message with a beep

 @ 22,00 CLEAR

 ?? CHR(7) && Ring the bell

 @ 22,01 SAY "Update file missing from drive A"

 @ 23,01 SAY "Notify technical support at (555) 555-2222."

 WAIT

ENDIF

Optimization
In all systems except Quicksilver, a procedure file can open itself as shown here:

* MAINPROC.PRG && Main procedure file

SET PROCEDURE TO mainproc && Set procedure to itself

DO greeting && Do the first procedure in MAINPROC

PROCEDURE greeting && First procedure shows main menu

CLEAR

@ 2,15 SAY "Easy Accounting Main Menu"

* <more statements>

*

PROCEDURE g_ledger

* <more statements>

This lets you put an entire application in a single program file that you can load as a procedure

file.

VARIATIONS:
Clipper: You may include PROCEDUREs in any program in an application without the SET

PROCEDURE TO command. However, if a program file contains procedures and is not referenced

by a DO <program name> elsewhere in the application, you must use SET PROCEDURE TO

<program name> to locate the procedures at compile time. Clipper does not limit the number of

procedures.

PROCEDURE SECTION 2

The dBASE® Language Handbook 323 Back to CONTENTS

dBASE III PLUS: Allows up to 32 procedures per procedure file.

dBASE IV: All PROCEDUREs must end with a RETURN statement.

dBASE IV lets you put procedures in any program without a SET PROCEDURE command. To

do this, put them at the end of the program file. Statements after a PROCEDURE...RETURN,

except for other PROCEDUREs and FUNCTIONs, will never execute.

dBASE IV allows 1,170 procedures per file (limited by available memory).

For best performance and the fewest object files, put as many procedures as possible in the main

program file.

If a program file contains procedures and is not referenced by a DO <program name> elsewhere

in the application, dBASE IV cannot find it. You must use SET PROCEDURE TO <program

name> to locate the procedures at runtime.

You may DO a procedure in the current program file, or in the active PROCEDURE file. From a

subroutine, you may also DO a procedure located in a calling program.

dBASE IV searches areas for the procedure in the following order:

1. Currently executing object file (extension DBO).

2. Open procedure file using SET PROCEDURE TO.

3. Another open calling object file, starting with the most recently opened.

4. Object file with the same name as the procedure.

5. Program file (extension PRG) with the same name as the procedure.

6. SQL program file (extension PRS) with the procedure name.

dBASE IV compiles program files before executing them.

Warning: dBASE IV will not execute a program on disk with the same name as an active

procedure. The procedure always takes precedence.

When you put PROCEDUREs in a program file, dBASE IV treats it as the "default" procedure.

The program name is the PROCEDURE name. The program statements up to the first

PROCEDURE or FUNCTION become part of the default procedure.

dBXL: Allows up to 32 procedures per procedure file.

FoxBASE+: Allows up to 128 procedures per procedure file. Fox Software highly recommends

using procedures to improve performance. The company provides a utility FOXBIND which

collects programs from disk into a procedure file. It inserts the PROCEDURE <filename>

declarations automatically.

Quicksilver: Allows up to 32 procedures per procedure file. PROCEDURE names cannot exceed

eight characters. The PROCEDURE statement must be the first command in the file. This prevents

PROCEDURE SECTION 2

The dBASE® Language Handbook 324 Back to CONTENTS

procedure files from calling themselves as in dBASE III PLUS, dBASE IV, dBXL, and

FoxBASE+. Using procedures has no performance advantage.

SEE ALSO:
Commands DO, FUNCTION, RETURN, and SET PROCEDURE TO.

PROTECT SECTION 2

The dBASE® Language Handbook 325 Back to CONTENTS

PROTECT

DIALECTS:
dBASE IV only.

SYNTAX:
PROTECT

DEFINITION:
Invokes the security setup program. PROTECT offers three levels of security:

1. Login security: Limits access to dBASE IV.

2. Field- and file-level security: Limits who can view or change data.

3. Encryption: Prevents unauthorized users from reading data from within dBASE IV or the

system level.

Once you PROTECT, all users must enter a login name and password upon startup. Issuing the

LOGOUT command ends a user's session and presents a login screen for the next user.

If you use SQL, you must add the login name SQLDBA (SQL database administrator) to the

PROTECT system. From SQL, you then use the GRANT command to make SQLDBA the system

administrator. SQL's GRANT and REVOKE rely on login names defined in PROTECT.

RECOMMENDED USE:
PROTECT helps database administrators prevent unauthorized access to sensitive data. The

combination of login security, access security, and encryption deters (or at least discourages)

snooping and unauthorized updating.

Login security limits access to dBASE IV. To define it, assign a user name, password, a group

name, and an access level from 1 (highest) to 8 (lowest) to each user. The access level is used in

field and file access security.

Access security gives certain fields and files a minimum security level. You define users' security

levels when you add them to PROTECT. File privileges include READ, UPDATE (edit),

EXTEND (add), and DELETE. Field privileges include FULL, R/O (read-only), and NONE.

When you assign access levels to a file, PROTECT automatically creates an encrypted version of

it and gives it a CRP extension. To secure the system, the system administrator must erase the

original database file and rename the encrypted file with a DBF extension.

PROTECT requires a login name, password, group name, and access level. full name is optional.

PROTECT SECTION 2

The dBASE® Language Handbook 326 Back to CONTENTS

File Access levels are numbers from 1 (highest) to 8 (lowest).

You can designate field access levels of R/O (read-only), FULL, and NONE

PROTECT SECTION 2

The dBASE® Language Handbook 327 Back to CONTENTS

When working with encrypted files, commands that copy data such as COPY, JOIN, and TOTAL

create encrypted files with SET ENCRYPTION ON. INDEXes or REINDEXes on encrypted files

create encrypted indexes.

LIMITS/WARNINGS:
Login security without encryption is inadequate. The user can simply rename the DBSYSTEM.DB

file before running dBASE IV, disabling the login process. After QUITting, or during the session,

the user can then restore DBSYSTEM.DB, leaving no trace of the unauthorized access.

dBASE IV stores encrypted password information in an encrypted file called DBSYSTEM.DB.

Keep this file in the directory where dBASE IV is installed. Erasing it destroys all security

definitions. As a precaution, you should print the definitions from the Reports menu in PROTECT.

If you forget the system administrator's password, you will not be able to recover your encrypted

data.

There is no way to prevent an unauthorized user from PROTECTing an unprotected system.

You may not MODIFY the STRUCTURE of encrypted files.

SEE ALSO:
Commands LOGOUT and SET ENCRYPTION; functions ACCESS() and USER().

PUBLIC SECTION 2

The dBASE® Language Handbook 328 Back to CONTENTS

PUBLIC

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
PUBLIC <memory variable list>

DEFINITION:
Makes memory variables accessible anywhere in an application program, regardless of where they

are initialized. Normally, a variable created in a lower level program is not accessible in a higher

level program.You can use PUBLIC memory variables anywhere.

To create PUBLIC memory variables, first declare them PUBLIC, then give them values. The

variables are initially all false (.F.).

You can temporarily hide PUBLIC memory variables in a subroutine by declaring PRIVATE

variables with the same names. When control returns to the caller, the PRIVATE variables release

automatically, leaving the PUBLIC ones intact.

Declaring an existing variable as PUBLIC causes a syntax error.

RECOMMENDED USE:
Use PUBLIC memory variables to make data available to all subroutines in an application.

Example—A bibliographic database application searches for books using a subroutine. When it

FINDs a book, it stores the TITLE, ISBN, and PUBLISHER information in PUBLIC variables.

On return to the caller, these variables are available for display or printing.

* BIBLIO.PRG

* BOOKFIND is a subroutine that FINDs the requested book

mfind = SPACE(20)

@ 10,10 SAY "Enter book title to find: " GET mfind PICTURE "@!"

READ

* Title to find passed to BOOKFIND through PARAMETER mfind

DO bookfind WITH trim(mfind)

@ 10,05 SAY " TITLE:" + mtitle

@ 11,05 SAY " ISBN:" + misbn

@ 12,05 SAY " PUBLISHER:" + mpub

* <more statements>

* BOOKFIND.PRG

PARAMETERS mfind

PUBLIC mtitle,misbn,mpub

* Use bibliographic database and title index

PUBLIC SECTION 2

The dBASE® Language Handbook 329 Back to CONTENTS

USE bibmain INDEX bibtitle

FIND &mfind

* If found, store field contents in PUBLIC variables

IF FOUND()

 mtitle = title

 misbn = isbn

 mpub = pub

ELSE

 * If not found, display message and pause

 @ 10,10 SAY "Not found."

 WAIT

ENDIF

SPECIAL USES:
When you SAVE variables in a memory file, they are always PUBLIC when RESTOREd at the

interactive prompt. When RESTOREd in a program, they are always PRIVATE. To restore

PUBLIC variables from a memory file, declare them PUBLIC, then RESTORE FROM <memory

file> ADDITIVE.

VARIATIONS:
Variables that you declare PUBLIC are of type logical until you assign them values. The default

is usually false. A few special variables default to true to allow programmers to identify the system

in use.

See PUBLIC CLIPPER/FOX/XNATIVE/XQUICKS.

Clipper: The memory variable list may contain arrays. Declaring a PUBLIC array creates it with

the specified number of elements. All elements are initially false. For example, the following

statement creates two memory variables and an array with nine elements:

PUBLIC mdate, muser, rptarray[9]

dBASE IV: You can also declare arrays PUBLIC with the command

PUBLIC <array name>([<expN1>[,<expN2>]) [,<array name>(<expN>[,<expN]),...]

You cannot declare arrays and memory variables PUBLIC on the same line. Note that the brackets

surrounding <expN1>,<expN2> are literals you must include in the command.

FoxBASE+: A special form creates one or two dimensional arrays:

PUBLIC <array name>(<expN1>[,<expN2>]) [,<array name>(<expN>[,<expN>]),...]

Note that the parentheses surrounding <expN1>,<expN2> are literals you must include in the

command.

For example, to create the arrays STATES and ZIPS, with 10 and 22 elements respectively, use

PUBLIC SECTION 2

The dBASE® Language Handbook 330 Back to CONTENTS

PUBLIC states(2,5),zips(2,11)

SEE ALSO:
Commands DECLARE, DIMENSION, DO, PRIVATE, PUBLIC

CLIPPER/FOX/XNATIVE/XQUICKS, RESTORE, and SAVE.

PUBLIC CLIPPER/FOX/XNATIVE/XQUICKS SECTION 2

The dBASE® Language Handbook 331 Back to CONTENTS

PUBLIC CLIPPER/FOX/XNATIVE/XQUICKS

DIALECTS:
Clipper, FoxBASE+, and Quicksilver.

SYNTAX:
PUBLIC CLIPPER/FOX/XNATIVE/XQUICKS

DEFINITION:
Declares a memory variable with a value of true to allow programs to detect the Clipper,

FoxBASE+, or Quicksilver environment. All other variables start out false.

CLIPPER refers to the Clipper compiler, FOX to FoxBASE+, XNATIVE to the Quicksilver native

code optimizer, and XQUICKS to the Quicksilver intermediate d-code mode.

RECOMMENDED USE:
PUBLIC variables that initialize as true allow programmers to run system-specific program code

on other dBASE-language systems. For example, you may be developing code interactively or

using tools meant for a specific environment. By checking the status of the PUBLIC variables, you

can determine which system is running.

Example 1—Including a Clipper-specific user defined function in a dBASE III PLUS, dBASE

IV, dBXL, FoxBASE+, or Quicksilver program.

* DISPLAY.PRG

*

* <statements>

PUBLIC CLIPPER

IF CLIPPER && If true, execute a user defined function

 ? STATE(12222)

ELSE

 DO STATE WITH "12222" && If false, execute a procedure

ENDIF

Example 2—A programmer prototypes a Quicksilver application using dBASE III PLUS.

Because some functions are unique to Quicksilver, the program checks the environment with

XQUICKS. UPPER.PRG converts all customer names to upper and lower case. If the environment

is Quicksilver, UPPER uses the handy PROPER() function. If the environment is dBASE III

PLUS, a procedure does the conversion.

* UPPER.PRG *

PUBLIC xquicks,xnative

USE acctview INDEX viewdex

* If XQUICKS is true, use the QBROWSE subroutine

IF xquicks

PUBLIC CLIPPER/FOX/XNATIVE/XQUICKS SECTION 2

The dBASE® Language Handbook 332 Back to CONTENTS

 REPLACE ALL customer with PROPER(customer)

ELSE

 * If dBASE III PLUS, use a custom procedure called UPLOW

 DO uplow WITH customer

ENDIF

dBASE IV allows you to hide unsupported functions but not commands. Programs with

unsupported commands will not compile.

LIMITS/WARNINGS:
Clipper, dBASE IV, FoxBASE+, and Quicksilver: All try to compile unsupported commands,

even if they are hidden by an IF CLIPPER/FOX/XQUICKS statement. Clipper and FoxBASE+

generate error messages, but produce programs that run. Quicksilver compiles only trivial

unsupported commands (such as SET TALK), but refuses to compile commands such as EDIT

and BROWSE. dBASE IV will not compile programs with unsupported commands. Both

Quicksilver and dBASE IV will compile programs with unsupported functions since they assume

they are user defined.

You can compile and link the following program in Clipper but not in Quicksilver.

PUBLIC xquicks,clipper

IF xquicks .OR. clipper

 DO browprog

ELSE

 BROWSE

ENDIF

SEE ALSO:
Command PUBLIC; Appendix 2, "Sensing the Environment."

QUIT SECTION 2

The dBASE® Language Handbook 333 Back to CONTENTS

QUIT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
QUIT

DEFINITION:
Ends a dBASE III PLUS, dBASE IV, dBXL, or FoxBASE+ session and exits a Clipper or

Quicksilver program. Closes all open files. QUIT always returns control to the operating system.

SEE ALSO:
Commands EXIT and RETURN.

READ SECTION 2

The dBASE® Language Handbook 334 Back to CONTENTS

READ

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
READ [SAVE]

DEFINITION:
Lets you edit memory variables or fields that an @...GET statement has displayed on the screen.

With READ, all @...GET statements issued since the last READ, CLEAR, CLEAR GETS, or

CLEAR ALL can be edited in a full-screen mode. New values you enter replace the old values.

When you select a format file using SET FORMAT TO, READ activates its @...GET statements.

READ uses the same editing conventions as other full-screen editing commands, such as APPEND

or EDIT.

OPTIONS:
Normally, READ clears GETs once editing is completed. The SAVE option preserves them,

making them available for the next READ. The data from the previous GETs appears for editing.

This is convenient for repetitive entries. To release SAVEd GETs, use CLEAR GETS.

RECOMMENDED USE:
Although READ allows direct editing of fields stored in GETs, you should not generally use it in

programs. Direct editing does not let the program validate data before the user saves it.

In a program, store fields in memory variables with similar names, then use @...GETs to edit and

validate the variables.

When the user is satisfied with changes to a record, REPLACE the fields with the corresponding

memory variables. To add a new record, use the command APPEND BLANK before REPLACE.

Example—A subroutine in a sales application edits a database. It opens the file SALES, then

initializes memory variables from the fields. The program then GETs the variables for editing.

Only when the user indicates that he or she is done editing does the program REPLACE the

original fields with the new data.

* MADDRESS, MCITY, and MSTATE are memory variables

* ADDRESS, CITY, and STATE are fields

SET TALK off

CLEAR

USE sales

maddress = address

mcity = city

READ SECTION 2

The dBASE® Language Handbook 335 Back to CONTENTS

mstate = state

DO WHILE .t.

 @ 06,02 SAY "Address: " GET maddress

 @ 07,02 SAY "City: " GET mcity

 @ 08,02 SAY "State: " GET mstate

 READ

 finish = " " && Create variable FINISH to hold user's response

 @ 14,10 SAY "<S>ave or <C>ancel? (S/C)"

 * Force uppercase response with PICTURE "!" statement

 @ 15,10 SAY "Press any other key to re-edit" GET finish PICTURE "!"

 READ

 IF mstate = " " && Validation code checks whether MCITY is blank

 @ 24,10 SAY "State must not be blank." && If blank, redo

 LOOP

 ENDIF

 * <More validation code>

 DO CASE

 CASE finish = "S" && If user presses S, then REPLACE data

 @ 23,01 SAY "Saving"

 * Use APPEND BLANK here to create a new record.

 REPLACE address with maddress,city with mcity,state with mstate

 RETURN

 * If user presses "C", exit DO WHILE and proceed to first

 * statement after the ENDDO

 CASE finish = "C"

 CLEAR

 EXIT

 ENDCASE

ENDDO

VARIATIONS:
Clipper: Pressing F1 from a GET...READ automatically sends three parameters to a help routine

HELP.PRG, if it exists. The parameters are the caller's name, the line number in the caller, and the

GET variable name. This lets you write context sensitive help programs. Pressing F1 from an

@...PROMPT...MENU TO also calls HELP.PRG and sends the same parameters.

SEE ALSO:
Commands APPEND BLANK, CLEAR GETS, and REPLACE.

RECALL SECTION 2

The dBASE® Language Handbook 336 Back to CONTENTS

RECALL

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RECALL [<scope>] [WHILE <condition>] [FOR <condition>]

DEFINITION:
Removes deletion marks from records in the active database file.

DEFAULT:

RECALL with no options recalls only the current record. You can RECALL multiple records with

a scope, WHILE, or FOR condition. Sample <scopes> include RECALL RECORD <n>, RECALL

NEXT 10, and RECALL ALL.

RECOMMENDED USE:
Records marked for deletion are not physically purged from the database file until you issue a

PACK or ZAP command. Therefore, you may use DELETE to temporarily hide records when SET

DELETED is ON. When you finish querying, reporting, listing, etc., restore DELETED records

with the RECALL command.

Example—A hotel marks group reservations with a special field. At the end of each week, the

system administrator purges old reservations with DELETE after saving them in a backup file.

However, one time, due to a calendar mixup, the administrator accidentally removes next week's

reservations. Fortunately, they are gone but not forgotten. All the administrator must do is

RECALL ALL, then start over.

Note that GROUP is a logical field which, if true, indicates that a reservation was made at a group

rate.

. USE reserves

. DELETE ALL GROUP

 36 records deleted

. RECALL ALL

 36 records recalled

(Large sigh of relief at this point!)

LIMITS/WARNINGS:
If you SET DELETED ON, deleted records become invisible in the active database and RECALL

generally has no effect. However, if you move the record pointer directly to an invisible record

using GOTO, or if the pointer remains on a record you have just deleted, RECALL alone or

RECALL SECTION 2

The dBASE® Language Handbook 337 Back to CONTENTS

RECALL with a "NEXT <n>" scope will restore it. RECALL will ignore all other invisible deleted

records.

Note that you cannot RECALL records removed from the database file with the PACK or ZAP

commands.

SEE ALSO:
Commands DELETE, PACK, and SET DELETED.

REINDEX SECTION 2

The dBASE® Language Handbook 338 Back to CONTENTS

REINDEX

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
REINDEX

DEFINITION:
Rebuilds all active indexes associated with the open database file. The keys and the UNIQUE

specifications (see SET UNIQUE) remain the same as when you first created the index.

RECOMMENDED USE:
In rare situations involving physical damage to a disk, index files can become corrupted and

REINDEX cannot rebuild them. If this concerns you, always rebuild indexes from scratch using

the INDEX command. INDEX also makes programs easier to understand since the key and the

UNIQUE option are explicit.

REINDEX is useful for rebuilding indexes in the interactive mode. To use REINDEX in multiuser

applications, you must open the database file for exclusive use.

VARIATIONS:
dBASE IV: REINDEX also rebuilds multiple index files (extension MDX) in the current work

area.

SEE ALSO:
Commands INDEX, SET INDEX TO, SET ORDER, SET UNIQUE, and USE; functions KEY(),

MDX(), and NDX().

RELEASE SECTION 2

The dBASE® Language Handbook 339 Back to CONTENTS

RELEASE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RELEASE <memory variable list> / <ALL [LIKE/EXCEPT attern>]

DEFINITION:
Erases variables from memory.

RECOMMENDED USE:
All systems limit the number of memory variables, making it good practice to erase unnecessary

ones. By using a list or pattern, you can RELEASE groups at one time.

Example—In an airline ticket application, the programmer uses rigid naming conventions to

identify memory variables. Variables with three-character names are passenger names. Ones

starting with Z are printer control strings. Ones starting with T are temporary variables for

intermediate calculations.

* Releasing variables with names three characters long

* Three-character variables contain passenger names

RELEASE ALL LIKE ???

* Releasing variables with names starting with T

* T variables are temporaries for arithmetic subtotals

RELEASE ALL LIKE T*

* Releasing variables in a list

RELEASE name,address,city

* Releasing all variables except those starting with Z.

RELEASE ALL EXCEPT z*

VARIATIONS:
dBXL, Quicksilver: RELEASE AUTOMEM clears all AUTOMEM variables from memory.

SEE ALSO:
Commands CLEAR, CLEAR MEMORY, RELEASE MENUS/POPUPS/WINDOW, RELEASE

MODULES, and STORE.

RELEASE MENUS/POPUPS/WINDOW SECTION 2

The dBASE® Language Handbook 340 Back to CONTENTS

RELEASE MENUS/POPUPS/WINDOW

DIALECTS:
dBASE IV only.

SYNTAX:
RELEASE MENUS <menu name list>/POPUPS <popup name list>/

 WINDOW <window name list>

DEFINITION:
Erases the specified bar menus, popup menus, or windows from the screen and from memory.

Active bar menus, popup menus, or windows are deactivated if they are named in the list.

RELEASE also clears active ON SELECTION and ON PAD commands.

If no list appears, all specified objects are affected.

Erasing a window causes the text it covers to reappear on the screen.

SEE ALSO:
Commands ACTIVATE, DEACTIVATE, DEFINE MENU, DEFINE POPUP, DEFINE

WINDOW, RESTORE WINDOW, and WRELEASE.

RELEASE MODULE SECTION 2

The dBASE® Language Handbook 341 Back to CONTENTS

RELEASE MODULE

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RELEASE MODULE <module name>

DEFINITION:
Removes a LOADed assembly language module from memory. The name has no extension.

RECOMMENDED USE:
Because of limitations on the number of LOADed modules, it is often desirable to RELEASE one

to make room for another.

Use the DISPLAY STATUS command to list the LOADed assembly language modules.

SEE ALSO:
Commands DISPLAY STATUS and LOAD.

RENAME SECTION 2

The dBASE® Language Handbook 342 Back to CONTENTS

RENAME

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RENAME <filename1> TO <filename2>

DEFINITION:
Changes a disk file's name. You must specify extensions explicitly. For files not on the default

drive, you must use explicit drive designations. You cannot rename a file to an existing name (that

is, you must delete the old file first), and you cannot rename an open file.

RECOMMENDED USE:
Use RENAME to change a file's name to make it easier to remember or compatible with other

names.

Example—A secretary renames files to reflect their purposes. A word processing document

named JAMES.TXT contains a letter to Ralph James. The secretary renames the file with an LTR

extension to identify it.

. RENAME james.txt TO james.ltr

By specifying the drive designation, the secretary RENAMEs files on other drives.

. RENAME C:sales.dbf TO prospect.dbf

RENAME does not allow pattern matching "wildcards" using * and ?.

SEE ALSO:
Commands COPY FILE and DIR/DIRECTORY.

REPLACE SECTION 2

The dBASE® Language Handbook 343 Back to CONTENTS

REPLACE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
REPLACE [<scope>] <field> WITH <exp1>[, <field> WITH <exp2>...]

 [WHILE <condition>] [FOR <condition>]

DEFINITION:
Replaces the specified field or fields with the values of the specified expressions. Without any

scope or conditions, REPLACE affects only the current record. It acts on multiple records when

used with a scope, WHILE, or FOR clause.

You can only REPLACE data into fields of the same type. REPLACE automatically truncates

character data that is longer than the target field. You can REPLACE fields in any open database

file. To apply it to an unselected work area, use the form ALIAS->FIELD.

RECOMMENDED USE:
REPLACE is the primary way to change data under program control (you can also GET a field

directly).

Example 1—An accounts receivable program uses REPLACE with string and numeric

expressions to add a $10 fee to past due accounts with NET 30 terms. The first REPLACE

statement replaces the field PAST_DUE with PAST_DUE + 10. The REPLACEment only occurs

in records for which TERMS is "NET30". The second REPLACE changes TERMS in the same

records to "NET15."

. USE ar_main

. LIST FOR TERMS = "NET30"

Record# TERMS PAST_DUE CLIENT

 1 NET30 43.00 ACME SOCKS

 9 NET30 454.00 MATSON LAW

. REPLACE ALL past_due WITH past_due + 10 FOR terms = "NET30"

 2 Records replaced.

. LIST FOR terms = "NET30"

Record# TERMS PAST_DUE CLIENT

 1 NET30 53.00 ACME SOCKS

 9 NET30 464.00 MATSON LAW

. REPLACE ALL terms WITH "NET15" FOR terms = "NET30"

 2 Records replaced.

. LIST FOR terms = "NET15"

 Record# TERMS PAST_DUE CLIENT

 1 NET15 53.00 ACME SOCKS

 9 NET15 464.00 MATSON LAW

REPLACE SECTION 2

The dBASE® Language Handbook 344 Back to CONTENTS

Example 2—While working in one area, you can REPLACE data in another. AR_MAIN is in area

1. The SELECTed database, AR_SUB, is in area 2. The bookkeeper REPLACEs data from area 2

into the unselected database in area 1 using the ALIAS->FIELDNAME method. AR_MAIN

contains amounts past due from 60 to 90 days. AR_SUB contains amounts past due over 90 days.

Each month, the bookkeeper must REPLACE the OVER90 amount in AR_SUB with the

PAST_DUE_60 amount in AR_MAIN.

SELECT 1

USE ar_main

LOCATE FOR acctno = "122" && Locate account 122

SELECT 2

USE ar_sub

LOCATE FOR acctno = "122" && Locate account 122

* REPLACE field OVER90 in AR_SUB with field PAST_DUE_60 in AR_MAIN

 REPLACE ar_sub->over90 with ar_main->past_due_60

 1 Record replaced.

LIMITS/WARNINGS:
REPLACing into a key field with open indexes updates them automatically. Note that when you

REPLACE with a scope, WHILE, or FOR clause, all records may not be REPLACEd properly.

As multiple replacements update the index, the record pointer moves to the record's new position.

REPLACE continues to execute sequentially starting there. This could miss some records entirely,

and REPLACE others multiple times.

VARIATIONS:
The handling of numeric overflow varies among the systems.

Clipper: A numeric overflow interrupts program execution, or calls the programmer-defined error

handler if it is installed. Clipper does not support scientific notation, nor does it replace overflow

fields with asterisks.

dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+: All truncate decimals, and convert large

numbers to scientific notation. This causes a loss of precision. dBASE III PLUS, dBASE IV, and

FoxBASE+ also replace extremely large numbers with asterisks.

Quicksilver: Replaces the overflow with 0.00, but does not interrupt program execution.

dBASE IV: The ADDITIVE option lets you append character strings to a memo field, in the form:

 REPLACE <field> WITH <expC> ADDITIVE

You can only REPLACE one field at a time when using ADDITIVE.

dBXL, Quicksilver: An AUTOMEM option simplifies the REPLACE command:

REPLACE [<scope>] <field> WITH <exp1>[,<field> WITH <exp2>...]

REPLACE SECTION 2

The dBASE® Language Handbook 345 Back to CONTENTS

 [WHILE <condition>] [FOR <condition>] | [AUTOMEM]

The AUTOMEM option replaces fields with AUTOMEM variables (created by STORE

AUTOMEM).

SEE ALSO:
Commands @...GET, CHANGE, EDIT, SELECT, SET INDEX, SET ORDER, and STORE.

REPORT FORM SECTION 2

The dBASE® Language Handbook 346 Back to CONTENTS

REPORT FORM

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
REPORT FORM <filename> [<scope>] [WHILE <condition>]

 [FOR <condition>] [PLAIN] [HEADING <expC>] [NOEJECT]

 [TO PRINT] [TO FILE <filename> [SUMMARY]

DEFINITION:
Generates a report using a form created by the dBASE III PLUS, dBASE IV, dBXL, or FoxBASE+

report generators (CREATE/MODIFY REPORT), or by the Clipper report generator.

DEFAULT:
Unless you send output to the printer or to a text file, REPORT FORM only displays it on the

screen.

REPORT FORM assumes that the FORM file has an extension of FRM unless specified otherwise.

REPORT FORM uses all records unless you limit the <scope> or provide a FOR or WHILE

<condition>.

OPTIONS:
TO PRINT sends the report to the printer. TO FILE <filename> sends it to the screen and to a text

file. The text file is given a TXT extension.

Other options include PLAIN, HEADING, NOEJECT, and SUMMARY. Normally, REPORT

FORM ejects a sheet from the printer before beginning the REPORT. NOEJECT prevents this and

begins the report on the current page. HEADING puts a message at the top of each page. The

HEADING string must be delimited. PLAIN disables the standard page number and date, as well

as any HEADING that has been SET.

SUMMARY provides only group total and subtotal reports. The group detail is omitted.

If you define group subtotals, you must INDEX or SORT the database on the grouping field.

VARIATIONS:
Clipper: Can use existing REPORT FORMS, but cannot create new ones. It has a stand alone

report generator for creating report forms. The SUMMARY option is not available.

dBASE IV: Automatically locks the database file in multiuser operations.

REPORT FORM SECTION 2

The dBASE® Language Handbook 347 Back to CONTENTS

Quicksilver: Can use existing REPORT FORMS, but provides no way to create them. The

SUMMARY option is not available.

LIMITS/WARNINGS/SPECIAL USES:
A semicolon in a report column causes a carriage return/line feed.

dBASE III PLUS: A REPORT FORM defined with the Plain Page option locks up the computer

when immediately rerun with the HEADING, NOEJECT, or SUMMARY options. To avoid this

bug, issue any DISPLAY command between REPORT FORMs. In programs, you can hide

DISPLAY's output with SET CONSOLE OFF as follows:

REPORT FORM file1

SET CONSOLE off

DISPLAY 1

SET CONSOLE on

REPORT FORM file1 NOEJECT

SEE ALSO:
Commands CREATE REPORT and MODIFY REPORT.

RESET SECTION 2

The dBASE® Language Handbook 348 Back to CONTENTS

RESET

DIALECTS:
dBASE IV only.

SYNTAX:
RESET [IN ALIAS <alias name>]

DEFINITION:
Sets the integrity tag in a database file to false (.F.).

BEGIN TRANSACTION makes the integrity tag true, indicating that the database file is in a state

of change. If the transaction ends due to an error or power loss, the tag remains true. The

ISMARKED() function returns its value.

RECOMMENDED USE:
First use ISMARKED() after error recovery to check the database files. If ISMARKED() is true,

you must either RESET the integrity tag or ROLLBACK the transaction. Use RESET if the

ROLLBACK fails, or to simply ignore the tag.

Example—A user inadvertently pulls the computer's plug during a transaction, leaving the

integrity tag set true. Upon restarting, the program can recover by attempting a ROLLBACK or

by resetting the integrity tag with RESET.

USE sales EXCLUSIVE

IF ISMARKED()

 mreset = " "

 @ 24,03 SAY DBF() + " has been in an incomplete transaction. "+;

 "Do you wish to I)GNORE or R)OLLBACK" GET mreset VALID "IR"$mreset

 IF mreset="I"

 RESET

 ELSE

 ROLLBACK

 ENDIF

ENDIF

LIMITS/WARNINGS:
RESETting the integrity tag accepts possibly bad data. RESET requires exclusive use of a file.

SEE ALSO:
Commands BEGIN TRANSACTION, END TRANSACTION, and ROLLBACK; functions

COMPLETED(), ISMARKED(), and ROLLBACK().

RESTORE SECTION 2

The dBASE® Language Handbook 349 Back to CONTENTS

RESTORE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RESTORE FROM <filename> [ADDITIVE]

DEFINITION:
Retrieves variables previously SAVEd in a memory file (MEM extension). Erases existing

variables.

Memory files are specialized disk files for memory variables.

Note that within programs, all RESTOREd memory variables are PRIVATE unless you first

declare them PUBLIC and RESTORE them with the ADDITIVE option. In the interactive mode,

all RESTOREd memory variables are PUBLIC.

OPTIONS:
ADDITIVE preserves existing memory variables. Ones with the same names as RESTOREd

variables are redefined.

RECOMMENDED USE:
A common use of memory files is to hold printer control codes. Depending on which printer the

user selects, an application can RESTORE the corresponding codes. Generally, use memory files

only to store data that would otherwise fit in a single database record.

Example—A multiuser application tracks development costs of computer programs. Because

programmers have different printers, custom control codes are necessary. Before printing, each

user selects the printer to install.

CLEAR

* Display choices

@ 03,03 SAY "Select a printer"

@ 04,03 SAY "1. Mannesmann Tally"

@ 05,03 SAY "2. Epson FX85"

@ 06,03 SAY "3. Diablo 630"

@ 07,03 SAY "4. LaserWriter II"

response = 0 && GET response in a RANGE of 1 to 4

@ 09,03 SAY "Your Choice? (1-4) GET response RANGE 1,4

READ

DO CASE && RESTORE FROM the appropriate memory file

 CASE response = 1

 RESTORE FROM mann ADDITIVE

 CASE response = 2

RESTORE SECTION 2

The dBASE® Language Handbook 350 Back to CONTENTS

 RESTORE FROM epfx85 ADDITIVE

 CASE response = 3

 RESTORE FROM di630 ADDITIVE

 CASE response = 4

 RESTORE FROM laserII ADDITIVE

ENDCASE

VARIATIONS:
Quicksilver: The EXCLUSIVE option allows only one user access to a memory file at a time.

When a user RESTOREs FROM <filename> EXCLUSIVE, no other user can access the file. Only

when the original user writes changes back to the disk with the SAVE command will the memory

file become available. RESTORE FROM EXCLUSIVE resembles a file lock. The original user

can edit the memory file with confidence that no one else has altered it.

SEE ALSO:
Commands PRIVATE, PUBLIC, and SAVE.

RESTORE GRAPH SECTION 2

The dBASE® Language Handbook 351 Back to CONTENTS

RESTORE GRAPH

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
RESTORE GRAPH [FROM <filename>] / ? / <pattern> [PAINT] [TO PRINT]

DEFINITION:
Displays a graph image saved in the BIT or PC Paintbrush/Aldus Pagemaker (PCX) format.

You specify these formats when you create, modify, or display the graph.

BIT and PCX formats are graph pictures. They do not process live data as do graph format files

(GRF).

The user must press a key to erase the current graph.

DEFAULT:
RESTORE GRAPH assumes that <filename> is in BIT format, with a BIT extension.

OPTIONS:
The PAINT option RESTOREs GRAPHs from a PC Paintbrush or Pagemaker format (PCX).

The TO PRINT option prints the graph. To use a printer other than the default (IBM Graphics

Printer), you must first select it with the SET GRAPHPRINT command or Quicksilver's INSTALL

program. The supported printers are

• Epson FX (or LX86)

• Epson MX/IBM Graphics Printer (the default)

• Hewlett Packard LaserJet

• Okidata dot matrix

The manual also lists an HPGL Plotter option, but it does not work.

dBXL: RESTORE GRAPH ? displays a menu of available BIT or PCX files. You can select one

by moving the cursor and pressing Return. RESTORE GRAPH <pattern> lets you use wildcard

characters (* and ?) to limit the filename selections in the menu.

RECOMMENDED USE:
Use RESTORE GRAPH to display static graphs in BIT or PCX format. These displays do not

process data, but are simply "snapshots" of live graphs. Because there is no disk access, RESTORE

GRAPH is much faster than GRAPH FORM.

RESTORE GRAPH SECTION 2

The dBASE® Language Handbook 352 Back to CONTENTS

Example—An application displays financial data from the past five years. Because the old data is

static, the graphs are generated in BIT format.

* TOTSALES.BIT contains total monthly sales over five years

RESTORE GRAPH FROM totsales

The graph appears as follows:

You can restore images in PCX format with the PAINT option:

RESTORE GRAPH FROM volume PAINT

LIMITS/WARNINGS:
RESTORE GRAPH cannot display graphs in Ventura Publisher (IMG) format.

RESTORE GRAPH requires a Hercules, IBM Color, or IBM Enhanced Graphics Adapter (or

compatible).

dBXL and Quicksilver do not display graphs within the active window. The screen blanks briefly,

then the graph fills the screen. When the user presses a key, the graph disappears and the previous

screen is erased as well. To preserve it, issue WSAVE before displaying the graph, then

WRESTORE after.

VARIATIONS:
Quicksilver: ? and <pattern> options not available. FROM <filename> is not optional.

SEE ALSO:
Commands CREATE/MODIFY GRAPH, GRAPH FORM, and SET GRAPHPRINT.

RESTORE MACROS SECTION 2

The dBASE® Language Handbook 353 Back to CONTENTS

RESTORE MACROS

DIALECTS:
dBASE IV only.

SYNTAX:
RESTORE MACROS FROM <macro filename>

DEFINITION:
Loads keyboard macros from a macro file into memory.

Macros execute from memory and are erased when you QUIT. However, you can save them on

disk with SAVE MACROS, then later RESTORE MACROS.

The macro file has a default extension of MCR unless specified otherwise.

RECOMMENDED USE:
dBASE IV lets you record keystrokes entered in the interactive mode. Later, you can replay them

(the macro) to automate repetitive operations. You can begin recording, end recording, and

playback with the macro menu, which you access by pressing SHIFT-F10.

Example—Every morning, Sandra checks the parts inventory. She USEs the file and types her

query. After several weeks, she decides

to automate the process with a macro.

* <Begin recording from SHIFT-F10 menu>

. CLEAR

. CLEAR ALL

. USE parts INDEX mparts,qty

. LIST ALL parts FOR qty < 5 .AND. orders > 2 TO PRINT

. USE

. CLEAR

* <End recording from SHIFT-F10 menu and give macro a name>

. SAVE MACROS TO macsave

. QUIT

The next day, Sandra restores the macro and executes it.

. RESTORE MACROS FROM macsave

* <Execute macro from SHIFT-F10 menu, Alt-F10 key, or PLAY MACROS command>

LIMITS/WARNINGS:
Macro files may contain up to 35 macros.

RESTORE MACROS SECTION 2

The dBASE® Language Handbook 354 Back to CONTENTS

RESTORE MACROS erases macros in memory with the same names as ones in the macro file.

Do not use the extension MAC for macro files, since it conflicts with the extension used by dBASE

IV's applications generator.

RESTORE MACROS and SAVE MACROS have no connection with the macro function (&).

SEE ALSO:
Commands PLAY MACROS and SAVE MACROS.

RESTORE SCREEN SECTION 2

The dBASE® Language Handbook 355 Back to CONTENTS

RESTORE SCREEN

DIALECTS:
Clipper and FoxBASE+.

SYNTAX:
RESTORE SCREEN [FROM <memory variable>]

DEFINITION:
Restores a screen image saved with the SAVE SCREEN command.

Without the FROM option, RESTORE SCREEN restores the image placed in the screen buffer.

RESTORE SCREEN FROM <memory variable> retrieves a screen image placed in a memory

variable by SAVE SCREEN. Like other memory variables, screen variables can be saved on disk

using the SAVE TO command. They appear with type "S" when you LIST MEMORY. Screen

memory variables occupy 4K bytes.

RECOMMENDED USE:
RESTORE SCREEN restores images very quickly, making them flash on the screen. This is useful

for animating the display and creating windowed menus.

Example—Use RESTORE SCREEN to restore a screen after displaying help messages or lookup

windows.

CLEAR

* Screen display with boxes, gets, @/SAYs, etc.

* <statements>

yname = space(10)

@ 12,10 SAY "Enter id number or 'L' for lookup table" GET yname

READ

* <User requests lookup assistance>

SAVE SCREEN

* <Do lookup subprogram>

DO SLOOK

* Return to screen display

RESTORE SCREEN

* <more statements>

SEE ALSO:
Commands LIST MEMORY, SAVE, and SAVE SCREEN.

RESTORE STATUS SECTION 2

The dBASE® Language Handbook 356 Back to CONTENTS

RESTORE STATUS

DIALECTS:
dBXL only.

SYNTAX:
RESTORE STATUS FROM <filename>

DEFINITION:
Reinstates environment settings saved on disk with the SAVE STATUS command.

The file holding STATUS information has a SET extension.

RESTORE STATUS restores the following environment settings:

ALTERNATE ON/OFF

ALTERNATE <file>

BELL

CARRY

CENTURY

COLOR

CONFIRM

CONSOLE

DATE

DEBUG

DECIMALS

DEFAULT

DELIMITERS

DELIMITERS TO

DEVICE

DOHISTORY

ECHO

ESCAPE

EXACT

FIELDS

FIXED

HEADINGS

HELP

HISTORY

INTENSITY

MARGIN

MEMOWIDTH

ODOMETER

OOPS

PATH

PRINT

PROMPT

RETRACE

SAFETY

SCOREBOARD

STATUS

STEP

TALK

TITLE

UNIQUE

SEE ALSO:
Commands DISPLAY STATUS and SAVE STATUS.

RESTORE WINDOW SECTION 2

The dBASE® Language Handbook 357 Back to CONTENTS

RESTORE WINDOW

DIALECTS:
dBASE IV only.

SYNTAX:
RESTORE WINDOW <window name list>/ALL FROM <filename>

DEFINITION:
Loads window definitions into memory from a file created by SAVE WINDOW. Windows already

in memory are overwritten if you RESTORE WINDOWs with the same names.

You can RESTORE some or ALL windows from a definition file. If you RESTORE WINDOW

using a list, the window order does not matter.

DEFAULT:
The window definition file has a default extension of WIN.

RECOMMENDED USE:
Use RESTORE WINDOW and SAVE WINDOW to create application window "libraries." Rather

than redefine windows, define them once, then RESTORE them as needed.

Example—An accounting system uses standardized windows to simplify development and

maintenance. A "library" contains all the definitions.

RESTORE WINDOW mbrowse, mmaint FROM winlib

DISPLAY MEMORY

 Logical Window Definition

Window From To Size

MBROWSE 5,5 10,20 44 bytes

MMAINT 10,10 20,50 956 bytes

SEE ALSO:
Commands ACTIVATE WINDOW, DEFINE WINDOW, DISPLAY MEMORY, and SAVE

WINDOW.

RESUME SECTION 2

The dBASE® Language Handbook 358 Back to CONTENTS

RESUME

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
RESUME

DEFINITION:
Continues execution of a program paused by the SUSPEND command. The program resumes on

the line following the one on which it stopped.

RECOMMENDED USE:
Use SUSPEND and RESUME to debug program files with an interpreter. When you SUSPEND

a program, you may perform database operations, change memory variables, and change

environment settings, such as SET ECHO or SET TALK.

SEE ALSO:
Command SUSPEND.

RETRY SECTION 2

The dBASE® Language Handbook 359 Back to CONTENTS

RETRY

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RETRY

DEFINITION:
Returns control to the caller from a subprogram, and re-executes the line that called it.

RETRY releases memory variables created by the subprogram, closes files opened there, and

clears the ERROR() function.

RETRY works like RETURN, except that RETURN goes back to the next line in the caller, rather

than the same line.

RECOMMENDED USE:
Use RETRY together with ON ERROR to repeat the command that caused an error after it is

corrected. For example, suppose you write a program to update a database from floppy disks, but

you forget which disk contains the file you need. You can use RETRY to repeat the subprogram

until you find the proper file or give up. You should have labeled your disks better. (You could

also check for the existence of the database first with the FILE() function).

Note that dBXL's error codes differ from those of FoxBASE+, dBASE III PLUS, and dBASE IV.

Example—A building inspection application uses portable computers in the field to track

dangerous construction sites. Each week, disks are brought in from the field to update a main

database on a desktop computer. MUPDATE.PRG appends data from the floppy disk. If the file

SUBDBF is not found on drive A, program CHEKFILE.PRG executes, using the ERROR()

function code as a parameter. CHEKFILE prompts the user to either RETRY the disk read or

ignore the error.

* MUPDATE.PRG

ON ERROR DO chekfile WITH ERROR()

CLEAR

@ 04,00 SAY "Insert update disk in drive A"

WAIT

USE maindbf

SET TALK ON

APPEND FROM A:subdbf

SET TALK OFF

* CHEKFILE.PRG

PARAMETERS problem

RETRY SECTION 2

The dBASE® Language Handbook 360 Back to CONTENTS

* dBXL error code is 28

IF problem = 1

 ?? chr(7)

 @ 20,00 SAY "Specified database file not found. "

 @ 21,00 SAY "Change disks and press 'R' to RETRY "

 @ 22,00 SAY "or any other key to ignore"

 WAIT TO action

 IF action$"rR"

 RETRY && Return to mupdate, re-execute APPEND FROM A:subdbf

 ELSE

 RETURN && Return to mupdate and continue with SET TALK OFF

 ENDIF

ENDIF

VARIATIONS:
Quicksilver: To use the RETRY command, use the -O option of the QS optimizer.

SEE ALSO:
Commands ON ERROR, PARAMETERS, and RETURN; function ERROR().

RETURN SECTION 2

The dBASE® Language Handbook 361 Back to CONTENTS

RETURN

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RETURN [TO MASTER]

DEFINITION:
Ends program execution and returns control to the caller. In the highest level program, RETURN

passes control to the interactive prompt in dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+,

or to the operating system in Clipper and Quicksilver. RETURN releases all PRIVATE memory

variables. When used in dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+ programs, it closes

the program file. When used in procedures, it does not.

When RETURNing to a program, control passes to the next line (RETRY executes the last line).

Like RETRY, RETURN clears the ERROR() function.

OPTIONS:
RETURN TO MASTER is a shortcut that returns control to the highest-level calling program from

anywhere. Its main use is to deal with errors, such as missing files or disk full conditions.

RECOMMENDED USE:
Avoid using RETURN TO MASTER other than in error-handling routines. To keep program

modules orderly, control should pass to and from subroutines one level at a time.

Example—A video store checkout system executes a program called TRAP.PRG when an error

occurs (as specified in the ON ERROR command). Rather than RETURN control to the program

that caused the error, RETURN TO MASTER passes control to the highest level program. In this

example, a menu selection in VIDMAIN executes VIDSUB. An error in VIDSUB (File not found)

executes TRAP. TRAP gives the user the choice to RETRY, or return to the main menu using

RETURN TO MASTER.

* VIDMAIN.PRG contains main menu for video store application

ON ERROR DO trap && When error occurs, run TRAP.PRG

* <menu selections 1-5>

DO CASE

 CASE action = 1

 DO vidsub

 * <other cases>

* VIDSUB.PRG run video store weekly sales report

USE tapefile && Assume tapefile has been damaged or erased

* <print report>

RETURN SECTION 2

The dBASE® Language Handbook 362 Back to CONTENTS

RETURN && When report is finished, RETURN to caller

* TRAP.PRG

@ 23,03 SAY MESSAGE() && MESSAGE() function describes the error

response = "?"

DO WHILE .not. response $ "RE"

 @ 24,03 SAY "(R)etry or (E)xit? (R/E) " GET response PICTURE "!"

 READ

ENDDO

IF response = "R" && RETRY command is common in multiuser

 @ 23,00 CLEAR && systems to access locked files

 RETRY

ELSE

 RETURN TO MASTER && Return to VIDMAIN.PRG

ENDIF

VARIATIONS:
Clipper: TO MASTER not available.

Clipper, dBASE IV, dBXL, FoxBASE+, and Quicksilver: RETURN can return a value from a user

defined function with the form

RETURN <exp>

User defined functions must RETURN a value. The value replaces the function expression in the

caller.

Except for the expression, RETURN <exp> acts like a standard RETURN.

Use RETURN <exp> to return a memory variable or literal value to the caller. (You cannot

RETURN anything with the TO MASTER option.)

Example—A user defined function in a mailing list program (Clipper, dBASE IV, dBXL,

FoxBASE+, or Quicksilver) spells out state abbreviations. The function LSTATE() accepts a two

letter abbreviation as a parameter. It then searches for the abbreviation and its associated state

name. If a match is found, LSTATE() RETURNs the full state name. If no match is found, it

RETURNs "NOT FOUND."

FUNCTION lstate && Use FUNCTION in dBASE IV, Clipper, dBXL, Quicksilver

* PROCEDURE lstate && Use PROCEDURE in FoxBASE+

PARAMETER fstate

PRIVATE warea,retstate

SELECT 7

USE states INDEX states

SEEK fstate

IF FOUND()

 retstate = TRIM(sname)

RETURN SECTION 2

The dBASE® Language Handbook 363 Back to CONTENTS

ELSE

 retstate = "NOT FOUND"

ENDIF

SELECT 2

RETURN retstate

If RETURNing a value is inappropriate (for example, in a function that displays a menu or list),

simply return a null string with

RETURN ""

dBASE III PLUS: RETURN <exp> not available.

SEE ALSO:
Commands PRIVATE, PUBLIC, and RETRY; function ERROR().

ROLLBACK SECTION 2

The dBASE® Language Handbook 364 Back to CONTENTS

ROLLBACK

DIALECTS:
dBASE IV only.

SYNTAX:
ROLLBACK [<database filename>]

DEFINITION:
Reverses changes made to database records during a transaction. If you create database files or

indexes, ROLLBACK erases them.

ROLLBACK affects all changed databases in the open transaction.

ROLLBACK restores data from the transaction log file to reverse the open transaction. After a

ROLLBACK, the transaction log file remains open, awaiting the next BEGIN TRANSACTION.

If the transaction log file is unreadable or nonexistent, the ROLLBACK may fail. The

ROLLBACK() function reports whether the ROLLBACK command succeeded.

OPTIONS:
You can use ROLLBACK with a database filename as an argument to reset the file's integrity tag

and erase the transaction log file.

RECOMMENDED USE:
Use BEGIN TRANSACTION and END TRANSACTION to ensure data integrity when a

transaction cannot be successfully completed. Transactions may fail if another user has locked a

file or record, the power fails, or a disk drive is not ready. If the transaction fails, use ROLLBACK

to reverse changes made to the open databases.

Example—A library database uses transaction processing to update overdue book lists in a batch

process. If another user has a record locked, the ON ERROR command executes ROLLBACK to

reverse the update.

USE biblio INDEX mbib IN 1

ON ERROR ROLLBACK

BEGIN TRANSACTION

REPLACE ALL onloan WITH "out" FOR due > DATE()

END TRANSACTION

ON ERROR

See BEGIN TRANSACTION and the ROLLBACK() function for more examples.

RUN/! SECTION 2

The dBASE® Language Handbook 365 Back to CONTENTS

LIMITS/WARNINGS:
For sensitive data, you should make file backups before beginning a transaction. On single user

systems, file backups will often be easier and more efficient than transaction logging.

SEE ALSO:
Commands RESET and RETRY; functions COMPLETED(), ISMARKED(), and ROLLBACK().

RUN/!

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RUN <OS command>/<external program>

DEFINITION:
Executes operating system commands or other applications from within a program. Preserves the

entire environment, including open files, record pointers, and filter conditions.

RECOMMENDED USE:
You can RUN programs written in any language to read and manipulate dBASE files.

You can also use RUN to execute incidental programs not directly related to your application.

Example 1—A menu selection in an inventory management system lets the user temporarily exit

to DOS to run external programs. The RUN command executes a batch file that loads

COMMAND.COM, giving the user full access to DOS. The colons indicate DOS comments.

RUN DOS.BAT

:DOS.BAT DOS shell this batch file simply

: changes the DOS prompt, otherwise you can just RUN COMMAND

PROMPT Type EXIT to return to dBASE $_$n$g

:give a normal prompt with our message above it

COMMAND

:preceding line just loads the DOS command processor COMMAND.COM

Example 2—An option in the inventory system from Example 1 does file backups using an

external program. RUN executes BACKUP, sending it parameters stored in the memory variable

OPTION.

DO CASE

 CASE method = "daily" && Daily backup parameters

 options = "C:\DBASE*.DBF A: /M"

 CASE method = "weekly" && Weekly backup parameters

RUN/! SECTION 2

The dBASE® Language Handbook 366 Back to CONTENTS

 options = "C:\ A: /S/M"

 CASE method = "complete"

 options = "C:\ A: /S" && Backup entire hard disk

ENDCASE

RUN BACKUP &options && Execute BACKUP with defined options

Example 3—To return information from an external program to a dBASE application, you can

either 1) have the external program write the information in a dBASE format file (typically of type

.MEM or .DBF), or 2) redirect program output to an ASCII file and APPEND...SDF into a database

file. For example, an external communications program captures data from an on-line information

service and stores it in an ASCII file ONLINE.TMP. To import the data into a dBASE application,

the programmer creates a database CAPTURE.DBF, with one long character field CAPINFO. The

program first USEs CAPTURE, then issues the command APPEND FROM ONLINE.TMP SDF

to move the ASCII text into CAPTURE.DBF. The program can then manipulate the captured data

just like any other data.

USE CAPTURE && open DBF file

APPEND FROM online.tmp SDF && and append from flat ASCII file

LIMITS/WARNINGS:
Your computer must have sufficient memory for the external program to execute.

In dBASE III PLUS, each time a RUN command is executed, available memory may shrink

slightly. If you RUN enough times, you will eventually run out of memory!

The program you RUN must not stay resident in memory. (For example, avoid loading memory

resident DOS programs such as Borland's SideKick and SuperKey from within your application).

Your computer may lock up when you exit.

In MS/PC-DOS, RUN executes COMMAND.COM. For it to work, it must find

COMMAND.COM using the DOS COMSPEC environment variable.

If you change COMSPEC using the DOS SET command, whatever program you specify will be

loaded instead of COMMAND.COM. Be careful when changing COMSPEC; systems also use it

to load text editors for program files and memo fields (when external programs are designated).

Note that you cannot change COMSPEC using RUN SET COMSPEC=<shellname>. RUN loads

another copy of COMMAND.COM (or whatever shell COMSPEC specifies) and passes it a copy

of the current environment. Changes to environment variables will affect only the copy. To change

environment variables for access from within an application, issue SET commands within your

startup batch file. To change environment variables during a command you RUN, use a batch file

that first SETs the desired environment (see Example 1).

SEE ALSO:
Commands !, APPEND FROM, CALL, and DOS.

SAVE SECTION 2

The dBASE® Language Handbook 367 Back to CONTENTS

SAVE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SAVE TO <filename> [ALL LIKE/EXCEPT <pattern>]

DEFINITION:
Stores memory variables in a disk file. The file, called a memory file, has a default extension of

MEM. It can later be LOADed into memory with the RESTORE command. Saves files on the

default drive unless you specify otherwise.

OPTIONS:
You can save groups of memory variables using the ALL LIKE <pattern> and ALL EXCEPT

<pattern> options. A pattern is a character string containing asterisks and question marks that serve

as "wildcard" characters.

RECOMMENDED USE:
Use SAVE TO to retain system data such as printer control codes and video attributes. Generally,

data that requires only a single record in a database can be SAVEd in a memory file. Data that

must be edited, reported on, or shared on a network is best stored in a database.

Example—An application that tracks cars in a repossession agency has several workstations on a

local area network. An installation program for each station determines the monitor type

(monochrome or color) and SAVEs a memory file containing the video attributes.

The application running on each workstation uses the saved memory variables as video attribute

defaults.

IF ISCOLOR() && ISCOLOR function is true if monitor is color

 * Red/White for regular text; White/Red for highlights; White border

 vstandrd = "R/W,W/R,W"

 venhance = "W*/R" && Blinking white on red

ELSE

 * Bright white, with underlined highlighted areas

 vstandrd = "w+,U"

ENDIF

* Save memory variables starting with V in file VIDEO

SAVE TO video ALL LIKE v*

When an application starts, it retrieves the variables stored in the memory file. LIST MEMORY

shows the variable VSTANDRD containing the video attribute for monochrome monitors.

SAVE SECTION 2

The dBASE® Language Handbook 368 Back to CONTENTS

RESTORE FROM video

LIST MEMORY

 VSTANDRD pub C "w+,U"

 1 variables defined, 6 bytes used

 255 variables available, 5994 bytes available

The application can then use VSTANDRD as an argument in the SET COLOR command, as

follows:

SET COLOR TO &vstandrd

VARIATIONS:
Quicksilver: Allows SAVE with no argument. This form corresponds to the multiuser command

RESTORE FROM <filename> EXCLUSIVE. RESTORE FROM <filename> EXCLUSIVE

allows a user to open a memory file while preventing access by other users. The original user must

issue SAVE to release the file. SAVE TO <filename> also exists, but does not release the memory

file from EXCLUSIVE use.

SEE ALSO:
Commands RESTORE, STORE, and USE.

SAVE MACROS SECTION 2

The dBASE® Language Handbook 369 Back to CONTENTS

SAVE MACROS

DIALECTS:
dBASE IV only.

SYNTAX:
SAVE MACROS TO <macro filename>

DEFINITION:
Saves keyboard macros from memory in a macro file.

Macros execute from memory and are erased when you QUIT. However, you can save them on

disk with SAVE MACROS, then later RESTORE MACROS.

DEFAULT:
The macro file has a default extension of MCR.

RECOMMENDED USE:
dBASE IV lets you record keystrokes entered in the interactive mode. Later, you can replay them

(the macro) to automate repetitive operations. You can begin recording, end recording, and

playback from the macro menu, accessed by pressing SHIFT-F10. You can also replay macros

with the PLAY MACROS command, or by typing a macro key combination (an Alt-key/macro

name combination).

Example—Ron prints several sales reports every day. Tired of reentering commands, he SAVEs

MACROS in a macro file, then later RESTOREs them.

* <Begin recording from SHIFT-F10 menu>

. CLEAR

. SET DELETED OFF

. SET EXACT OFF

. USE sales INDEX sales,month

. COPY TO salestemp FOR sales > 0 .and. today = DATE()

. USE salestemp

. INDEX ON sales TO salesdex

 * <Do report program>

. USE

. DELETE FILE salesdex.ndx

. DELETE FILE salestemp.dbf

. CLEAR

* <End recording from SHIFT-F10 menu and give macro a name>

. SAVE MACROS TO mac_rpt

. QUIT

The next day, Ron restores the macro and executes it.

SAVE MACROS SECTION 2

The dBASE® Language Handbook 370 Back to CONTENTS

. RESTORE MACROS FROM mac_rpt

 * <Execute macro from SHIFT-F10 menu with the Alt-F10 key

 * or the PLAY MACROS command>

LIMITS/WARNINGS:
Macro files can contain up to 35 macros.

Do not use the extension MAC for macro files, since it conflicts with the extension used by dBASE

IV's applications generator.

RESTORE MACROS and SAVE MACROS have no connection with the macro function (&).

SEE ALSO:
Commands PLAY MACROS and RESTORE MACROS.

SAVE SCREEN SECTION 2

The dBASE® Language Handbook 371 Back to CONTENTS

SAVE SCREEN

DIALECTS:
Clipper and FoxBASE+.

SYNTAX:
SAVE SCREEN [TO <memory variable>]

DEFINITION:
Stores the current screen image in a buffer or in a memory variable that can be SAVEd, and then

RESTOREd later. To redisplay a SAVEd screen, use the RESTORE SCREEN command.

If you SAVE SCREEN to a nonexistent memory variable, one is created automatically. When you

LIST MEMORY in FoxBASE+, screen memory variables appear with data type "S".

Like other variables, saved screens can be stored in MEM files with SAVE TO.

RECOMMENDED USE:
The SAVE/RESTORE SCREEN commands provide very fast screen displays. Use them in

procedures or user defined functions to avoid disturbing the calling program. Also use

SAVE/RESTORE SCREEN to flash images on the screen, rather than drawing them line-by-line.

Example—A payroll program displays a menu, SAVEs the SCREEN, and does a subroutine

selected by the user. Upon return, the program issues RESTORE SCREEN to redisplay the menu.

* <Display main menu>

* Save the screen in memory variable MAINMENU

SAVE SCREEN TO mainmenu

* <Do subroutines>

RESTORE SCREEN from mainmenu

LIMITS/WARNINGS:
Clipper and FoxBASE+: Screens saved in MEM files are not compatible.

VARIATIONS:
Screens saved in memory variables occupy approximately 4K bytes of memory. FoxBASE+

allocates the 4K from the memory variable pool.

SEE ALSO:
Command RESTORE SCREEN and SAVE TO.

SAVE STATUS SECTION 2

The dBASE® Language Handbook 372 Back to CONTENTS

SAVE STATUS

DIALECTS:
dBXL only.

SYNTAX:
SAVE STATUS TO <filename>

DEFINITION:
Stores system attributes in a disk file.

SAVE STATUS saves the following environment settings:

ALTERNATE ON/OFF

ALTERNATE <file>

BELL

CARRY

CENTURY

COLOR

CONFIRM

CONSOLE

DATE

DEBUG

DECIMALS

DEFAULT

DELIMITERS

DELIMITERS TO

DEVICE

DOHISTORY

ECHO

ESCAPE

EXACT

FIELDS

FIXED

HEADINGS

HELP

HISTORY

INTENSITY

MARGIN

MEMOWIDTH

ODOMETER

OOPS

PATH

PRINT

PROMPT

RETRACE

SAFETY

SCOREBOARD

STATUS

STEP

TALK

TITLE

UNIQUE

DEFAULT:

The STATUS file has a default extension of SET.

SEE ALSO:
Commands DISPLAY STATUS, RESTORE STATUS, and SET VIEW.

SAVE WINDOW SECTION 2

The dBASE® Language Handbook 373 Back to CONTENTS

SAVE WINDOW

DIALECTS:
dBASE IV only.

SYNTAX:
SAVE WINDOW <window name list>/ALL TO <filename>

DEFINITION:
Copies window definitions from memory to a disk file that you can later RESTORE.

If a file of the same name already exists, SAVE WINDOW overwrites it.

You can SAVE some or ALL windows from memory. The order of the names has no effect.

DEFAULT:
The window definition file has a default extension of WIN unless specified otherwise.

RECOMMENDED USE:
Use SAVE WINDOW and RESTORE WINDOW to create application window "libraries." Rather

than redefine windows throughout an application, define and SAVE them once, then RESTORE

them as needed.

Example—An inventory system uses standardized windows to simplify program maintenance. A

"library" contains all the definitions.

DEFINE WINDOW mmaint FROM 10,10 TO 20,50 COLOR GR+/B

DEFINE WINDOW mbrowse FROM 2,5 TO 10,30 DOUBLE

* <Define more windows>

*

SAVE WINDOW ALL TO winlib

To save only selected windows, use a list as follows:

SAVE WINDOW mmaint, mbrowse TO winlib

SEE ALSO:
Commands ACTIVATE WINDOW, DEFINE WINDOW, RESTORE, and SAVE WINDOW.

SCAN...ENDSCAN SECTION 2

The dBASE® Language Handbook 374 Back to CONTENTS

SCAN...ENDSCAN

DIALECTS:
dBASE IV only.

SYNTAX:
SCAN [<scope>] [FOR <condition>] [WHILE <condition>]

 [<statements>]

 [LOOP]

 [<statements>]

 [EXIT]

 [<statements>]

ENDSCAN

DEFINITION:
Repeats the program statements in-between while skipping through database records.

SCAN...ENDSCAN processes records for the specified <scope> or <condition>, or until reaching

the end-of-file.

DEFAULT:
Processes all records unless you limit it with a <scope> or <condition>.

OPTIONS:
LOOP returns control to the beginning of the structure. The computer does not execute any

commands after it. EXIT ends execution of the SCAN, and returns control to the statement

immediately following ENDSCAN.

RECOMMENDED USE:
Think of SCAN...ENDSCAN as a DO WHILE...ENDDO loop designed strictly for processing

records. SCAN...ENDSCAN automatically skips through the file, executing statements within the

loop when the conditions are met. This simplifies the logic for processing records, and reduces the

number of statements required.

Example—A financial program analyzes data, then executes a subroutine to graph it. dBASE III

PLUS requires the following:

USE plotdata

LOCATE FOR entered = DATE()

DO WHILE FOUND() .AND. .NOT. EOF()

 DO bargraf WITH pctplus,netplus,issue

 CONTINUE

ENDDO

SCAN...ENDSCAN SECTION 2

The dBASE® Language Handbook 375 Back to CONTENTS

dBASE IV's SCAN...ENDSCAN simplifies the code, eliminating LOCATE, CONTINUE, and the

test for end-of-file, as shown:

USE plotdata

SCAN FOR entered = DATE()

 DO bargraf WITH pctplus,netplus,issue

ENDSCAN

The programmer enhances the SCAN loop with a printer check and a scope of 100 records. If

PRINT() returns false (.F.), the user is prompted to turn on the printer and press "R" to retry. If

INKEY(0) does not return 114 (r) or 82 (R), the loop EXITs. Otherwise, LOOP returns control to

the top of the loop, and checks the printer again. If it is ready, the check routine is skipped, and the

BARGRAF subroutine executes.

USE plotdata

SCAN NEXT 100 FOR entered = DATE()

 IF .NOT. PRINT()

 @ 01,01 SAY "Turn printer on and press 'R' to retry. "+;

 "Press any other key to cancel"

 IF .NOT. (INKEY(0) = 114 .or. INKEY(0) = 82)

 EXIT

 ELSE

 LOOP

 ENDIF

 ENDIF

 DO bargraf WITH pctplus,netplus,issue

ENDSCAN

SPECIAL USES:
To speed up processing, first INDEX the file on the expression from the FOR <condition>. Then

SEEK <condition> and SCAN WHILE <condition>. This eliminates the processing of

unnecessary records. Modify the previous example as follows:

INDEX ON entered TO enterdex

USE plotdata INDEX enterdex

SEEK date()

SCAN WHILE entered = DATE()

 DO bargraf WITH pctplus,netplus,issue

ENDSCAN

LIMITS/WARNINGS:
SCAN...ENDSCAN does not optimize searches on indexed databases.

SEE ALSO:
Commands CONTINUE, DO WHILE...ENDDO, FOR...NEXT, and LOCATE.

SCATTER SECTION 2

The dBASE® Language Handbook 376 Back to CONTENTS

SCATTER

DIALECTS:
FoxBASE+ only.

SYNTAX:
SCATTER [FIELDS <field list>] TO <array>

DEFINITION:
Transfers the contents of the current database record into a memory variable array. If the array

does not exist, SCATTER creates it. Fields in the record are loaded into the array, starting with the

first one specified, and filling array elements sequentially. SCATTER defaults to all fields if you

do not specify a field list.

Note that SCATTER ignores memo fields.

RECOMMENDED USE:
Use SCATTER to reduce the amount of programming required to initialize arrays.

SCATTER works with GATHER. GATHER moves data from an array into the current record of

the active database.

Together, they provide a simple way to edit database records in memory without making explicit

declarations for each field.

Example—In dBASE III PLUS, moving data from a record to memory variables requires that you

initialize a variable for each field. A record with 30 fields requires 30 STORE or = statements.

After changing the memory variables, each variable must then be REPLACEd into its original

field. SCATTER eliminates many program lines by initializing an array containing the field values

of the current record.

* Without SCATTER and GATHER

CLEAR

USE acctnames

* Initialize memory variables

mname = name

maddress = address

mcity = city

mstate = state

mzip = zip

* Edit memory variables with GET

@ 05,01 SAY " Name: " GET mname

@ 06,01 SAY "Address: " GET maddress

@ 07,01 SAY " City: " GET mcity

@ 08,01 SAY " State: " GET mstate

SCATTER SECTION 2

The dBASE® Language Handbook 377 Back to CONTENTS

@ 09,01 SAY " Zip: " GET mzip

READ

REPLACE name WITH mname,address WITH maddress,city WITH mcity,;

 state WITH mstate,zip WITH mzip

Use SCATTER and GATHER to simplify the code by eliminating memory variable assignments:

CLEAR

USE acctnames

SCATTER TO acctedit && Initialize array

* Edit array

@ 05,01 SAY " Name: " GET acctedit(1)

@ 06,01 SAY "Address: " GET acctedit(2)

@ 07,01 SAY " City: " GET acctedit(3)

@ 08,01 SAY " State: " GET acctedit(4)

@ 09,01 SAY " Zip: " GET acctedit(5)

READ

GATHER FROM acctedit && Write array back to record

The benefit of this technique increases with the number of fields.

VARIATIONS:
dBXL, Quicksilver: The STORE AUTOMEM command is similar to SCATTER.

dBASE IV: COPY TO ARRAY is similar to SCATTER; however, dBASE IV has no equivalent

to GATHER. (APPEND FROM ARRAY adds a record with the contents of the specified array).

SEE ALSO:
Commands APPEND FROM ARRAY, COPY TO ARRAY, DIMENSION, and GATHER.

SEEK SECTION 2

The dBASE® Language Handbook 378 Back to CONTENTS

SEEK

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SEEK <expression>

DEFINITION:
Searches an indexed database for the first match between the expression and the index key. If one

is found, the record pointer stops there. The FOUND() function returns true (.T.). If no match is

found, FOUND() returns false (.F.). If TALK is SET ON, a message reports that the record was

not found.

SEEK can use any valid expression. You must enclose string expressions inside delimiters.

SEEK can search for partial matches, but only starting with the first character. SET EXACT must

be OFF.

SEEK is case sensitive.

SEEK with a memory variable does not require the macro function (&), as does the closely related

FIND command.

SEEK is similar to FIND. However, SEEK offers more flexibility because its argument can be any

valid expression.

RECOMMENDED USE:
SEEK provides the fastest dBASE search method. Use it in applications requiring rapid retrieval

of information. Typical examples are point of sale and customer service applications where people

call for account information.

Example—The customer service department of a magazine handles hundreds of inquiries every

month. When a customer calls with a problem, the information goes into a database so that its

resolution can be traced. If the customer calls back, SEEK instantly finds his or her record.

SUBSEEK.PRG prompts the operator for the customer's last name. It goes into variable LNAME,

which is then used in the SEEK. If FOUND, subroutine SDISPLAY presents the data. If not

FOUND, the operator can enter a new name, or exit.

* SUBSEEK.PRG finds subscriber and display data

USE subdata INDEX lnamedex && Indexed on LNAME

DO WHILE .t.

 lname = SPACE(15) && Create variable to hold last name

 * PICTURE "@!" forces all uppercase

 @ 05,10 SAY "Enter subscriber's last name: " GET lname PICTURE "@!"

SEEK SECTION 2

The dBASE® Language Handbook 379 Back to CONTENTS

 @ 06,10 SAY "Leave blank to exit"

 READ

 IF lname = " "

 RETURN

 ENDIF

 SEEK TRIM(lname) && TRIM removes trailing blanks

 IF FOUND() && If the record is FOUND,

 DO sdisplay && do subroutine that displays data

 ENDIF && If not FOUND, go back to top of loop,

ENDDO && and redo user prompt

VARIATIONS:
Clipper: If you SET SOFTSEEK ON, an unsuccessful SEEK moves the pointer to the record with

the next highest index key value, instead of to the end-of-file. This lets you search for "next closest"

matches.

dBASE IV: If you SET NEAR ON, an unsuccessful SEEK moves the pointer to the record with

the next highest index key value, instead of to the end-of-file. This lets you search for "next closest"

matches.

The dBASE IV SEEK() function seeks a specified value and returns true if it is found.

SEE ALSO:
Commands FIND, INDEX, SET NEAR, and SET SOFTSEEK; functions FOUND(), LOOKUP(),

and SEEK().

SELECT SECTION 2

The dBASE® Language Handbook 380 Back to CONTENTS

SELECT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SELECT <work area>/<alias>

DEFINITION:
Chooses a work area. Areas are designated by the numbers 1 through 10, the letters A through J,

or by the alias or name of a database file open in them.

DEFAULT:
If you open a file without selecting a work area, the area number defaults to 1.

RECOMMENDED USE:
All systems except Clipper provide up to ten independent work areas in which to open database

files, associated indexes, and format files. In this way, you can open multiple files simultaneously,

and you can gather data from each by changing areas or by designating fields with their aliases in

the form ALIAS->FIELDNAME.

Most commands that affect the file in the active work area do not affect database files in other

work areas. For example, COPY, DISPLAY, LIST, and USE all act on the active database file.

The record pointers of files in other work areas do not move. In contrast, SET RELATION TO

relates records in one open file to records in another, across work areas. CLOSE DATABASES

and CLEAR ALL close all open database files.

Example—A general ledger application opens files in three separate work areas and includes data

from all of them in an aged receivables report. ACCTCURR contains current receivables.

ACCTPAST contains past due accounts. ACCOUNTS contains client information.

SELECT 1

USE acctcurr

DISPLAY

 Record# ITEM ACOUNTNO AMOUNT PAST PDATE

 1 1410 1237 1222.00 0 12/22/88

SELECT 2

USE acctpast ALIAS owedfile

DISPLAY

Record# ITEM ACOUNTNO AMOUNT COMMENT PAST PDATE

 1 1238 1237 350.94 Six month payment 30 09/22/87

SELECT c

USE ACCOUNTS

DISPLAY

Record# LASTNAME ADDRESS CITY STATE ACOUNTNO

SELECT SECTION 2

The dBASE® Language Handbook 381 Back to CONTENTS

 1 Lowdon 1414 S. Malden Ralson VA 1237

To obtain data from separate work areas, specify a field in an unselected area using the syntax

ALIAS->FIELDNAME. In this example, the receivables report displays the account information

from ACCOUNT, and the history from ACCTCURR and ACCTPAST, without changing work

areas.

SELECT c

SET DEVICE TO print

@ 06,05 SAY "ACCOUNT NAME: " + lastname

@ 07,05 SAY "ACCOUNT NUM.: " + acountno

@ 08,05 SAY "ADDRESS: " + TRIM(address) + ", " + TRIM(city) + ", " + state

@ 09,05 SAY "---"

@ 10,05 SAY "ITEM: " + acctcurr->item + " AMT: " +;

 STR(acctcurr->amount,7,2) + " DATE DUE: " + DTOC(acctcurr->pdate)

@ 11,05 SAY ""

@ 12,05 SAY "ITEM: " + owedfile->item + " AMT: " +;

 STR(owedfile->amount,7,2) + " DATE DUE: " + DTOC(owedfile->pdate)

@ 13,05 SAY "---"

This program fragment prints the following report:

ACCOUNT NAME: Lowdon

ACCOUNT NUM.: 1237

ADDRESS: 1414 S. Malden Street, Ralston, VA

ITEM: 1410 AMT: 1222.00 DATE DUE: 12/22/88

ITEM: 1238 AMT: 350.94 DATE DUE: 09/22/87

LIMITS/WARNINGS:
Although you can open different files simultaneously, you cannot open a single file in more than

one area at a time.

Note that memory variables are not allocated by work area, only files.

VARIATIONS:
Note that the number of open files is limited, and varies among the systems.

Clipper: Work areas may be designated 0 through 254. The first ten may be designated by the

letters A through J.

Clipper, FoxBASE+: SELECT 0 selects the first available (unused) work area. It is useful for

creating general purpose subroutines that do not conflict with other programs.

SELECT SECTION 2

The dBASE® Language Handbook 382 Back to CONTENTS

dBASE III PLUS: Allows work area M as well as A through J. The letters are reserved words; do

not use them as field names or memory variable names. If you need a memory variable "A," call

it "AA" instead.

Also note that dBASE III PLUS reserves work area 10 for an open catalog. Opening a catalog will

automatically close a file open in area 10.

dBASE IV: You can define work areas A through J. These letters are reserved words.

Also note that dBASE IV reserves work area 10 for an open catalog. Opening a catalog will

automatically close a file open in area 10.

You can open a database file in another work area without first SELECTing it, with the command:

USE <filename> IN <work area>

Many functions can operate on other work areas by using the area alias as an argument as in the

end-of-file function:

? EOF("main")

.T.

FoxBASE+: Many functions can operate on other work areas by using the area number as an

argument as in the end-of-file function:

? EOF(1)

.T.

SEE ALSO:
Commands SET CATALOG, SET RELATION, and USE; function EOF().

SET SECTION 2

The dBASE® Language Handbook 383 Back to CONTENTS

SET

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SET

DEFINITION:
Displays a menu for controlling system attributes. Designed for interactive use, it is available only

in the interpreters dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+. Avoid SET in programs

because it allows the end user to tamper with the program's working environment.

Attributes controlled in the SET menu include:

• SET options (CONSOLE, DEVICE, TALK, DEVICE)

• Screen colors and other screen attributes

• Function key assignments

• Default disk drives

• Open ALTERNATE, INDEX, or FORMAT files

• Margins

• Decimals

• Date

RECOMMENDED USE:
Use the SET command in the interactive mode. In programs, all SET menu selections have

command equivalents.

VARIATIONS:
The menu formats and options vary slightly among dBASE III PLUS, dBASE IV, dBXL, and

FoxBASE+.

SEE ALSO:
Command DISPLAY/LIST STATUS, RESTORE STATUS, and SAVE STATUS; function

SET().

SET ALTERNATE SECTION 2

The dBASE® Language Handbook 384 Back to CONTENTS

SET ALTERNATE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET ALTERNATE TO [<filename>]

SET ALTERNATE ON/OFF

DEFINITION:
Redirects line-oriented screen output to an ASCII text file. The file is given an extension of TXT

and can be edited with most word processors. Operations which do direct screen positioning, such

as @... SAY, EDIT and BROWSE, are not redirected. Commands that produce line-oriented

output include DISPLAY, LIST, and ?.

SET ALTERNATE TO <filename> overwrites an existing file with the same name. It does not

respect the SAFETY setting.

RECOMMENDED USE:
The SET ALTERNATE command consists of two parts:

• SET ALTERNATE TO [<filename>]

• SET ALTERNATE ON/OFF

SET ALTERNATE TO <filename> creates and opens the text file. It overwrites an existing file

with the same name.

Then, when you SET ALTERNATE ON, output goes to the specified text file. If you SET

ALTERNATE OFF and then ON again, output is added to the open ALTERNATE file. To close

the file, use SET ALTERNATE TO with no argument, or CLOSE ALTERNATE.

Note that dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+ redirect keyboard input, as well

as screen output, to the alternate file.

SET ALTERNATE does not affect the screen's appearance.

Example—A condominium timeshare sales program generates sales reports. Rather than printing

them, it puts them in text files

for merging with word processing documents.

The SALES file contains end of month figures. The program SETs ALTERNATE TO endmonth.

After SETting ALTERNATE ON, the LIST command chooses all accounts in California and

SET ALTERNATE SECTION 2

The dBASE® Language Handbook 385 Back to CONTENTS

displays sales amounts. The program then USEs an EXPENSE file and LISTs the California sales

representatives' mileage. This report is added to the file ENDMONTH.

USE sales && Create end of month sales report in a text file

SET ALTERNATE TO endmonth

SET ALTERNATE on

LIST ALL acct_name,amount FOR state = "CA" && Sample query

SET ALTERNATE off

USE expenses

SET ALTERNATE on && Add expense information to sales report

LIST ALL mileage FOR state = "CA"

CLOSE ALTERNATE

LIMITS/WARNINGS:
dBASE III PLUS: SETting ALTERNATE TO an existing filename causes an error. To avoid it,

erase the file first as in:

mfile = "TEMP.TXT"

ERASE &mfile

SET ALTERNATE TO &mfile

VARIATIONS:
Clipper, FoxBASE+: You can redirect @...SAYs to a text file by specifying a filename instead of

a printer, as in SET PRINTER TO ENDMONTH. When you SET DEVICE TO PRINT, all

@...SAY output goes to the file ENDMONTH. No extension is given.

dBASE IV: The ADDITIVE option appends to a text file with the form:

SET ALTERNATE TO <filename> ADDITIVE

Without ADDITIVE, SET ALTERNATE TO <filename> overwrites an existing file with the same

name.

dBXL, Quicksilver: You can redirect @...SAYs to a text file using the command SET DEVICE

TO ALTERNATE. The other two SET ALTERNATE commands are also necessary. First, SET

DEVICE TO ALTERNATE, then SET ALTERNATE TO <filename>. Finally, SET

ALTERNATE ON.

SEE ALSO:
Command CLOSE ALTERNATE, SET DEVICE, and SET PRINTER.

SET AUTOLOCK SECTION 2

The dBASE® Language Handbook 386 Back to CONTENTS

SET AUTOLOCK

DIALECTS:
Quicksilver only.

SYNTAX:
SET AUTOLOCK ON/OFF

DEFINITION:
Toggles Quicksilver's automatic record locking mode for multiuser operation on a network.

With SET AUTOLOCK ON, a REPLACE or READ on a single record automatically locks it.

With SET AUTOLOCK OFF, you must issue an explicit RLOCK().

When you SET AUTOLOCK ON, trying to REPLACE or READ a locked record causes an error.

Use the ON NETERROR command to trap failed locking attempts.

DEFAULT:
OFF

RECOMMENDED USE:
SET AUTOLOCK ON simplifies multiuser programming by eliminating explicit record locking.

SET AUTOLOCK OFF to maintain dBASE III PLUS-compatibility.

Example—A multiuser inventory program uses SET AUTOLOCK ON to eliminate explicit

record locking.

SET EXCLUSIVE off

SET AUTOLOCK on

ON ERROR DO trapfail && TRAPFAIL contains a RETRY command

 && to reexecute READ if AUTOLOCK fails

USE invent INDEX invdex

SEEK "8245"

STORE AUTOMEM

@ 10,10 SAY "Description"

@ 10,22 GET desc

@ 11,10 SAY "Quantity"

@ 11,22 GET qty

@ 12,10 SAY "Price"

@ 12,22 GET price

READ

REPLACE AUTOMEM

SET AUTOLOCK SECTION 2

The dBASE® Language Handbook 387 Back to CONTENTS

LIMITS/WARNINGS:
You must use Quicksilver's -O compiler option to use ON ERROR.

SEE ALSO:
Functions FLOCK() and RLOCK().

SET AUTOSAVE SECTION 2

The dBASE® Language Handbook 388 Back to CONTENTS

SET AUTOSAVE

DIALECTS:
dBASE IV only.

SYNTAX

SET AUTOSAVE ON/OFF

DEFINITION:
Determines whether a disk write occurs after each update to a database record. With AUTOSAVE

OFF, records are written when the internal buffer is full. This makes processing faster but increases

the chance of a power loss damaging data.

SET AUTOSAVE ON forces a disk write after each update.

DEFAULT:
OFF

VARIATIONS:
Clipper: Use COMMIT or SKIP 0 to force a disk write.

dBASE III PLUS, dBXL, and Quicksilver: Write data to disk immediately.

FoxBASE+: Use FLUSH to force a disk write.

SEE ALSO:
Commands COMMIT, FLUSH, and SKIP.

SET BELL SECTION 2

The dBASE® Language Handbook 389 Back to CONTENTS

SET BELL

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET BELL ON/OFF

DEFINITION:
Toggles the computer bell ON or OFF during data entry. The BELL normally rings when you enter

invalid data or reach the end of a field.

DEFAULT:
ON. SET BELL does not affect rings programmed using the command ? CHR(7)

RECOMMENDED USE:
SET BELL OFF to eliminate the annoying bell when entering data into a GET.

VARIATIONS:
Clipper: You can specify the logical expressions (.T.) or (.F.) to indicate ON or OFF in the SET

command. Enclose the logical value in parentheses.

Clipper's TONE() function lets you create musical sounds. What could be more fun than a musical

database?

dBASE IV: You can change the bell's tone and length by supplying a frequency and duration with

the command:

SET BELL TO [<frequency>,<duration>]

Frequency is a value ranging from 19 to 10,000 inclusive. The duration can be from 1 to 20

seconds. Whenever the bell sounds, it has the tone and duration of the last SET BELL command.

To set the bell for a high pitched tone lasting 5 seconds, use the command

SET BELL TO 7500,5

The following user defined function simplifies the use of SET BELL:

FUNCTION tone

PARAMETERS freq,dura

SET BELL TO freq,dura

?? CHR(7)

RETURN ""

SET BELL SECTION 2

The dBASE® Language Handbook 390 Back to CONTENTS

To get maximum speed, TONE() has no error checking.

SEE ALSO:
Functions CHR() and TONE().

SET BLOCKSIZE SECTION 2

The dBASE® Language Handbook 391 Back to CONTENTS

SET BLOCKSIZE

DIALECTS:
dBASE IV only.

SYNTAX:
SET BLOCKSIZE TO <expN>

DEFINITION:
Changes the disk storage block size of memo fields and multiple index files (extension MDX).

The block size is 512 times <expN>, where <expN> is between 1 and 32.

Existing memo fields retain their block sizes. New ones created with CREATE, COPY, or

MODIFY STRUCTURE have the new block size.

DEFAULT:
1

RECOMMENDED USE:
Even if you enter only one character in a memo field, dBASE IV allocates space for an entire

block. If you generally enter short memos or index small files, you will greatly reduce disk storage

requirements by specifying a small block size.

For large memo fields, defining a larger block size improves performance for formatting and

printing. However, at the same time, dBASE IV takes slightly longer to open and save the memo.

Example—An architect stores design notes in memo fields. Since the notes are generally only one

or two lines, the architect issues the command

. SET BLOCKSIZE TO 1

You can SET BLOCKSIZE with the BLOCKSIZE parameter in the CONFIG.DB file, in the form

BLOCKSIZE=<expN>

LIMITS/WARNINGS:
To maintain compatibility with dBASE III PLUS, SET BLOCKSIZE TO 1 (the default).

SET BORDER SECTION 2

The dBASE® Language Handbook 392 Back to CONTENTS

SET BORDER

DIALECTS:
dBASE IV only.

SYNTAX:
SET BORDER TO [SINGLE/DOUBLE/NONE/PANEL/<border definition>]

DEFINITION:
Changes the default window and popup borders, and boxes created by the @...TO command.

OPTIONS:
The <border definition> lets you define each side and corner individually. The definition consists

of up to eight keyboard characters or ASCII characters in a list representing parts of the border, as

follows:

SET BORDER TO <t>,,<l>,<r>,<tl>,<tr>,<bl>,

tl______t______tr t = top tl = top left

| | b = bottom tr = top right

l r l = left bl = bottom left

| | r = right br = bottom right

bl______b______br

You may omit any characters in the list by leaving their commas in place. You must omit extra

commas from the end. Only parts of the border you specify will be redefined, unless you specify

just the first character. In that case, it makes up the entire border.

A SINGLE-line border is the default. (Equivalent to SET BORDER TO 196, 196, 179, 179, 218,

191, 192, 217).

DOUBLE creates a double line border. (Equivalent to SET BORDER TO 205, 205, 186, 186,

201, 187, 200, 188).

NONE omits the border. PANEL creates a solid bar border. (Equivalent to SET BORDER TO

219).

RECOMMENDED USE:
Use SET BORDER to change the default border. Windows and popups can override the default

without changing it.

Example—An invoicing application prints a border with dollar signs, just to remind recipients of

the subject under consideration.

SET BORDER SECTION 2

The dBASE® Language Handbook 393 Back to CONTENTS

SET BORDER TO "$"

@ 10,10 TO 15,30

 $$$$$$$$$$$$$$$$$$$$

 $ $

 $ $

 $ $

 $ $

 $$$$$$$$$$$$$$$$$$$$

To redefine only the top, bottom, and sides of a border, leaving the corners as dollar signs, the

programmer uses the ASCII characters for single lines.

SET BORDER TO 196,196,179,179

 $───———————————————$

 │ │

 │ │

 │ │

 │ │

 $——————————————————$

To restore the default single line, the programmer issues SET BORDER TO by itself.

LIMITS/WARNINGS:
Do not use ASCII characters 7, 8, 10, 12, 13, 27, and 127 in <border definitions>. They may

interfere with print drivers.

SEE ALSO:
Commands @...TO, DEFINE POPUP, and DEFINE WINDOW.

SET CARRY SECTION 2

The dBASE® Language Handbook 394 Back to CONTENTS

SET CARRY

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SET CARRY ON/OFF

DEFINITION:
Determines whether data from the previous record is copied to the one newly added by APPEND,

BROWSE, or INSERT. SET CARRY ON is helpful when data items (such as state, country,

telephone area code, or industry type) remain unchanged over many records. You need not reenter

them each time. SET CARRY does not affect INSERT BLANK or APPEND BLANK.

DEFAULT:
OFF

VARIATIONS:
dBASE IV: Allows a list of fields to be copied, as follows:

SET CARRY TO <field list> [ADDITIVE]

This form of SET CARRY automatically SETs CARRY ON. The ADDITIVE option lets you add

fields to the list. For example, to just carry default values for state, zipcode, and dialing prefix,

issue the command

SET CARRY TO state,zip,prefix

To add entry date to the list, use the command

SET CARRY TO entdate ADDITIVE

SET CARRY TO <field list> ignores the SET FIELDS command.

SEE ALSO:
Commands APPEND and INSERT.

SET CATALOG SECTION 2

The dBASE® Language Handbook 395 Back to CONTENTS

SET CATALOG

DIALECTS:
dBASE III PLUS and dBASE IV.

SYNTAX:
SET CATALOG ON/OFF

SET CATALOG TO [<filename]>/?

DEFINITION:
SET CATALOG keeps a record of open files. It helps organize related files for users who work

primarily in the interactive mode. (In programs, the required files are explicit.)

SET CATALOG is an interactive command. It has no use in programs.

RECOMMENDED USE:
Use SET CATALOG to organize groups of files. For example, if you work interactively with

payroll data and accounts receivable data, you could maintain two catalogs. Each simply presents

a list of logically grouped files.

When you SET CATALOG ON, and SET CATALOG TO <filename>, any new files you use are

added to the catalog. If no catalog exists, one is created. You are then asked for a title, if SET

TITLE is ON. If this is the first catalog to be created, dBASE III PLUS and dBASE IV

automatically generate a master catalog, which keeps track of all other catalogs.

The command SET CATALOG TO ? lists all catalogs.

Whenever you create a new catalog or open an existing one, SET CATALOG is automatically set

ON.

The catalog file is a standard dBASE database file, except that it has an extension of CAT. It has

the following structure:

 Field Field Name Type Width Dec

 1 PATH Character 70

 2 FILE_NAME Character 12

 3 ALIAS Character 8

 4 TYPE Character 3

 5 TITLE Character 80

 6 CODE Numeric 3

 7 TAG Character 4

 ** Total ** 181

SET CATALOG SECTION 2

The dBASE® Language Handbook 396 Back to CONTENTS

The catalog maintains a record of files associated with open database files. The following

commands update the catalog automatically:

COPY STRUCTURE

COPY STRUCTURE

EXTENDED

COPY TO

CREATE

CREATE FROM

CREATE/MODIFY

LABEL

CREATE/MODIFY

QUERY

CREATE/MODIFY

REPORT

CREATE/MODIFY

SCREEN

CREATE/MODIFY VIEW

IMPORT FROM

INDEX

JOIN

SET FILTER TO

SET FORMAT

SET VIEW

SORT

TOTAL

USE

If dBASE III PLUS or dBASE IV finds the name of an affected database file in the catalog, and

SET TITLE is ON, the user is prompted for a file title.

If the user deletes files listed in the catalog, but SET CATALOG is OFF, dBASE will update the

catalog the next time it is opened.

SPECIAL USES:
SET CATALOG TO <filename> is the only dBASE III PLUS or dBASE IV command that can

create a database file under program control. (The CATALOG file itself is a database file, despite

its CAT extension). This means programmers can create a catalog file, COPY its STRUCTURE

EXTENDED, and then create any other database file with CREATE FROM. See CREATE FROM

and COPY STRUCTURE for more information.

LIMITS/WARNINGS:
Work area 10 is reserved for the open catalog.

SEE ALSO:
Commands COPY and SET TITLE.

SET CENTURY SECTION 2

The dBASE® Language Handbook 397 Back to CONTENTS

SET CENTURY

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET CENTURY ON/OFF

DEFINITION:
Allows the input of four-digit years in date fields. Normally, only the last two digits are read and

twentieth century dates are assumed. Although four digit years appear, SET CENTURY ON does

not affect the storage size of date fields since dates are stored internally as numbers. Non-twentieth

century date values retain the correct century, even if you SET CENTURY OFF.

DEFAULT:
OFF

VARIATIONS:
Clipper: You can specify the logical expressions (.T.) or (.F.) to indicate ON or OFF in the SET

command. Enclose the logical value in parentheses.

SEE ALSO:
Command SET DATE; functions DATE() and YEAR().

SET CLEAR SECTION 2

The dBASE® Language Handbook 398 Back to CONTENTS

SET CLEAR

DIALECTS:
FoxBASE+ only.

SYNTAX:

SET CLEAR ON/OFF

DEFINITION:
Determines whether the commands SET FORMAT TO and QUIT clear the screen.

By SETting CLEAR OFF, programmers can lay format file screens over background screens,

simulating windowing. In addition, you can leave messages on the screen even after issuing QUIT.

DEFAULT:
ON

SEE ALSO:
Commands CLEAR, SET FORMAT, and QUIT.

SET CLOCK SECTION 2

The dBASE® Language Handbook 399 Back to CONTENTS

SET CLOCK

DIALECTS:
dBASE IV only.

SYNTAX:
SET CLOCK ON/OFF

[SET CLOCK TO [<coord>]]

DEFINITION:
SET CLOCK ON displays a clock based on the system time. It shows hours, minutes, seconds,

and am or pm. The display is 11 characters wide. The display format is controlled by the command

SET HOURS TO 12/24. The 12-hour format is the default.

SET CLOCK TO <coord> displays the clock at a different coordinate. The default is 0,69.

SET CLOCK TO with no coordinates returns the clock to its default position.

SET CLOCK OFF deactivates the clock, but does not erase the screen.

DEFAULT:
OFF

RECOMMENDED USE:
Display the system clock as a convenience to users.

Example—A large bakery takes orders by telephone. The order entry program displays the time

in the lower right corner of the screen.

SET CLOCK TO 24,68

The clock appears as:

2:06:07 pm

LIMITS/WARNINGS:
Be sure to put the clock in an unused part of the screen; otherwise, it covers other screen output,

including SAYs and GETs.

SEE ALSO:
Function TIME().

SET COLOR SECTION 2

The dBASE® Language Handbook 400 Back to CONTENTS

SET COLOR

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET COLOR ON/OFF

DEFINITION:
Switches between color and monochrome displays on systems that have both.

When you SET COLOR ON, you may change screen colors with the SET COLOR TO command.

If you SET COLOR OFF, the SET COLOR TO command changes other screen attributes such as

underline and inverse video.

DEFAULT:
Display used when you started the program.

SEE ALSO:
Command SET COLOR TO.

SET COLOR TO SECTION 2

The dBASE® Language Handbook 401 Back to CONTENTS

SET COLOR TO

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET COLOR TO [[<standard>][,<enhanced>][,<border>][,<background>]]

DEFINITION:
Changes the screen colors or video attributes. <standard> refers to normal text display.

<enhanced> refers to error message and input field display. Specify both <standard> and

<enhanced> as foreground and background colors separated by a slash. Specify colors by codes

from the tables below. <border> refers to the screen perimeter. Use the <background> setting on

computers that allow only one background color for both standard and enhanced displays.

Note that you cannot set background and border attributes on monochrome monitors.

RECOMMENDED USE:
Use colors and video attributes to highlight user prompts and error messages.

Example—Set standard text to red on blue, and enhanced text to white on green, with a green

border.

SET COLOR TO R/B,W/G,G

The default setting for both color and monochrome is white letters on a black background with a

black border. Highlighted or enhanced displays appear in black on a white background.

COLOR CODE
Black N or blank

Blank X

Blinking *

Bold +

Blue B

Brown GR

Cyan BG

Green G

Inverse I

Magenta RB

Red R

Underline U

White W

SET COLOR TO SECTION 2

The dBASE® Language Handbook 402 Back to CONTENTS

MONOCHROME ONLY ATTRIBUTES
Black N

Blank X

Inverse I

Underline U

White W

Attributes can also make colors blink or appear in high intensity. High intensity makes colors

brighter and lighter in hue. To make them blink, use the letter code with an asterisk (*) as in SET

COLOR TO B*. To make colors high intensity, use the plus sign (+), as in SET COLOR TO B+.

Example 1—Set standard text to yellow on blue, and enhanced text to white on green, with a green

border.

SET COLOR TO GR+/B,W/G,G

Yellow is not on the chart, but you can create it with high intensity brown. You can create grey

with N+.

The ability to use color attributes varies among computer systems. Some allow different

background colors for standard and enhanced text areas as in the examples above. Others allow

only one background color. In this case, set the <standard> and <enhanced> texts without a

background (no slash), then set a <border> and a single <background> color.

Example 2—Set standard text to yellow, enhanced text to white, and border and background to

green.

SET COLOR TO GR+,W,G,G

When setting colors, note that you need not specify everything. If you omit an attribute from a

SET COLOR TO command, it simply keeps its current setting. Use a comma to mark an omitted

option. For example, the command SET COLOR TO ,,R changes the border to red.

LIMITS/WARNINGS:
SET COLOR TO's effects may vary from one computer to another. Some monochrome monitors,

for example, automatically translate colors into contrasting shades of green or amber, depending

on the screen color. Such displays are called composite monitors. They respond to SET COLOR

TO commands like color monitors. When you use conventional color combinations on composite

displays, the screen may become unreadable because of a lack of contrast. Popular computers with

composite displays include Compaq's Deskpro series.

VARIATIONS:
Clipper: Allows the English spelling COLOUR. Clipper has an additional color attribute,

<unselected>, in the form

SET COLOR TO [[<standard>][,<enhanced>][,<border>][,<background>][,<unselected>]]

SET COLOR TO SECTION 2

The dBASE® Language Handbook 403 Back to CONTENTS

When you specify an unselected color, the current GET (the one the cursor is touching) appears in

the enhanced color, whereas other GETs appear in the unselected color.

High intensity and blink are available only for foreground text. You may also specify colors by

number, except when you are using the ANSI terminal support program (ANSI.OBJ on the System

Disk).

Clipper, dBXL, FoxBASE+, and Quicksilver: Also recognize numerical codes.

COLOR NUMBER LETTER CODE
Black 0 N

Blue 1 B

Green 2 G

Cyan 3 BG

Red 4 R

Magenta 5 RB

Brown 6 GR

White 7 W

Blank X

dBASE IV: You can change colors for specific display areas with the command SET COLOR OF

ALERT/BOX/ FIELDS/ HIGHLIGHT/ MESSAGES/ NORMAL/ TITLES TO [<attribute>]. This

version of SET COLOR controls colors in <->applications and in the development system,

including the Query-by-Example, Applications Generator, Report Writer, Text Editor, and Forms

Generator modules.

The following list shows the screen areas affected by SET COLOR OF, grouped by keyword.

(This list is limited to screen areas relevant to dBASE programs.)

ALERT:

Clock

Line 23 status bar

Borders on help box

Selected button in error and help boxes

BOX:

Menu, list, and prompt box borders

FIELDS:

Prompt box data entry areas

BROWSE mode's selected field

Available GET fields

HIGHLIGHT:

Highlighted menu, list, and prompt box choices

Information box borders and interiors

Selected boxes

SET COLOR TO SECTION 2

The dBASE® Language Handbook 404 Back to CONTENTS

MESSAGES:

Bright help box text

Unselected, bright prompt box, error, and help box

buttons

Message line messages

Unselected, available menu and list choices

Navigation line messages

Error, help, and prompt box interiors

NORMAL:

Window borders

Calculated field expressions

@...SAY output

Unselected fields in BROWSE

Uncolored box borders drawn with @...TO.

TITLES:

LIST and BROWSE field headings

BROWSE table borders

Help box titles

Underlined help text

dBXL and Quicksilver: The CHARACTER option defines a background character to be

displayed within the border where no text has been entered. After the usual color command (on

the same line), add the option

 [CHARACTER "<background character>"]

For example, the following command sets the dBXL screen to high intensity white with a

background filled with the letter "X":

SET COLOR TO W+ CHARACTER "X"

When used with dBXL or Quicksilver windows, the background character feature can produce

interesting graphical displays. Note that the CHARACTER option requires at least one other color

attribute in the string.

SEE ALSO:
Commands SET DISPLAY and SET INTENSITY; functions ISCOLOR() and SETCOLOR().

SET CONFIRM SECTION 2

The dBASE® Language Handbook 405 Back to CONTENTS

SET CONFIRM

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET CONFIRM ON/OFF

DEFINITION:
Determines whether the user must press Enter (Return) when entering data into an input field. The

field may be a database field, or a memory variable edited using the @...SAY...GET command.

With SET CONFIRM OFF, the cursor automatically moves to the next input field when it reaches

the end of one. With SET CONFIRM ON, the operator must confirm each input field by pressing

the Enter key. Ctrl-C, Ctrl-W, PgUp, and PgDn also confirm and save the entry, then exit. Pressing

ESC exits, abandoning changes made to the current variable or field. Ctrl-Q works like ESC in all

systems except Clipper. Clipper ignores Ctrl-Q.

DEFAULT:
OFF

RECOMMENDED USE:
Use SET CONFIRM ON to prevent operators from "overflowing" input fields. Forcing

confirmations also improves the accuracy of data entry.

VARIATIONS:
Clipper: You can specify the logical expressions (.T.) or (.F.) to indicate ON or OFF in the SET

command. Enclose the logical value in parentheses.

SEE ALSO:
Commands @ and SET BELL.

SET CONSOLE SECTION 2

The dBASE® Language Handbook 406 Back to CONTENTS

SET CONSOLE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET CONSOLE ON/OFF

DEFINITION:
Determines whether messages, reports, listings, etc., appear on the screen. SET CONSOLE OFF

suppresses screen output, except for error messages and ones displayed using the @...SAY...GET

command. SET DEVICE controls @...SAY output.

With SET CONSOLE OFF, programs can record keyboard input using the WAIT, ACCEPT, or

INPUT commands; however, neither the prompting message nor the input will appear on the

screen.

DEFAULT:
ON

RECOMMENDED USE:
Use SET CONSOLE OFF to suppress the screen display when you print reports using the TO

PRINT option or the SET PRINT ON command.

Example—A real estate program prints lists of contact names. The programmer uses LIST with

the TO PRINT option, but first SETs CONSOLE OFF to prevent the output from going to the

screen. When the LIST ends, SET CONSOLE ON restores screen output.

USE propsects

CLEAR

@ 10,10 SAY "Now printing a list of qualified prospects..."

SET CONSOLE off

LIST lastname TO PRINT

SET CONSOLE ON

In this example, LASTNAME values appear on the printer, but not on the screen.

LIMITS/WARNINGS:
SET CONSOLE OFF is only valid in programs. It has no effect in the interactive mode.

VARIATIONS:

SET CONSOLE SECTION 2

The dBASE® Language Handbook 407 Back to CONTENTS

Clipper: You can specify logical expressions (.T.) or (.F.) to indicate ON or OFF in the SET

command. Enclose the logical value in parentheses.

SEE ALSO:
Command SET DEVICE.

SET CURRENCY SECTION 2

The dBASE® Language Handbook 408 Back to CONTENTS

SET CURRENCY

DIALECTS:
dBASE IV only.

SYNTAX:
SET CURRENCY TO [<expC>]

SET CURRENCY LEFT/RIGHT

DEFINITION:
Controls the currency symbol in PICTURE and FUNCTION numeric output.

SET CURRENCY TO [<expC>] replaces the default dollar sign with a string of up to nine

characters.

You continue to specify dollar signs in PICTUREs and FUNCTIONs, but they display as the new

string.

SET CURRENCY TO with no argument returns the current currency symbol.

SET CURRENCY LEFT/RIGHT controls the side of the number on which the symbol appears.

The default is LEFT.

RECOMMENDED USE:
Use SET CURRENCY in applications dealing with international funds or specialized units.

Example—A program converts dollars to Japanese yen. The programmer uses SET CURRENCY

TO change the currency symbol to YEN, then SETs CURRENCY TO RIGHT.

SET CURRENCY TO " YEN "

SET CURRENCY RIGHT

mconvert = 87372.22

? mconvert PICTURE "@$"

87372.22 YEN

LIMITS/WARNINGS:
If you specify a word as a currency symbol, leave a space before the first letter, as in

SET CURRENCY TO " YEN"

Otherwise, the PICTURE "@$" will repeat the first character of the word if there is room in the

template, as follows:

SET CURRENCY SECTION 2

The dBASE® Language Handbook 409 Back to CONTENTS

SET CURRENCY LEFT

SET CURRENCY TO "YEN"

mconvert = 87372.22

? mconvert PICTURE "@$"

 YYYYYYYYYYEN87372.22

You may use non-printing ASCII characters as currency symbols (for example, CHR(155) is a

cents sign). The symbols appear on the screen properly, but won't print on most printers.

SEE ALSO:
Commands @...SAY, SET POINT, and SET SEPARATOR.

SET CURSOR SECTION 2

The dBASE® Language Handbook 410 Back to CONTENTS

SET CURSOR

DIALECTS:
Clipper only.

SYNTAX:
SET CURSOR ON/OFF

DEFINITION:
Turns the cursor on or off.

DEFAULT:

ON

RECOMMENDED USE:
SET CURSOR OFF when creating graphic displays, menus, or other screens that do not require a

cursor.

Example—A legal application uses MEMOEDIT() to view a brief without editing. To eliminate

the distraction of a blinking cursor, the programmer turns it off.

CLEAR

tfile = MEMOREAD("brief")

SET CURSOR off

@ 0,0 SAY "Press ESC to exit"

@ 1,0 TO 21,61

MEMOEDIT(tfile,2,1,20,60,.F.)

SET CURSOR on

LIMITS/WARNINGS:
If you SET CURSOR OFF, remember to restore it with SET CURSOR ON. Otherwise, the cursor

will remain off after you exit from Clipper.This will make your word processor somewhat difficult

to use.

SEE ALSO:
Command SET CURSORMOVE.

SET CURSORMOVE SECTION 2

The dBASE® Language Handbook 411 Back to CONTENTS

SET CURSORMOVE

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
SET CURSORMOVE ON/OFF

DEFINITION:
Controls the position of the cursor while the screen is being updated.

SET CURSORMOVE OFF keeps the cursor in the top left corner while the screen is being

updated. SET CURSORMOVE ON makes the cursor follow each character as it is displayed.

DEFAULT:
OFF

RECOMMENDED USE:
SET CURSORMOVE OFF makes screen updates faster and neater. Use it to display information

screens or reports. However, users rely on the cursor to identify input fields and prompts. SET

CURSORMOVE ON whenever user input is required.

SEE ALSO:
Command SET CURSOR.

SET DATE SECTION 2

The dBASE® Language Handbook 412 Back to CONTENTS

SET DATE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET DATE AMERICAN/ANSI/BRITISH/FRENCH/GERMAN/ITALIAN

DEFINITION:
Sets the convention used for displaying dates.The formats are:

AMERICAN MM/DD/YY (month/day/year)

ANSI YY.MM.DD

BRITISH DD/MM/YY

FRENCH DD/MM/YY

GERMAN DD.MM.YY

ITALIAN DD-MM-YY

All date type memory variables and fields must be entered using the active SET DATE format.

The format does not affect internal storage.

SET CENTURY ON makes the dates appear with a four-digit year instead of two digits.

DEFAULT:
AMERICAN (MM/DD/YY, with two digits each).

VARIATIONS:
dBASE IV: Allows five additional formats: DMY, JAPAN, MDY, USA, and YMD.

DMY dd/mm/yy (same as BRITISH/FRENCH)

JAPAN yy/mm/dd (same as YMD)

MDY mm/dd/yy (same as AMERICAN)

USA mm-dd-yy

YMD yy/mm/dd (same as JAPAN)

Allows an optional TO keyword, as follows:

SET DATE TO <format>

instead of simply SET DATE <format>.

SEE ALSO:
Command SET CENTURY; function DATE().

SET DBF SECTION 2

The dBASE® Language Handbook 413 Back to CONTENTS

SET DBF

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
SET DBF TO <path>

DEFINITION:
Tells dBXL and Quicksilver which drive and directory contain database files. The <path>

specification can include a drive designator and a path name terminated by a backslash (\).

Regardless of the DBF setting, DIR displays files in the current directory only.

DEFAULT:
Without SET DBF, dBXL and Quicksilver search for database files in the current directory and in

ones specified by the SET PATH command.

RECOMMENDED USE:
SET DBF and SET NDX let you store database files and index files in their own directories. This

makes file storage more manageable. It also lets you address specific sets of database and index

files by directory.

Example—A genealogy application maintains index files in directory C:\GDEX. It uses database

files in C:\GFILES. The application uses SET DBF and SET NDX to find its files.

SET NDX TO C:\GDEX\

SET DBF TO C:\GFILES\

SEE ALSO:
Command SET NDX.

SET DEBUG SECTION 2

The dBASE® Language Handbook 414 Back to CONTENTS

SET DEBUG

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SET DEBUG ON/OFF

DEFINITION:
Prints a line-by-line history of a program's execution when SET ECHO is ON. With SET DEBUG

OFF, SET ECHO ON simply displays program lines.

DEFAULT:
OFF

RECOMMENDED USE:
Use SET DEBUG to find errors in a program's execution.

Example—Crash! An order tracking program in a large warehouse comes to an unexpected halt.

To document the problem, the programmer SETs DEBUG ON and reruns the program. Again it

fails. The programmer then compares the DEBUG output with the program source code and

notices that the program branched to the wrong subroutine during data entry. The operator had

apparently entered an "O" instead of a zero, and poor data validation did not trap it. But who cares

if the last order of Christmas stockings arrives on December 26th instead of December 24th?

SEE ALSO:
Commands DEBUG, SET ECHO, SET STEP, and SET TALK.

SET DECIMALS SECTION 2

The dBASE® Language Handbook 415 Back to CONTENTS

SET DECIMALS

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET DECIMALS TO <expN>

DEFINITION:
Determines how many decimal places appear in mathematical functions such as EXP(), LOG(),

and SQRT() and in calculations such as division and exponentiation.

SET DECIMALS rounds trailing decimals to accommodate the setting.

When SET FIXED is ON, the SET DECIMALS command affects all numeric displays. When it

is OFF, decimals are determined as follows:

• In multiplication and divison, the number of places is the sum of the numbers for all values

involved.

• For other calculations, the number of places is the maximum in any value.

SET DECIMALS and SET FIXED control only how numbers are displayed. Internally, numbers

retain their full values.

DEFAULT:
2

RECOMMENDED USE:
Use SET DECIMALS to align numeric results in screens and reports.

Example 1—A program computes college grade point averages. The commands SET DECIMALS

TO 3 and SET FIXED ON rounds the results to three places. (SET DECIMALS is ignored when

you SET FIXED OFF).

SET DECIMALS TO 3

SET FIXED ON

STORE 2.3568 TO gradepoint

2.357

SET FIXED OFF

? gradepoint

2.3568

Example 2—An engineering application displays the actual number of decimal places in each

value. SET FIXED OFF causes SET DECIMAL to be ignored.

SET DECIMALS SECTION 2

The dBASE® Language Handbook 416 Back to CONTENTS

SET FIXED OFF

? 1.000002 * 4.000005

4.000013000010

? 1.000002 + 4.000005

5.000007

VARIATIONS:
dBASE IV: SET FIXED is not functional. SET DECIMALS alone determines and activates the

specified number of places.

SEE ALSO:
Command SET FIXED; function ROUND().

SET DEFAULT SECTION 2

The dBASE® Language Handbook 417 Back to CONTENTS

SET DEFAULT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET DEFAULT TO [<drive designator>]

DEFINITION:
Specifies the disk drive for data and program files. <drive designator> is a letter representing a

valid drive. No colon is needed. For example, to change the default disk drive to A, use the

command

SET DEFAULT TO A

Valid drives include both physical drives and logical drives defined in memory (using a RAM disk

program). On some computers, drive designators are valid even if they don't exist (to allow you to

add them later). For example, if you have only drives A and C and you SET DEFAULT TO E, the

program may not indicate that E does not exist. A directory listing of E will show no files.

DEFAULT:
SET DEFAULT TO with no <drive designator> sets the default drive to the one on which the work

session began.

RECOMMENDED USE:
Use SET DEFAULT to specify the primary drive on which to search for files. Use SET PATH to

specify additional drives and paths to search.

LIMITS/WARNINGS:
dBASE does a poor job of validating drive designators. It allows single digits, single letters,

character strings, etc., regardless of whether they mean anything. If you use a character string to

designate a drive, dBASE takes the first character. It ignores trailing letters or digits. Completely

meaningless designators, such as numbers or signs, restore the original default drive. So type

carefully.

VARIATIONS:
Clipper: SET DEFAULT TO compiles without error, but it does nothing at runtime. Clipper

provides complete drive and path support for individual commands and through the SET PATH

command.

dBXL: SET DBF and SET NDX specify where dBXL searches for databases and index files,

respectively.

SET DEFAULT SECTION 2

The dBASE® Language Handbook 418 Back to CONTENTS

FoxBASE+: Produces a syntax error if you specify a nonexistent drive. FoxBASE+ loads program

files into a memory buffer to improve execution speed. If you change the default drive using SET

DEFAULT, the program in the memory buffer will still execute until you issue CLEAR

PROGRAM.

Quicksilver: SET DBF and SET NDX specify where Quicksilver searches for databases and index

files, respectively.

SEE ALSO:
Commands CD, DIR, SET DBF, SET NDX, and SET PATH.

SET DELETED SECTION 2

The dBASE® Language Handbook 419 Back to CONTENTS

SET DELETED

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET DELETED ON/OFF

DEFINITION:
Controls whether records marked for deletion remain visible. With SET DELETED ON, they are

ignored. With SET DELETED OFF, they appear in the file with an asterisk when LISTed,

DISPLAYed, or BROWSED, or with the word DEL in the full-screen edit mode.

Even when hidden with SET DELETED ON, deleted records retain their positions in the database

file. The record pointer simply skips over them in most operations. This does not affect operations

that move the pointer directly to a particular record. You can access deleted records with the GO

<record number> command, or the SCOPE options NEXT <n> or RECORD.

DEFAULT:
OFF

RECOMMENDED USE:
SET DELETED ON makes it unnecessary to waste time PACKing a large file after each deletion.

Example 1—An inventory system tracks quantities of pet food in a dockside warehouse. During

a day ITEMs may be deleted if deliveries are cancelled. Rather than DELETE and PACK each

time, the programmer uses SET DELETED ON to hide deleted records until the end of the week.

USE petfood

LIST

Record# ITEM

 1 Corn mash

 2 *Beef byproducts

 3 Seed mix

 4 *Nutriseed

 5 Fish mulch

 6 Aardvark chow

SET DELETED ON

LIST

Record# ITEM

 1 Corn mash

 3 Seed mix

 5 Fish mulch

 6 Aardvark chow

SET DELETED SECTION 2

The dBASE® Language Handbook 420 Back to CONTENTS

Example 2—In the same warehouse inventory system, the programmer avoids the use of GOTO

to move the record pointer. Even with SET DELETED ON, GOTO moves the pointer to deleted

records, producing unexpected results.

. GOTO 2

. ? ITEM

Beef byproducts

. LIST NEXT 2

Record# ITEM

 2 *Beef byproducts

 3 Seed mix

LIMITS/WARNINGS:
The commands INDEX and REINDEX disregard SET DELETED. They always include all

records.

VARIATIONS:
Clipper: Use the logical expressions (.T.) or (.F.) to mean ON or OFF in the SET command.

Enclose the logical value in parentheses.

SEE ALSO:
Commands DELETE, PACK, and RECALL; function DELETED().

SET DELIMITERS SECTION 2

The dBASE® Language Handbook 421 Back to CONTENTS

SET DELIMITERS

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET DELIMITERS ON/OFF

SET DELIMITERS TO [<expC>/DEFAULT]

DEFINITION:
SET DELIMITERS ON/OFF determines whether delimiters appear. They are marking characters

that enclose entry areas during full-screen editing, thus clearly indicating the beginning and end.

SET DELIMITERS TO lets you change the delimiters to any pair of characters.

<expC> must evaluate to either one or two characters. If there is only one, it will be both the left

and right delimiter. If there are two, the first is the left delimiter, and the second the right.

Delimiters may be non-keyboard ASCII characters specified with the CHR() function.

If you use a literal string for <expC>, you must surround it with quotation marks.

DEFAULTS:
DELIMITERS are normally set OFF. If they are set ON, the default delimiters are colons.

RECOMMENDED USE:
Use delimiters to clearly mark input fields.

Example 1—To improve the speed and accuracy of data entry, the programmer SETs

DELIMITERS ON. When the program GETs data from the user, the input field appears delimited

by colons.

SET DELIMITERS on

STORE SPACE(10) TO name

@ 10,10 SAY "Enter name " GET name

* <more @...SAY...GETs>

READ

Enter name :_ :

Example 2—Using parentheses as delimiters.

SET DELIMITERS on

SET DELIMITERS TO "()"

STORE SPACE(10) TO name

SET DELIMITERS SECTION 2

The dBASE® Language Handbook 422 Back to CONTENTS

@ 10,10 SAY "Enter name " GET name

READ

 Enter name (_)

Example 3—Using arrow symbols (ASCII 16 and 17) as delimiters.

SET DELIMITERS on

SET DELIMITERS TO CHR(16)+CHR(17)

STORE SPACE(10) TO name

@ 10,10 SAY "Enter name " GET name

READ

 Enter name >_ <

VARIATIONS:
Clipper: You can use the logical expressions (.T.) or (.F.) to mean ON or OFF in the SET

command. Enclose the logical value in parentheses.

FoxBASE+: DEFAULT is not optional in the SET DELIMITERS TO command. To restore the

colon delimiter, use SET DELIMITERS TO DEFAULT.

SEE ALSO:
Command @...SAY...GET; function CHR().

SET DESIGN SECTION 2

The dBASE® Language Handbook 423 Back to CONTENTS

SET DESIGN

DIALECTS:

dBASE IV only.

SYNTAX:
SET DESIGN ON/OFF

DEFINITION:
Controls access to the design mode.

SET DESIGN OFF restricts end users from creating or modifying database structures, and creating

reports, applications, queries, and other dBASE IV objects.

By default, pressing SHIFT-F2 from an EDIT or BROWSE screen brings up the design mode.

SET DESIGN OFF disables SHIFT-F2.

RECOMMENDED USE:
SET DESIGN OFF lets developers provide limited use of dBASE IV to end users, without the risk

of corrupting applications.

Example—A programmer creates a quick application for sales personnel. To save time, he uses

BROWSE to let them edit files. To prevent them from pressing SHIFT-F2 to escape from

BROWSE to the design mode, he issues SET DESIGN OFF.

SET DESIGN on

BROWSE NODELETE && Do not let users delete records

SET DESIGN ON

LIMITS/WARNINGS:
SET DESIGN does not restrict users from tampering with the PROTECT system.

SEE ALSO:
Commands BROWSE and EDIT.

SET DEVICE SECTION 2

The dBASE® Language Handbook 424 Back to CONTENTS

SET DEVICE

DIALECTS

Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET DEVICE TO PRINT/SCREEN

DEFINITION:
Lets you choose whether @...SAY commands are sent to the screen or the printer.

DEFAULT:
SCREEN

OPTIONS:
SET DEVICE TO PRINT sends output only to the printer. SET DEVICE TO SCREEN sends

output only to the screen.

RECOMMENDED USE:
Use SET DEVICE TO PRINT to print reports formatted with @...SAYs. A similar command, SET

PRINT ON, sends only list-oriented output to the printer.

Example—AdTrack 2.0 tracks magazine advertising sales. The program prints contracts using

SET DEVICE TO PRINT.

SET DEVICE TO PRINT && Begin printing

@ 05,10 SAY "Modern Cycling Magazine Advertising Contract"

@ 10,05 SAY "Under this agreement, you " + trim(ad_name)

* <more @...SAY statements>

SET DEVICE TO SCREEN && End printing

LIMITS/WARNINGS:
Of course, the screen and the printer differ in many ways. SCREEN coordinates are limited to 25

lines and 80 columns. Paper allows a wider range of positions. With SET DEVICE TO SCREEN,

the command

@ 50,10 SAY "This is line 50"

produces a syntax error. The same command works correctly with SET DEVICE TO PRINT.

Another difference between SCREEN and PRINT is the ordering of @...SAYs. Because most

printers do not allow reverse line feeds, @...SAYs must be printed from the top left to the bottom

right of the page. (On the screen, the order doesn't matter). If a printed @...SAY has a lower value

SET DEVICE SECTION 2

The dBASE® Language Handbook 425 Back to CONTENTS

than its predecessor, the page will eject. Quicksilver has a SET FEED OFF command that prevents

this.

VARIATIONS:
Clipper, FoxBASE+: You can send @...SAYs to a text file with SET PRINTER TO <filename>,

and SET DEVICE TO PRINT.

dBASE IV: You can send @...SAYs to a text file with SET DEVICE TO FILE <filename>. The

file is given a TXT extension.

Example—A chemical company saves test results in word processing documents. The results are

produced with @...SAYs redirected to a text file with SET DEVICE TO FILE RESULTS.

RESULTS.TXT is the target file.

SET DEVICE TO FILE results

* <@...SAYs and other statements>

SET DEVICE TO SCREEN

dBXL: An ALTERNATE option lets you redirect @...SAYs to a text file with

SET DEVICE TO ALTERNATE

This command works in conjunction with SET ALTERNATE TO and SET ALTERNATE ON.

Example—A government agency includes dBXL reports in word processing documents. To

redirect @...SAY output to a text file, the program opens an ALTERNATE file that can later be

edited by a word processor.

SET ALTERNATE TO taxbills

SET ALTERNATE on

SET DEVICE TO ALTERNATE

* <more @...SAYs and other statements>

CLOSE ALTERNATE

In this example, the report goes into the text file TAXBILLS.TXT.

SEE ALSO:
Commands @, SET ALTERNATE, SET FEED, SET PRINT, and SET PRINTER.

SET DISPLAY SECTION 2

The dBASE® Language Handbook 426 Back to CONTENTS

SET DISPLAY

DIALECTS:
dBASE IV only.

SYNTAX:
SET DISPLAY TO MONO/COLOR/EGA25/EGA43/MONO43

DEFINITION:
Selects the type of graphics display card in your computer.

If you specify a type not supported by your graphics card, SET DISPLAY has no effect.

DEFAULT:
Specified by user during installation.

RECOMMENDED USE:
Use SET DISPLAY to switch between 25- and 43-line displays. You can also use it to switch

display modes if your graphics card supports multiple modes.

Example—Before switching to a full screen BROWSE mode, a program uses SET DISPLAY TO

EGA43. The 43-line display mode lets the user view nearly twice as much data on a single screen.

SET DISPLAY TO EGA43

BROWSE

SET DISPLAY TO EGA25

SEE ALSO:
Commands SET and SET COLOR; function ISCOLOR().

SET DOHISTORY SECTION 2

The dBASE® Language Handbook 427 Back to CONTENTS

SET DOHISTORY

DIALECTS:
dBXL, dBASE III PLUS, and FoxBASE+.

SYNTAX:
SET DOHISTORY ON/OFF

DEFINITION:
Determines whether dBXL, dBASE III PLUS, and FoxBASE+ record program file commands in

a special memory area called the history buffer. When you SET DOHISTORY ON, programs are

recorded so you can later trace their execution and make temporary changes.

DEFAULT:
OFF

RECOMMENDED USE:
DISPLAY/LIST HISTORY lets you easily test and debug program commands. You can even edit

them in the history buffer; however, the changes do not go into the program file.

LIMITS/WARNINGS:
SET DOHISTORY ON slows program execution significantly.

dBASE IV: SET DOHISTORY is valid, but has no effect.

SEE ALSO:
Commands DISPLAY HISTORY, SET DEBUG, SET ECHO, SET HISTORY, SET STEP, and

SUSPEND.

SET ECHO SECTION 2

The dBASE® Language Handbook 428 Back to CONTENTS

SET ECHO

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SET ECHO ON/OFF

DEFINITION:
Controls whether to display program command lines as they are executed. When SET ON, this

powerful debugging command displays command lines while the program runs. If you first SET

DEBUG ON, the program lines are sent to the printer rather than the screen.

DEFAULT:
OFF

RECOMMENDED USE:
By using SET ECHO ON together with SET STEP ON and SET TALK ON, you can see each line

as it executes, plus the value of any expressions, variables, or fields that are evaluated.

LIMITS/WARNINGS:
SET ECHO ON displays program lines on the screen simultaneously with other screen output. The

results can be hard to follow because of overwriting. If you cannot follow the display, put plenty

of paper in your printer and SET DEBUG ON.

SEE ALSO:
Commands DEBUG, SET DEBUG, SET STEP, SET TALK, and SET TRAP.

SET EDITOR SECTION 2

The dBASE® Language Handbook 429 Back to CONTENTS

SET EDITOR

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
SET EDITOR TO "<filename>"

DEFINITION:
Specifies an external word processor or text editor for editing memo fields in Quicksilver, and

both memo fields and programs in dBXL.

DEFAULT:
Quicksilver's or dBXL's internal editor.

RECOMMENDED USE:
Example—A fast, programmable text editor such as QEDIT from SemWare, Inc. is often

preferable to the internal editor. A sales management system uses QEDIT as specified by SET

EDITOR.

* MAINSALE.PRG

SET EDITOR TO "QEDIT" && Select text editor QEDIT

USE sales && Use a file with a memo field NMEMO

SET FORMAT TO screenfmt && Open a format file SCREENFMT

READ

* SALESFMT.FMT

@ 1,1 GET nmemo && GET the memo field NMEMO in the format file

The last statement in the example presents the memo field NMEMO for editing. Pressing Ctrl-

PgUp or Ctrl-PgDn invokes the text editor, loading a file NMEMO.TMP. This temporary file is

written into the memo field and then deleted.

VARIATIONS:
You can specify external word processors or text editors in CONFIG files for dBASE III PLUS,

dBASE IV, dBXL, FoxBASE+, and Quicksilver with the TEDIT and WP statements. For example

TEDIT=QE

runs the external editor QE when you issue MODIFY COMMAND. The WP statement changes

the memo editor.

SEE ALSO:
Command MODIFY COMMAND; function MEMOEDIT().

SET ENCRYPTION SECTION 2

The dBASE® Language Handbook 430 Back to CONTENTS

SET ENCRYPTION

DIALECTS:
dBASE IV only.

SYNTAX:
SET ENCRYPTION ON/OFF

DEFINITION:
Determines whether dBASE IV encrypts database files created by COPY, JOIN, and TOTAL. If

the PROTECT security system is not installed, SET ENCRYPTION has no effect.

If you use the PROTECT security system to login to dBASE IV and SET ENCRYPTION ON,

database files created with COPY, JOIN, and TOTAL are encrypted. Only users with sufficient

access rights can read them.

The new file retains the source file's access and authorization requirements as established by the

system administrator in the PROTECT system. To decrypt a file, SET ENCRYPT OFF, then

COPY it.

To encrypt a file defined by CREATE, first CREATE it, then grant access privileges for it in the

PROTECT system.

DEFAULT:
ON

RECOMMENDED USE:
SET ENCRYPTION OFF to circumvent the default encryption when COPYing, JOINing, or

TOTALling databases. For SET ENCRYPTION to have any effect, the PROTECT system must

be installed.

Example—A commodities trading program uses encrypted master databases, yet lets users create

unencrypted summary files. To protect the confidentiality of the data, all COPYing, TOTALling,

and JOINing is strictly controlled. SET FIELDS is handy for restricting fields to COPY.

USE secrets && File has access level of 5

SET ENCRYPTION off

SET FIELDS to code,refnum

COPY TO temp FOR code = "1484" && TEMP.DBF is unencrypted

SET ENCRYPTION on

LIMITS/WARNINGS:
You cannot COPY <filename> TO TYPE <filetype> to convert encrypted databases to foreign

files (e.g., COPY TO <filename> TYPE WK1).

SET ENCRYPTION SECTION 2

The dBASE® Language Handbook 431 Back to CONTENTS

You cannot JOIN encrypted and unencrypted files.

MODIFY STRUCTURE and COPY STRUCTURE EXTENDED require unencrypted files. You

must first SET ENCRYPTION OFF, then modify the unencrypted structure. Since you cannot

change administrative GROUPs in a program, encrypted files in an application must have the same

group name (defined in PROTECT).

SEE ALSO:
Commands PROTECT and SET FIELDS; functions ACCESS() and USER().

SET ENCRYPTION SECTION 2

The dBASE® Language Handbook 432 Back to CONTENTS

SET ESCAPE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET ESCAPE ON/OFF

DEFINITION:
Controls the ESC key's effect on program execution. SET ESCAPE ON means that pressing ESC

interrupts execution. SET ESCAPE OFF lets INKEY() read ESC just like any other key.

In the interactive mode with SET ESCAPE ON, pressing the ESC key during an operation causes

the message ***INTERRUPTED*** to appear. Control returns to the prompt.

For example, pressing ESC during execution of ACCOUNTS.PRG causes the following message

to appear:

*** INTERRUPTED ***

Called from - C:accounts.prg

Cancel, Ignore, or Suspend? (C, I, or S) Cancel

Do cancelled

Choosing "C" cancels program execution and closes the program file. Ignore resumes execution

as if the ESC key hadn't been pressed. Suspend interrupts execution temporarily. Control returns

to the interactive prompt from which you can then perform other database tasks. When finished,

issue the RESUME command. Program execution will continue from where it left off.

DEFAULT:
ON

RECOMMENDED USE:
Use SET ESCAPE OFF in programs to be run by novices. It reduces the chance of someone

accidentally causing an exit to the prompt. This is particularly a problem on IBM PCs and

compatibles where ESC is just left of the 1 key and just above the Tab key.

VARIATIONS:
Clipper: Uses the key combination Alt-C to break program execution. In versions prior to Summer

'87, SET ESCAPE OFF disabled Alt-C. In Summer '87, use the SETCANCEL() function instead.

Also in Clipper, SET ESCAPE ON allows the ESC key to terminate a GET...READ, bypassing

any VALID clause. With SET ESCAPE OFF, ESC will not terminate the READ. You can then

use SET KEY to process the ESC key within the read, assigning it to another action.

SET ENCRYPTION SECTION 2

The dBASE® Language Handbook 433 Back to CONTENTS

Clipper lets you use the logical expressions (.T.) or (.F.) to mean ON or OFF in the SET command.

Enclose the logical value in parentheses.

dBXL: The FIX option lets you edit the current program line before resuming execution.

SEE ALSO:
Commands ON ERROR, ON ESCAPE, and ON KEY; functions INKEY(), READKEY(), and

SETCANCEL().

SET EXACT SECTION 2

The dBASE® Language Handbook 434 Back to CONTENTS

SET EXACT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET EXACT ON/OFF

DEFINITION:
Determines how to compare two character strings. When EXACT is ON, two strings are equal

only if every character matches.

SET EXACT ON ignores trailing blanks in string comparisons.

SET EXACT OFF causes strings to be compared starting with the leftmost character and moving

right. The comparison continues to the end of the string on the right of the relational operator

(=<>#). In other words, if the string on the right is an abbreviation of the one on the left, they

match.

DEFAULT:
OFF

RECOMMENDED USE:
Use SET EXACT ON for searches requiring an EXACT match.

Example—A demographic database uses SET EXACT ON to ensure that a search produces the

correct result. Normally, you can search for a partial key. This creates problems in a large database.

For example, suppose you LIST ALL FOR LASTNAME = "JACOBS" with SET EXACT OFF.

Not only do you get JACOBS, but you also get JACOBSON, JACOBSEN, JACOBSSON, etc.

USE leads && * EXACT is set off by default

LIST ALL lastname FOR lastname = "JACOBS"

Record # lastname

 2 JACOBSSON

 27 JACOBSEN

 66 JACOBS

 88 JACOBSON

With SET EXACT OFF, the righthand string can be an abbreviation of the lefthand string.

? "JACOBSON" = "JACOBS"

.T.

With SET EXACT ON, the strings must match exactly.

SET EXACT SECTION 2

The dBASE® Language Handbook 435 Back to CONTENTS

? "JACOBSON" = "JACOBS"

.F.

? "JACOBS" = "JACOBS"

.T.

LIMITS/WARNINGS:
SET EXACT ON ignores trailing blanks. For example, the following strings evaluate as equal.

SET EXACT on

? "Johnson " = "Johnson"

.T.

? "Johnson " = "Johnson"

.T.

To check for exact equality, add a character to each string as follows:

? "Johnson" + "." = "Johnson " + "."

.F.

VARIATIONS:
Clipper: You can use the logical expressions (.T.) or (.F.) to mean ON or OFF in the SET

command. Enclose the logical value in parentheses.

Clipper, FoxBASE+: The double equal sign operator (==) in logical equations indicates EXACT

equality. It acts as though SET EXACT is ON, regardless of the actual setting. Unlike SET EXACT

ON, however, the double equal sign does not ignore trailing blanks as shown:

? "Johnson " == "Johnson"

.F.

? "Johnson " == "Johnson"

.F.

Clipper: The double equal sign operator applies to both numbers and strings. Clipper sometimes

evaluates two numbers as being equal when, in fact, the 15th or 16th decimal places are not. The

double equal sign assures that they will evaluate as equal, since it uses only 12 decimal places.

FoxBASE+: The double equal sign operator applies only to strings.

SEE ALSO:
Commands FIND, LOCATE, and SEEK.

SET EXCLUSIVE SECTION 2

The dBASE® Language Handbook 436 Back to CONTENTS

SET EXCLUSIVE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, FoxBASE+, and Quicksilver.

SYNTAX:
SET EXCLUSIVE ON/OFF

DEFINITION:
Determines whether database files are opened in a shared or reserved mode.

On a network, SET EXCLUSIVE ON reserves database files for the user who opens them. They

may not be shared.

SET EXCLUSIVE OFF allows shared database files.

Changing the EXCLUSIVE setting does not affect previously opened files.

DEFAULT:
ON

On single user systems, SET EXCLUSIVE OFF is ignored.

RECOMMENDED USE:
Issue SET EXCLUSIVE OFF at the beginning of an application to allow file sharing on a local

area network. You can also use SET EXCLUSIVE at specific points in a program. However, it

does not affect files that are already open.

LIMITS/WARNINGS:
Although SET EXCLUSIVE OFF lets many users access the same files on a network, the

programmer must use appropriate file and record locks to maintain data integrity.

VARIATIONS:
Clipper: You can use the logical expressions (.T.) or (.F.) to mean ON or OFF in the SET

command. Enclose the logical value in parentheses.

SEE ALSO:
Command USE EXCLUSIVE; functions FLOCK() and RLOCK().

SET FEED SECTION 2

The dBASE® Language Handbook 437 Back to CONTENTS

SET FEED

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
SET FEED ON/OFF

DEFINITION:
Controls page ejects when printing with SET DEVICE TO PRINT. SET FEED OFF prevents the

page from advancing and sets the current line to zero. The line coordinate to print on is then

calculated relative to the new line zero. Normally, printing at a line coordinate below its

predecessor causes the printer to advance automatically to the top of the next page. The line counter

is then set to 0.

DEFAULT:
ON

RECOMMENDED USE:
Use SET FEED OFF to print on non-standard forms such as continuous form Rolodex cards, or

invoices. By disabling automatic page ejects, it gives programmers complete line-by-line printing

control.

Example 1—A software company prints employee identification cards on non-standard forms.

SET FEED OFF prevents automatic page ejects.

SET DEVICE TO PRINT

SET FEED off && Turn off page ejects

@ 05,10 SAY "Name: " && Print on line 5

@ 06,10 SAY "SSN:" && Print on line 6

@ 02,10 SAY "*EMPLOYEE*" && Print two lines below last line

The printed output looks like this:

Name:

 SSN:

 EMPLOYEE

With SET FEED OFF, printing on line 2 after printing on line 6 indicates a coordinate two lines

below line 6. With SET FEED ON, a page eject would occur and the word "*EMPLOYEE*"

would appear at the top of the next page.

SET FEED SECTION 2

The dBASE® Language Handbook 438 Back to CONTENTS

VARIATIONS:
dBASE IV: You can control page ejects with the _PEJECT system variable. Its options are

AFTER, BEFORE, BOTH, or NONE.

SEE ALSO:
Commands PRINTJOB and SET DEVICE TO PRINT; functions PCOL() and PROW().

SET FIELDS SECTION 2

The dBASE® Language Handbook 439 Back to CONTENTS

SET FIELDS

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SET FIELDS ON/OFF

SET FIELDS TO [list>/ALL]<F64>

DEFINITION:
Controls whether all or selected fields are accessible in database files.

SET FIELDS ON activates the field list in the SET FIELDS TO [<field list>/ALL] command.

SET FIELDS TO <field list> specifies which fields to access in database files. Specify fields by

names separated by commas. Select fields in unselected work areas with ALIAS->FIELDNAME.

SET FIELDS TO <field list> automatically invokes SET FIELDS ON. You can switch the SET

FIELDS TO <field list> ON or OFF with SET FIELDS ON/OFF.

Subsequent SET FIELDS TO [<field list>] commands add the specified fields to the active field

list.

SET FIELDS TO by itself removes all fields from the field list of the active database. SET FIELDS

TO ALL restores all fields.

If you LIST or DISPLAY STRUCTURE, fields in the active list are marked with the right angle

bracket >.

DEFAULT:
OFF, making all fields accessible.

RECOMMENDED USE:
When used interactively, SET FIELDS provides a focused view of your data quickly and easily.

In programs, however, there is a tradeoff between ease and control. When using SET FIELDS,

conflicts can easily arise with FILTERs and RELATIONS if a key field is not specified. To limit

the fields the end user sees, use FORMAT files and commands with explicit field lists. For

example, instead of:

SET FIELDS TO LNAME,ADDRESS

LIST

SET FIELDS SECTION 2

The dBASE® Language Handbook 440 Back to CONTENTS

use the command

LIST LNAME,ADDRESS

As a result, valid fieldnames will not be ambiguous, giving you better control over your program.

Note: dBASE IV's SET FIELDS command has other options that make it more useful in programs.

See Variations.

Example 1—An airline personnel database contains information about active pilots. The

personnel manager, wanting to view and edit only lastname and age information, uses SET

FIELDS TO LNAME,AGE to limit the display.

. USE pilots

. LIST

 Record# LNAME AGE CITY STATE ADDRESS NMEMO

 1 Ralphson 30 Boston MA 12 Elm Ln. Memo

 2 Johnson 22 San Diego CA 22 Main St Memo

. SET FIELDS TO lname,age

. LIST

 Record# LNAME AGE

 1 Ralphson 30

 2 Johnson 22

You can see which fields are SET by listing the structure. Specified fields appear with a right angle

bracket:

 . LIST STRUCTURE

 Structure for database: C:\ACCT\SALES.DBF

 Number of data records: 2

 Date of last update : 01/12/80

 Field Field Name Type Width Dec

 1> LNAME Character 10

 2> AGE Character 2

 3 CITY Character 10

 4 STATE Character 2

 5 ADDRESS Character 10

 6 NMEMO Memo 10

 ** Total ** 45

Example 2—You can specify fields in unselected work areas using the ALIAS->FIELDNAME

designator.

SELECT 2

USE SALES

SELECT 3

SET FIELDS TO SALES->LNAME && SET FIELDS to a field in area 2

SET FIELDS SECTION 2

The dBASE® Language Handbook 441 Back to CONTENTS

Note that SET FIELDS TO affects commands such as BROWSE, CHANGE, COPY

STRUCTURE, COPY TO, DISPLAY, EDIT, LIST, JOIN, SUM, and TOTAL.

SPECIAL USE:
Use the ALIAS-> designator to include fields from related database files.

When combining fields from related files, avoid changing data unless you have a view of all fields

from all files. If you change the key by which the files are related, the fields in your field list will

become misaligned.

VARIATIONS:
dBASE IV: You can SET read-only fields, calculated fields, and fields matching a wildcard

<pattern>, in the form:

SET FIELDS TO [<field> [/R] / <calculated fieldname>]

 [,<field>[/R] / <calculated fieldname>...]/ALL [LIKE/EXCEPT <pattern>]

Read-only fields are ones you want to prevent the user from editing. Note that the slash (/) is a

literal character you must enter with the R. To limit the field list to DEDUCTS, NAME, and PAY,

while specifying PAY as read-only, use the command

SET FIELDS TO deducts, pay /R, name

A calculated field is the result of a valid dBASE expression. The <calculated fieldname> is a

memory variable containing the expression. Note that the EDIT command doesn't immediately

update the calculated field as you edit a record. BROWSE, however, updates calculated fields as

soon as you move to a new field within a record.

Example 3—An invoice program in a towing company uses a calculated field MTOTAL to

display the amount due. The program defines MTOTAL as the sum of MILES, PARTS, and

LABOR.

USE invoice

SET FIELDS to miles, parts, labor, mtotal = miles + parts + labor, inv_num

DISPLAY

Record# MILES PARTS LABOR MTOTAL INV_NUM

 1 153.42 500.00 33.33 686.75 AABB

Calculated fields act like native database fields, as long as the database is open and the SET

FIELDS definition is active. Because you can use any valid expression in a calculated field, you

can go far beyond simple mathematics and do things such as include the time, date, diskspace, and

record count as part of the fields list.

You can also have user defined functions in calculated fields. This lets you do complex

computations without cluttering the SET FIELDS command. In the interactive mode, just include

your user defined function in the calculated field, then SET PROCEDURE TO the program file

SET FILTER SECTION 2

The dBASE® Language Handbook 442 Back to CONTENTS

containing your UDFs. In programs, simply add the user defined function to the end of a program

file.

Example 4—The towing company from Example 3 expands its invoice to include over 15 items.

To compute the invoice total efficiently, the programmer puts the formula in a user defined

function.

USE invoice

SET FIELDS to miles, parts, labor, mtotal = TOWTOTAL(), inv_num

FUNCTION towtotal

subtotal = miles + parts + labor + pickup + insur + postage + handling +;

driver + hookup + overhed + expenses + tools + license + fuel + phone + oil

RETURN subtotal * .065 && Tax

* End of TOWTOTAL

You can also define your field list using wildcard * and ? patterns. For example, you can SET a

field list for ALL LIKE m*, ALL EXCEPT m*, or ALL LIKE P?P.

If you name your fields with some forethought about their grouping in lists, you can save program

code by using wildcard characters as follows:

SET FIELDS TO ALL LIKE z*

or
SET FIELDS TO ALL EXCEPT r1?

SEE ALSO:
Commands CLEAR FIELDS, SET FORMAT, SET RELATION, and SET SKIP.

SET FILTER

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET FILTER TO [FILE <.QRY filename>/?] [<condition>]

DEFINITION:
Makes visible only records for which the <condition> is true. The condition can be any valid

expression.

SET FILTER acts only on the database file in the active work area. Therefore, FILTER conditions

can exist independently in separate work areas.

SET FILTER SECTION 2

The dBASE® Language Handbook 443 Back to CONTENTS

Note that the filter is not activated until the record pointer moves. You may, therefore, want to

issue a movement command such as GO TOP immediately after issuing SET FILTER.

Use SET FILTER TO by itself to turn the active filter off.

RECOMMENDED USE:
SET FILTER offers a convenient way of selecting data; however, it is very slow on large files

(thousands of records). If no matches exist, it examines every record.

SET FILTER is best suited to the interactive modes of dBASE III PLUS, dBASE IV, dBXL, and

FoxBASE+.

In programs, use other commands such as COPY, LIST, or REPLACE. They all allow expressions

and scopes that restrict the records to be processed.

Example—An insurance salesman maintains a list of clients in a database. When a client reaches

age 22, the insurance rate decreases. Rather than scanning all records, the salesman uses SET

FILTER to restrict the ones that appear.

. USE sales

. SET FILTER TO AGE > 22

. LIST

Record# LNAME AGE CITY STATE

 3 Jones 23 Chicago IL

 34 Smith 24 Ann Arbor MI

 85 Paul 25 Sacramento CA

Because certain insurance zones require a surcharge, the salesman adds a filter condition limiting

records by CITY.

. SET FILTER TO AGE > 22 .AND. CITY = "Sacramento"

. GO TOP

. LIST

Record# LNAME AGE CITY STATE

 5 Paul 25 Sacramento CA

Earlier in the week, the salesman had created a more complex FILTER criteria using CREATE

QUERY. He stored it in a file called HIGHRISK.

. SET FILTER TO FILE highrisk

. GO TOP

LIMITS/WARNINGS:
Note that you can still go directly to a hidden record using the GOTO <record number> command.

SET FILTER SECTION 2

The dBASE® Language Handbook 444 Back to CONTENTS

VARIATIONS:
Clipper: Conditions may not be specified from QRY files. There is no CREATE/MODIFY

QUERY.

dBASE III PLUS, dBASE IV, dBXL: You may create and save conditions with the interactive

query processor CREATE/MODIFY QUERY, and then specify them as filter conditions. If a

catalog is active (dBASE III PLUS and dBASE IV only), you can specify SET FILTER TO FILE

? and a list of available QRY files will appear.

dBASE IV: You cannot move the pointer to a hidden record using GOTO <record number>.

FoxBASE+: Conditions may not be specified from QRY files, since there is no

CREATE/MODIFY QUERY.

SEE ALSO:
Commands COPY, CREATE/MODIFY QUERY, LIST, REPLACE, and SET DELETED.

SET FIXED SECTION 2

The dBASE® Language Handbook 445 Back to CONTENTS

SET FIXED

DIALECTS:
Clipper, dBASE III PLUS, FoxBASE+, and Quicksilver.

SYNTAX:
SET FIXED ON/OFF

DEFINITION:
Determines whether to display the number of decimal places specified by the SET DECIMALS

command.

With SET FIXED ON, the number of places follows SET DECIMALS. Places are either added or

rounded to match the setting.

SET FIXED OFF displays numbers with their true number of places.

DEFAULT:
OFF

RECOMMENDED USE:
SET DECIMALS and SET FIXED control only how numbers are displayed. Internally, numbers

retain their full values. Use SET DECIMALS and SET FIXED in screens and reports.

Example—A farm yield report shows tons of wheat in a year, and over ten years. To make the

decimals consistent, the program uses SET DECIMALS and SET FIXED.

mtons = 453.045

mtotal = 54366.0348

SET DECIMALS TO 2

SET FIXED on

? mtons

453.05

? mtotal

54366.03

VARIATIONS:
Clipper: You can use the logical expressions (.T.) or (.F.) to mean ON or OFF in the SET

command. Enclose the logical value in parentheses.

dBASE IV: For compatibility, SET FIXED is recognized as a valid statement, but has no effect.

The SET DECIMALS command alone changes and activates the DECIMALS setting. The default

is 2 places (SET DECIMALS TO 2).

SET FIXED SECTION 2

The dBASE® Language Handbook 446 Back to CONTENTS

dBXL: SET FIXED has no effect in Version 1.2.

SEE ALSO:
Command SET DECIMALS.

SET FORMAT SECTION 2

The dBASE® Language Handbook 447 Back to CONTENTS

SET FORMAT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET FORMAT TO <FMT filename>/?

DEFINITION:
Opens the specified format file and closes any open format file in the current work area.

A format file is a text file containing @...SAY...GETs. When you issue a command such as

APPEND, CHANGE, EDIT, INSERT, or READ, the screen takes on the layout of the open format

file. The previous screen is cleared.

To create multi-page entry screens, put READ commands in a format file wherever you want a

page break. To page through the screens, use the PgUp and PgDn keys.

SET FORMAT TO or CLOSE FORMAT both close the format file in the selected work area.

Unless otherwise specified, SET FORMAT TO looks for a file with a FMT extension. If a dBASE

III PLUS or dBASE IV catalog is active, SET FORMAT TO ? lists the available format files.

RECOMMENDED USE:
SET FORMAT simplifies programming by letting you page easily through multiple screens. In

the interactive mode, SET FORMAT lets you use custom data entry forms in commands such as

EDIT and APPEND.

Example 1—A program that tracks impounded vehicles uses SET FORMAT to present multiple

data entry screens. READ divides the format file into separate screens.

* VEHICLE.PRG

USE vehicles && Contains vehicles stored on the lot

SET FORMAT TO entry1 && Use format file ENTRY1.FMT

EDIT && EDIT only available in dBASE III PLUS,

 && dBASE IV, dBXL, and FoxBASE+

* ENTRY1.FMT, 3 screen format file

* Page 1

@ 1,1 SAY "Name: " GET name && GET fields in the open database

@ 2,1 SAY "Address: " GET address

* <more @...SAYs>

READ

* Page 2

@ 1,1 SAY "Vehicle ID: " GET vin

SET FORMAT SECTION 2

The dBASE® Language Handbook 448 Back to CONTENTS

@ 2,1 SAY "Color: " GET color

* <more @...SAYs>

READ

* Page 3

@ 1,1 SAY "Make: " GET make

@ 2,1 SAY "Model: " GET model

* <more @...SAYs>

READ

VARIATIONS:
Clipper: Does not automatically clear the screen when a format file is activated. This lets you

create windowing effects by overlaying screens. Format files may contain commands other than

@...SAY...GETs and READs. For example, they may start with CLEAR.

Clipper does not support the CATALOG ? option of the SET FORMAT TO command.

dBASE III PLUS: Allows up to 32 screens in a format file.

dBASE IV: Allows up to 32 screens in a format file. You can use the CREATE/MODIFY screen

program to create screen files (extension SCR). When you save the SCR file, dBASE generates a

format file (extension FMT). When you SET FORMAT TO <FMT file>, or DO <FMT file> for

the first time, dBASE IV compiles it with an extension of FMO, and executes it. Use MODIFY

SCREEN when you want to change your format files, since it reads the SCR and FMT files

together. dBASE III PLUS FMT files are compatible with dBASE IV.

FoxBASE+: Allows up to 128 screens in a format file. Use SET CLEAR OFF to stop FoxBASE+

from automatically clearing the screen when using format files. This lets you create windowing

effects by overlaying screens. Note that SET CLEAR defaults to ON. FoxBASE+ does not support

the ? option of the SET FORMAT TO command.

Quicksilver: Does not support the ? option (CATALOG lookup) of the SET FORMAT TO

command.

SEE ALSO:
Commands @...SAY...GET, CLOSE FORMAT, READ, and SET CLEAR.

SET FUNCTION SECTION 2

The dBASE® Language Handbook 449 Back to CONTENTS

SET FUNCTION

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET FUNCTION <expN>/<expC> TO <exp>

DEFINITION:
Programs the function keys (usually labeled "F1," "F2," etc.).

<expN> is the function key number. The FKMAX() function returns the number of programmable

function keys.

<expC> is a function key label such as "F1", "F2", or "F3". You may use either a number or a label

to specify a key. When using a label, be sure to enclose it in quotation marks, as in "F2". The

unpronounceable FKLABEL() function returns the name of the specified function key.

<exp> refers to the program commands or values stored in the function key. You may include

multiple commands by putting semicolons in-between. Each semicolon automatically inserts a

carriage return (as if you had pressed the Enter key).

The expression stored in the function key must also be inside quotation marks. It is limited to 238

characters.

DEFAULT:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+ have preset function keys. To see the

settings, type

.SET <Enter>

An interactive menu will appear from which you must select the KEYS heading.

RECOMMENDED USE:
Program function keys to execute common commands from the dot prompt or to repeat character

strings or numbers during data entry.

Example 1—Store common commands in function keys for execution from the interactive mode.

.SET FUNCTION "F2" TO "LIST lname;"

Because function key labels vary among computers, use numbers when distributing applications.

SET FUNCTION SECTION 2

The dBASE® Language Handbook 450 Back to CONTENTS

Example 2—The marketing manager of a mailorder firm saves on typing by assigning common

commands to function keys. For example, F3 clears the screen and opens the SALES database

with an index.

.SET FUNCTION 3 TO "CLEAR;USE SALES INDEX SALESDEX;"

In this case, one keystroke replaces 33.

The functions FKMAX() and FKLABEL() are helpful in programming function keys by number.

FKMAX() returns the number of available programmable function keys. FKLABEL() returns the

name of a function key if passed its number.

LIMITS/WARNINGS:
Numbers stored in <exp> will be evaluated as numeric even though they are specified in quotation

marks. In fact, <exp> will give either a character or a numeric result, depending on circumstances.

Note that you cannot program the F1 key on an IBM PC using the SET FUNCTION command in

dBASE III PLUS, dBXL, and FoxBASE+. F1 is reserved as a HELP key.

VARIATIONS:
Clipper: Up to 39 function keys may be assigned. Besides F2 through F10 (F1 is reserved for

HELP), you use SHIFT to get function keys 11 through 20 (e.g., F11 is SHIFT-F1). For function

keys 21 through 30, press Ctrl (e.g., F21 is Ctrl-F1). For keys 31 through 40, press Alt (e.g., F31

is Alt-F1). Clipper accepts only function key numbers, not labels (such as "F2"). Note that function

key strings may contain control characters. For example, to assign Ctrl-C to a function key (to

issue a page down), use the command:

SET FUNCTION 4 to chr(3)

dBASE IV: You can program function keys F2 through F10, Shift-F1 through Shift-F9, and Ctrl-

F1 through Ctrl-F10.

Specify these keys by number or name. F2 is function key 1, CTRL-F1 is function key 10, and

SHIFT-F1 is function key 20.

F1, Shift-F10, and all Alt combinations are reserved. (You can program F1 with the ON KEY

command, for example, ON KEY F1 <command>.)

To SET function key SHIFT-F3 to LIST NEXT 10, use the command:

SET FUNCTION SHIFT-F3 TO "LIST NEXT 10;"

or

SET FUNCTION 22 TO "LIST NEXT 10;"

SET FUNCTION SECTION 2

The dBASE® Language Handbook 451 Back to CONTENTS

The F11 and F12 keys on enhanced keyboards are not accessible through SET FUNCTION.

dBXL: Attempts to reset F1 are ignored. Attempts to set function keys beyond F10 cause a syntax

error.

FoxBASE+: Trying to program the F1 key with the SET FUNCTION command causes a syntax

error. A way around this limitation is to use the ON KEY command to designate F1 as a "hot key."

To redefine F1 (scan code 315), issue the command

ON KEY = 315 <command>

Quicksilver: Only supports the SET FUNCTION command when using the PC-DOS linker

libraries. SET FUNCTION does not work with MS-DOS linker libraries. WordTech recommends

using ESCape sequences from a DOS batch file or dBASE program to redefine function keys.

ESCape sequences are hardware-dependent.

You may assign string values to the F1 key.

SEE ALSO:
Commands HELP, ON KEY, SET, and SET KEY; functions FKLABEL() and FKMAX().

SET GRAPHPRINT SECTION 2

The dBASE® Language Handbook 452 Back to CONTENTS

SET GRAPHPRINT

DIALECTS:
dBXL and Quicksilver only.

SYNTAX:
SET GRAPHPRINT TO [[EPSONFX/HPLASERJET/

 HPPLOTTER/IBM/OKIDATA][SIZE <expN1>]

 [VERTICAL/HORIZONTAL] [ASPECT <expN2>]]

DEFINITION:
Selects the graph printer and sets print options.

OPTIONS:
You may specify any one of these printers:

EPSONFX (Epson FX/LX dot matrix printer)

HPLASERJET (Hewlett-Packard Laserjet laser printer)

HPPLOTTER (Hewlett-Package Plotter HPGL language)

IBM (IBM Graphics Printer, Epson MX dot matrix printers)

OKIDATA (Okidata dot matrix printers)

IBM is the default.

SIZE <expN1> is the printed graph size. Sizes range from 0 (smallest) to 5 (largest). The default

is printer dependent.

VERTICAL/HORIZONTAL orients the printed graph horizontally or vertically. The default is

printer dependent.

ASPECT <expN2> is the ratio of horizontal dots to vertical dots in printed graphs. Because this

ratio varies among printers, circles may appear as ovals. <expN2> is a decimal value greater than

0 and less than or equal to 1. The higher the value, the greater the vertical depth.

RECOMMENDED USE:
Use SET GRAPHPRINT before printing graphs with the commands CREATE GRAPH, GRAPH

FORM, MODIFY GRAPH, and RESTORE GRAPH.

Example—A pie chart shows a company's growth percentage. Database file GAINS contains five

years' of quarterly data. SET GRAPHPRINT specifies an IBM printer with SIZE, VERTICAL,

and ASPECT options.

SET GRAPHPRINT TO IBM VERTICAL SIZE 1 ASPECT .44

RESTORE GRAPH FROM gaingraf TO PRINT

SET GRAPHPRINT SECTION 2

The dBASE® Language Handbook 453 Back to CONTENTS

SPECIAL USE:
You can install the graph printer in dBXL's configuration file (CONFIG.XL) with the syntax

GRAPHPRINT=EPSONFX/IBM/OKIDATA/HPLASERJET/HPPLOTTER

 [, <size>] [,VERTICAL/,HORIZONTAL] [,<aspect>]

LIMITS/WARNINGS:
The ASPECT option can cause graph titles to overlap.

VARIATIONS:
Quicksilver: You can also install printers with the INSTALL program.

SET GRAPHPRINT is not complete in Quicksilver 1.2 and is undocumented. Some forms of the

command will compile; however, its effects are unpredictable.

SEE ALSO:
Commands CREATE/MODIFY GRAPH, GRAPH FORM, and RESTORE GRAPH.

SET HEADING SECTION 2

The dBASE® Language Handbook 454 Back to CONTENTS

SET HEADING

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SET HEADING ON/OFF

DEFINITION:
Controls the display of FIELD titles for the AVERAGE, DISPLAY, LIST, and SUM commands.

SET HEADING OFF to suppress FIELD titles.

DEFAULT:
ON

RECOMMENDED USE:
Use SET HEADING OFF to omit FIELD titles when you want to program your own.

Example—A theater management system lists work shifts each night. The program uses SET

HEADING OFF to suppress field titles so custom titles can be displayed.

USE lateshift

SET HEADING OFF

? "Employee Name Scheduled Hours "

DISPLAY ALL lname,shours FOR dateon = DATE()

Employee Name Scheduled Hours

 1 Johnson 6-12

 5 Martinez 9-23

VARIATIONS:
Clipper, Quicksilver: HEADING is always assumed to be OFF. To include field titles, you must

program them explicitly.

SEE ALSO:
Commands AVERAGE, DISPLAY, LIST, and SUM.

SET HELP SECTION 2

The dBASE® Language Handbook 455 Back to CONTENTS

SET HELP

DIALECTS:
dBASE III PLUS and dBASE IV.

SYNTAX:
SET HELP ON/OFF

DEFINITION:
Controls whether the dBASE III PLUS message "Do you want some help?" or the dBASE IV

message "Cancel, Edit, Help" appears when an incorrect command is entered in the interactive

mode.

SET HELP does not affect the interactive help systems (F1 help) of dBASE III PLUS, dBASE IV,

dBXL and FoxBASE+.

DEFAULT:
ON. To change it (and get rid of the annoying message), set HELP=OFF in the CONFIG.DB file.

RECOMMENDED USE:
When using dBASE III PLUS and dBASE IV, always SET HELP OFF (or change the setting in

the CONFIG.DB file). The "Do you want some help?" and "Cancel, Edit, Help" prompts are

redundant since HELP is available only through the F1 key.

VARIATIONS:
FoxBASE+: SET HELP is allowed for compatibility with dBASE III PLUS, but has no effect.

SEE ALSO:
Commands ASSIST and INTRO.

SET HISTORY SECTION 2

The dBASE® Language Handbook 456 Back to CONTENTS

SET HISTORY

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:

SET HISTORY ON/OFF

SET HISTORY TO <expN>

DEFINITION:
The HISTORY system saves and recalls commands executed from the interactive prompt. When

you SET HISTORY ON, commands you type are saved in a HISTORY buffer. You can then

display, edit, and reexecute them.

When you SET HISTORY OFF, no new commands are stored in the history buffer; however, old

ones are still available.

SET HISTORY TO <expN> controls how many commands are saved in the HISTORY buffer.

dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+ default to 20.

DEFAULT:
ON

RECOMMENDED USE:
Use the up and down arrow keys on the numeric keypad to scroll through saved commands. You

can execute the one on the command line by pressing the Enter key. Or you may first edit it and

then execute it. The command SET HISTORY TO determines how many commands are saved in

the HISTORY buffer.

VARIATIONS:
dBXL: If you repeat a command immediately, dBXL only puts it in the history buffer once.

dBASE III PLUS, dBASE IV, and FoxBASE+ insert it multiple times.

dBXL lets you restore the HISTORY from previous sessions. When you include the statement

SAVEHIST=ON in the configuration file (CONFIG.XL), dBXL creates a history log file

DBXL.HIS in the current directory. You can specify a different directory at the DOS level with

the command

SET HISTORY=\<path>\

SET HISTORY SECTION 2

The dBASE® Language Handbook 457 Back to CONTENTS

FoxBASE+: When you SET HISTORY OFF, saved commands can no longer be edited and

reexecuted using the arrow keys. LIST HISTORY and DISPLAY HISTORY still show the list of

saved commands.

SET HISTORY TO controls only how many commands are displayed, not how many are actually

stored. The HMEMORY parameter in the CONFIG.FX file controls the number stored.

SEE ALSO:
Commands DISPLAY/LIST HISTORY and SET DOHISTORY.

SET HOURS SECTION 2

The dBASE® Language Handbook 458 Back to CONTENTS

SET HOURS

DIALECTS:
dBASE IV only.

SYNTAX:
SET HOURS TO [12/24]

DEFINITION:
Determines whether the clock displays in 12-hour or 24-hour time. 12- hour time shows hours,

minutes, seconds, and am or pm. 24-hour time shows hours, minutes, and seconds.

The clock appears during full-screen operations such as CREATE and BROWSE, or all the time

when you SET CLOCK ON.

SET HOURS does not affect the system time returned by the TIME() function.

DEFAULT:
12. To return to 12-hour time, SET HOURS TO with no argument.

RECOMMENDED USE:
Use SET HOURS to customize the clock display.

Example—Most conventional clocks display 12-hour time; however, some applications require

24-hour displays.

. SET HOURS TO 24

At 2:23:44 pm, the 24-hour clock displays

14:23:44

SEE ALSO:
Command SET CLOCK; function TIME().

SET INDEX TO SECTION 2

The dBASE® Language Handbook 459 Back to CONTENTS

SET INDEX TO

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET INDEX TO [<filename1>][,<filename2>]...[,<filename7>]

DEFINITION:
Opens up to seven indexes associated with the active database file, where <filename> is the name

of a existing index file. The command first closes all open indexes (in the same work area). SET

INDEX TO without a file list, or CLOSE INDEX, closes all open index files in the current work

area.

The index filename has a default extension of NDX. SET INDEX TO ? lists available index files

if a dBASE III PLUS or dBASE IV catalog is active.

The first file in the list, the primary index, determines the order in which records appear. Only it

can be searched using the FIND

and SEEK commands. However, other indexes are updated automatically when the associated key

fields change. You can make any index the primary index by switching the file order in SET

INDEX TO, or by using the command SET ORDER TO. SET ORDER TO is faster since it does

not close and reopen the indexes.

RECOMMENDED USE:
Use SET INDEX TO to activate indexes created by the INDEX command.

Example—A demographic application processes census data and generates useful reports. It uses

SET INDEX TO with multiple index files to change the order of reports.

. USE census1

. SET INDEX TO lastdex,ssndex,agedex

. LIST

Record# LASTNAME AGE ZIP SSN

 3 Anderson 59 99999 021224222

 2 Bellwood 50 01960 077772929

 1 Zorella 22 22222 122888929

In this example, LASTNAME is the primary index. You can change it by changing the order in

the file list or by using SET ORDER TO.

VARIATIONS:
Clipper: Index files have a default extension of NTX. To specify their filenames using macros,

handle each one separately. For example:

SET INDEX TO SECTION 2

The dBASE® Language Handbook 460 Back to CONTENTS

maindex = "Name"

subdex = "Age"

SET INDEX TO &maindex,&subdex

NTX files are not compatible with dBASE III PLUS or dBASE IV.

Clipper, Summer 1987 and later: You can use dBASE III PLUS/dBASE IV compatible indexes

(NDX) by linking the NDX.OBJ file on the system disk to your application. dBASE III PLUS

compatible indexes take slightly more disk space and update more slowly than the default indexes.

dBASE IV: The SET INDEX command takes the form

SET INDEX TO [<ndx or mdx filenames>

 [ORDER <ndx filename>/<mdx tag> [OF <mdx filename>]]]

You can specify index files (extension NDX) and multiple index files (MDX) on the same line.

When you specify an NDX or MDX filename, dBASE IV first looks for an MDX file. If it doesn't

find one, it looks for an NDX. If an MDX file and an NDX file have the same name, the NDX file

will not be opened.

If an index file is first in the list, it becomes the controlling (master) index. If a multiple index file

comes first, the database remains in natural order until you SET ORDER or use the SET INDEX

ORDER clause.

The ORDER clause specifies which index or multiple index TAG controls the database's order.

Use the OF <mdx filename> option if the controlling TAG is in a file other than the production

MDX.

To SET INDEX TO two MDXs called MONTHMDX and AMTMDX, and an index file called

PARTNO, use the command

SET INDEX TO monthmdx,amtmdx,partno ORDER nmonth OF amtmdx.mdx

The ORDER clause indicates that the TAG NMONTH in AMTMDX controls the index order.

The dBASE IV DELETE TAG command closes specific indexes by name. SET INDEX TO by

itself and CLOSE INDEXES close all indexes.

You may open up to 10 index files per active database, and 47 TAGs per multiple index file.

Multiple index files count as one open DOS file.

If you specify a key field when you first CREATE a database, dBASE IV automatically creates a

production multiple index file with the same name as the database and an MDX extension.

Whenever you USE the database, dBASE IV automatically opens the multiple index file.

SET INDEX TO SECTION 2

The dBASE® Language Handbook 461 Back to CONTENTS

dBXL, Quicksilver: SET INDEX TO first searches for index files in the directory specified by

SET NDX. If you do not SET NDX, SET INDEX searches in the current directory. If it does not

find the files there, it checks the paths defined by SET PATH.

FoxBASE+: Creates index files with an IDX extension. They are not compatible with dBASE III

PLUS/dBASE IV NDX files.

SET INDEX TO first searches for an IDX file. If none exists, it then checks for an NDX extension.

When it detects such a file, it automatically creates a compatible version with an IDX extension.

SEE ALSO:
Commands CLOSE INDEX, COPY TAG, DELETE TAG, INDEX, REINDEX, SET ORDER,

and USE.

SET INSTRUCT SECTION 2

The dBASE® Language Handbook 462 Back to CONTENTS

SET INSTRUCT

DIALECTS:
dBASE IV only.

SYNTAX:
SET INSTRUCT ON/OFF

DEFINITION:
Controls the display of instruction boxes (summaries).

With SET INSTRUCT ON, when you issue a full-screen command, a summary of it appears for

beginning users. The summary only appears the first time you use a command in a session.

The affected full-screen commands can be issued from the dot prompt or from the Control Center.

They include APPEND, BROWSE, CHANGE/EDIT, CREATE, CREATE FORM, CREATE

LABEL, CREATE QUERY, and CREATE REPORT.

SET INSTRUCT OFF turns off instruction boxes. You can also put INSTRUCT=OFF in

CONFIG.DB.

DEFAULT:
ON

RECOMMENDED USE:
SET INSTRUCT ON is helpful for training beginning users.

SEE ALSO:
Commands SET HELP and SET MENU; function SET().

SET INTENSITY SECTION 2

The dBASE® Language Handbook 463 Back to CONTENTS

SET INTENSITY

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET INTENSITY ON/OFF

DEFINITION:
Controls whether input fields appear in standard or enhanced video. Standard video means white

characters on a black background. Enhanced, or reverse, video means black characters on a white

background.

SET INTENSITY ON causes GETs and other full-screen input areas to appear in enhanced video.

SET INTENSITY OFF disables enhanced video.

Note that "Standard" and "Enhanced" have specific meanings when you use SET COLOR.

DEFAULT:
ON

RECOMMENDED USE:
Use SET INTENSITY OFF to omit reverse video from input fields during full-screen editing. You

can mark the locations of input fields with delimiters by issuing SET DELIMITERS ON.

VARIATIONS:
Clipper: You can use the logical expressions (.T.) or (.F.) to mean ON or OFF in the SET

command. Enclose the logical value in parentheses.

SEE ALSO:
Commands @...GET, SET COLOR, and SET DELIMITERS.

SET KEY SECTION 2

The dBASE® Language Handbook 464 Back to CONTENTS

SET KEY

DIALECTS:
Clipper only.

SYNTAX:
SET KEY <expN> TO [<filename>]

DEFINITION:
Executes a program from any wait state when the user presses the specified key or key combination

(Ctrl or Alt). The called program can be a PROCEDURE in an active procedure file. <expN>

represents the INKEY() value of the specified key. <filename> is the name of the program or

PROCEDURE.

The wait state commands ACCEPT, INPUT, MENU TO, READ, and WAIT pause program

execution.

Note: SET KEY always passes three parameters: the caller's name, the line number, and the name

of the memory variable awaiting input (if there is one).

RECOMMENDED USE:
SET KEY lets you run programs from any wait state with the press of a key. For example, you

could execute a "pop-up" calculator or notepad. You can use the passed parameters to create

context-sensitive subroutines based on the caller's name, line number, and GET memory variable.

Example 1—When entering invoice amounts in a legal office system, the secretary presses Ctrl-

C to pop up a simple calculator. After adding, subtracting, multiplying, or dividing, the secretary

presses "P" to paste the result into the pending GET. The SET KEY command in the calling

program, INVOICE.PRG, executes CALC.PRG.

* INVOICE.PRG

CLEAR

SET KEY 3 TO calc && Check for Ctrl-C

@ 01,01 TO 06,60 && Draw box

DO WHILE .t.

 ttot = 0.00

 @ 02,05 say "Enter amt, leave 0 to exit" GET ttot PICT "99999999.99"

 READ

 IF ttot = 0

 RETURN

 ENDIF

 @ 03,05 SAY STR(ttot,12,2)

ENDDO

* CALC.PRG

SET KEY SECTION 2

The dBASE® Language Handbook 465 Back to CONTENTS

PARAMETERS x,y,z && Must accept parameters even if they are not used

SAVE SCREEN && Save original screen image

@ 0,0 CLEAR && Issuing CLEAR alone would cancel any pending GETs

INPUT "Amount 1: " TO amt1

sign = " "

DO WHILE sign # "-".AND.sign # "/".AND.sign # "+".AND.sign # "*"

 ACCEPT "Enter operator (+-/*): " TO sign

ENDDO

INPUT "Amount 2: " TO amt2

DO CASE

CASE sign = "-"

 mtotal = amt1 - amt2

CASE sign = "+"

 mtotal = amt1 + amt2

CASE sign = "/"

 mtotal = amt1 / amt2

CASE sign = "*"

 mtotal = amt1 * amt2

ENDCASE

? mtotal

WAIT "PRESS 'P' TO PASTE, ANY OTHER KEY TO RETURN w/o PASTE" TO action

IF UPPER(action) = "P" && If user presses 'P', stuff

 KEYBOARD STR(mtotal,12,2) && result in pending GET

ENDIF

RESTORE SCREEN && Restore original screen

Example 2—The legal office system of Example 1 uses SET KEY to display lists of valid DEPT

and ACCOUNT numbers. Here, the parameters are significant, as the lists are specific to the

pending GET.

* POST.PRG

SET KEY 3 TO lookup && Check for Ctrl-C

CLEAR

DO WHILE .t.

 mdept = SPACE(4)

 maccount = SPACE(4)

 @ 04,01 SAY "Enter Department Number: " GET mdept

 @ 05,01 SAY "Enter Account Number: " GET maccount

 READ

 IF mdept = " "

 RETURN

 ENDIF

ENDDO

* LOOKUP.PRG

PARAMETERS prg,line,mvar

oldselct = SELECT() && Store current work area in a memory

variable. SELECT 0 && Select first unused work area

SAVE SCREEN

SET KEY SECTION 2

The dBASE® Language Handbook 466 Back to CONTENTS

@ 0,0 CLEAR && Use @...CLEAR instead of CLEAR to avoid

 && clearing pending GETs

DO CASE

 CASE UPPER(mvar) = "MDEPT" && If you were editing MDEPT...

 ? "You were editing DEPARTMENT" && display department codes

 * <display department list>

 CASE UPPER(mvar) = "MACCOUNT" && If you were editing MACCOUNT...

 ? "You were editing ACCOUNT" && display account codes

 * <display account list>

 * <more cases>

 ENDCASE

 WAIT

 RESTORE SCREEN

 SELECT oldselct && Return to original work area

LIMITS/WARNINGS:
Note: SET KEY always passes three parameters: the caller's name, the line number, and the name

of the memory variable awaiting input (if there is one). Even if you do not use the parameters, you

must declare them in the called procedure. Otherwise, an error condition will occur after several

executions. Because the condition is not immediately apparent (either at compile time or at link-

time), programs can fail unexpectedly.

Do not use CLEAR or READ in SET KEY subroutines because they deactivate GETs pending in

the calling program. To clear the screen, use @ 0,0 CLEAR.

If your subroutine moves the record pointer, you must restore its value before returning to the

caller.

Note: Pressing F1 in Clipper executes a procedure or program called HELP. Like SET KEY,

pressing F1 calls the HELP program with three parameters (caller's name, line number, and

memory variable).

SEE ALSO:
Commands @...SAY...GET

SET LOCK SECTION 2

The dBASE® Language Handbook 467 Back to CONTENTS

SET LOCK

DIALECTS:
dBASE IV only.

SYNTAX:
SET LOCK ON/OFF

DEFINITION:
Determines whether some commands initiate automatic file locking.

With SET LOCK ON, the commands AVERAGE, CALCULATE, COPY [STRUCTURE],

COUNT, INDEX, JOIN, LABEL, REPORT, SORT, SUM, and TOTAL all lock the database file.

SET LOCK OFF disables the automatic locking feature, so that other users may access databases

while these commands execute.

The affected commands generally do not change data, and therefore do not require locking. COPY,

COPY STRUCTURE, INDEX, JOIN, TOTAL, and SORT have a data-writing phase when they

create target files. The target files are considered to be in exclusive use for the duration of the

command.

DEFAULT:
ON

RECOMMENDED USE:
Use SET LOCK OFF for greater concurrency. Be aware, however, that the commands affected by

SET LOCK may produce inconsistent results if data changes during their execution. SET LOCK

ON to guarantee consistent results.

Example 1—A sales report depends on current data. If it begins to SUM DAYSALES at 4:05 pm

and ends at 4:06 pm, the programmer uses SET LOCK OFF to include all sales made within the

minute. The consistency of the report does not matter.

Example 2—A closing sales and inventory report for five stores shows sales results as of 5:00 pm.

Since all results must be consistent over time, the programmer issues SET LOCK ON.

SEE ALSO:
Commands AVERAGE, CALCULATE, COPY [STRUCTURE], COUNT, INDEX, JOIN,

LABEL, REPORT, SORT, SUM, and TOTAL.

SET MARGIN SECTION 2

The dBASE® Language Handbook 468 Back to CONTENTS

SET MARGIN

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET MARGIN TO <expN>

DEFINITION:
Sets the left margin of the printer to column <expN>. Column numbers start with 0 at the far left.

SET MARGIN affects all printed output.

When using CREATE/MODIFY REPORT or CREATE/MODIFY LABEL, the SET MARGIN

value is added to the LABEL or REPORT margin value.

RECOMMENDED USE:
Example—Set the left margin to indent 25 spaces.

. SET MARGIN TO 25

VARIATIONS:
dBASE IV: SET MARGIN is equivalent to the system variable _ploffset.

SEE ALSO:
Commands @...SAY, LIST, SET DEVICE, SET PRINT, and SET PRINTER.

SET MARK SECTION 2

The dBASE® Language Handbook 469 Back to CONTENTS

SET MARK

DIALECTS:
dBASE IV only.

SYNTAX:
SET MARK TO [<expC>]

DEFINITION:
Defines the character used to separate months, days, and years in date displays.

The specified character appears in date fields and memory variables.

The mark character remains in effect until you change it with another SET MARK, or with the

SET DATE command.

SET MARK TO by itself returns date delimiters to the default (a slash in the U.S.). You can change

the default in the CONFIG.DB file with the statement DATE=<date format>. See SET DATE for

date formats.

RECOMMENDED USE:
Use SET MARK to modify the date display when SET DATE does not provide the format you

want.

Example—Joseph wants to display dates without delimiters. To do this, he uses SET MARK TO

with a space.

. ? DATE()

 02/03/89

. SET MARK TO " "

. ? DATE()

 02 03 89

Dissatisfied, he changes the date delimiters to asterisks:

. SET MARK TO "*"

 ? DATE()

02*03*89

SEE ALSO:
Commands SET CENTURY and SET DATE; functions CTOD(), DATE(), DMY(), DTOC(), and

MDY().

SET MEMOWIDTH SECTION 2

The dBASE® Language Handbook 470 Back to CONTENTS

SET MEMOWIDTH

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and Quicksilver.

SYNTAX:
SET MEMOWIDTH TO [<expN>]

DEFINITION:
Controls the width of memo field output.

SET MEMOWIDTH TO alone restores the default MEMOWIDTH setting.

DEFAULT:
50

RECOMMENDED USE:
Use SET MEMOWIDTH when you produce memo field output with the commands DISPLAY,

LIST, ?, ??, or REPORT FORM.

LIMITS/WARNINGS:
The minimum MEMOWIDTH is 8.

SEE ALSO:
Commands CREATE/MODIFY REPORT, DISPLAY, LIST, ?, and ??; functions MEMLINES()

and MLINE().

SET MENU SECTION 2

The dBASE® Language Handbook 471 Back to CONTENTS

SET MENU

DIALECTS:
dBASE III PLUS and FoxBASE+.

SYNTAX:
SET MENU ON/OFF

DEFINITION:
Determines whether a menu of cursor control keys appears during full-screen operations such as

APPEND, BROWSE, and EDIT.

To toggle the MENU display, press the F1 key during full-screen operations.

DEFAULT:
ON

RECOMMENDED USE:
SET MENU ON is for novices using the interactive mode. SET MENU OFF in programs.

You can change the SET MENU default in the CONFIG file with the command

 MENU=OFF

VARIATIONS:
dBASE IV: SET MENU has no effect. Pressing F1 from BROWSE or EDIT displays information

about the executing command.

SEE ALSO:
Commands SET HELP and SET INSTRUCT.

SET MESSAGE SECTION 2

The dBASE® Language Handbook 472 Back to CONTENTS

SET MESSAGE

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SET MESSAGE TO [<expC>]

DEFINITION:
Defines a string of up to 79 characters to be centered on line 24 of the screen. For it to display, the

status bar must be on (SET STATUS ON).

SET MESSAGE TO by itself clears the message.

<expC> is any valid character expression. SET MESSAGE truncates strings longer than 79

characters, but does not generate an error.

RECOMMENDED USE:
Use SET MESSAGE in the interactive mode to display system information, help messages, or

reminders.

Example 1—You can use SET MESSAGE to display important system information such as

remaining disk space. Note the use of character string constants, memory variables, and functions

in the character expression.

* The DISKSPACE() function returns remaining disk space in bytes

spaceleft = DISKSPACE()

* Convert diskspace from numeric to character with STR() function

* then perform left trim (LTRIM) to strip leading blanks

str_left = LTRIM(STR(DISKSPACE()))

* CHR(16) and CHR(17) are left and right arrows

SET MESSAGE TO chr(16) + "Remaining space: " + str_left + chr(17)

LIMITS/WARNINGS:
Note that messages generated by the dBXL INTRO mode, the dBASE III PLUS Assistant, the

BROWSE mode, and the dBASE IV Control Center overwrite user-defined messages.

VARIATIONS:
Clipper, FoxBASE+: The form is

SET MESSAGE TO [<expN> [CENTER]]

<expN> is the row where MESSAGEs from @...PROMPT...MESSAGE command are to be

displayed. They appear starting in column 0. @...PROMPT...MESSAGE generates a reverse video

SET MESSAGE SECTION 2

The dBASE® Language Handbook 473 Back to CONTENTS

"bounce bar" menu with optional MESSAGEs that change as the cursor bar moves. The CENTER

(or CENTRE) option centers the message in Clipper only.

Example 2—Using SET MESSAGE TO [<expN>] with a "bounce bar" menu.

* Display the MESSAGEs on line 14 as cursor bar moves between prompts

SET MESSAGE TO 14

@ 10,10 PROMPT "Backup Files" MESSAGE "Prepare two backup tapes"

@ 11,10 PROMPT "End Session" MESSAGE "Close files, shut down system"

MENU TO response

In this example, when the cursor bar touches "Backup Files," the message "Prepare two backup

tapes" appears on line 14. The message changes to "Close files, shut down system" when the bar

moves to "End Session."

Note that SET MESSAGE TO 0 or SET MESSAGE TO by itself disables the display.

SEE ALSO:
Commands @...PROMPT and SET STATUS; functions CHR() and DISKSPACE().

SET MULTIUSER SECTION 2

The dBASE® Language Handbook 474 Back to CONTENTS

SET MULTIUSER

DIALECTS:
Quicksilver only.

SYNTAX:
SET MULTIUSER ON/OFF

DEFINITION:
Controls multiuser capabilities at the workstation level.

SET MULTIUSER OFF disables all multiuser commands and functions. All files are opened for

exclusive use (single user only). FLOCK() and RLOCK() always return true .T.. ON NETERROR,

SET AUTOLOCK, SET EXCLUSIVE, SET RETRY, UNLOCK, and USE EXCLUSIVE are

ignored.

DEFAULT:
ON

RECOMMENDED USE:
SET MULTIUSER OFF to distribute a multiuser program for standalone use only. This lets

resellers offer multiuser and single user versions without maintaining two sets of code.

You can also use SET MULTIUSER OFF to test multiuser applications in single user mode.

LIMITS/WARNINGS:
SET MULTIUSER ON only in applications running under WordTech's Networker Plus multiuser

software.

SEE ALSO:
Command SET EXCLUSIVE.

SET NDX SECTION 2

The dBASE® Language Handbook 475 Back to CONTENTS

SET NDX

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
SET NDX TO <path>

DEFINITION:
Specifies which drive and directory contain index files. The <path> specification can include a

drive designator and a path name terminated by a backslash.

DEFAULT:
If you don't use SET NDX, Quicksilver and dBXL search for database files in the current directory

and in ones specified by the SET PATH command.

RECOMMENDED USE:
SET NDX and SET DBF let you store index files and database files in their own directories. This

makes file storage more manageable. It also lets you address sets of database and index files by

directory.

Example—A payroll program has index files in directory C:\PDEX and database files in

C:\PFILES. The application uses SET DBF and SET NDX to find its files.

SET NDX TO C:\PDEX\

SET DBF TO C:\PFILES\

LIMITS/WARNINGS:
Regardless of the NDX setting, DIR displays files in the current directory only.

SEE ALSO:
Command SET DBF, SET DEFAULT, and SET PATH.

SET NEAR SECTION 2

The dBASE® Language Handbook 476 Back to CONTENTS

SET NEAR

DIALECTS:
dBASE IV only.

SYNTAX:
SET NEAR ON/OFF

DEFINITION:
Controls "closest match" SEEKing and FINDing. With SET NEAR ON, SEEKing or FINDing a

nonexistent record moves the pointer to the one with the next higher key value than the search

argument. FOUND() returns false (.F.).

If no record has a higher key value, the pointer moves to the End-of-File and FOUND() returns

false (.F.).

SET NEAR respects the SET FILTER and SET DELETED settings when moving the record

pointer.

DEFAULT:
OFF

RECOMMENDED USE:
SET NEAR ON is especially useful for processing records within ranges of values, when the exact

limits may not be present. It is also useful for SEEKing values for which the exact spelling is

unknown.

Example—A transaction report shows file updates beginning with 05/01/88. If no transactions

occurred on that exact date (perhaps because it was a Sunday), the pointer normally moves to the

End-of-File, and no records are processed. To overcome this problem, the programmer SETs

NEAR ON. Even if the exact date is not found, processing continues with the next record.

SET NEAR ON

USE transacts INDEX transdex && Indexed on DTOS(tdate)

startdate = CTOD("05/01/88")

enddate = CTOD("05/31/88")

SEEK DTOS(startdate) && Even if STARTDATE is not FOUND,

DO WHILE tdate < enddate && NEAR will move pointer to the

 SET PRINT on && next record

 *<generate report>

 SET PRINT off

 SKIP

ENDDO

SET NEAR SECTION 2

The dBASE® Language Handbook 477 Back to CONTENTS

LIMITS/WARNINGS:
SET RELATION disregards the NEAR setting.

VARIATIONS:
Clipper: SET SOFTSEEK is equivalent to SET NEAR.

dBASE III PLUS, dBXL, FoxBASE+ : You can simulate SET NEAR ON in four steps:

1. APPEND a BLANK record to the database (be sure the index is active).

2. REPLACE the search argument into the new blank key field. This moves the new record

to its correct index position.

3. DELETE the new record.

4. SKIP to the next record.

The pointer is now on the next higher record in the index. Unfortunately, you still have a deleted

dummy record in your file which you should later remove by PACKing or reuse. You can hide it

temporarily with SET DELETED ON.

SEE ALSO:
Commands FIND, INDEX, SEEK, and SET SOFTSEEK.

SET ODOMETER SECTION 2

The dBASE® Language Handbook 478 Back to CONTENTS

SET ODOMETER

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SET ODOMETER TO <expN>

DEFINITION:
Controls the update interval during execution of commands that display a record count. They

include COPY, DELETE, and RECALL.

Because dBASE III PLUS and dBASE IV do not display a record count during indexing, SET

ODOMETER does not apply to the INDEX command.

Note that a record counter only appears if you SET TALK ON.

DEFAULT:
1

RECOMMENDED USE:
SET ODOMETER relative to the size of the database files being processed. For example, use a

large number (such as 100) when processing files of a thousand records or more. For files under

100 records, SET ODOMETER TO 10.

Example—A law clerk copies a file containing 30 records. She watches the record counter and

notices that it jumps directly from 0 to 30. To make the display more meaningful, she uses SET

ODOMETER TO 5, updating the counter every five records.

. SET ODOMETER TO 5

VARIATIONS:
FoxBASE+: Applies to the INDEX command. Default is 100.

SEE ALSO:
Commands COPY, DELETE, INDEX, RECALL, and SET TALK.

SET OOPS SECTION 2

The dBASE® Language Handbook 479 Back to CONTENTS

SET OOPS

DIALECTS:
dBXL only.

SYNTAX:
SET OOPS TO [<expC1>][,<expC2>]]

DEFINITION:
Redefines the silly "OOPS" error message.

dBXL's default error message consists of the word "OOPS:,"and a brief explanation of the cause.

With SET OOPS, you can change "OOPS: " and display an additional comment at the end of the

error message.

<expC1> is the expression that replaces "OOPS:". The error explanation that follows it is not

affected.

<expC2> lets you specify a message to follow the error explanation.

<expC1> and <expC2> are limited to 15 characters each.

SET OOPS TO with no argument restores the ridiculous default.

RECOMMENDED USE:
Use SET OOPS with a character string or function to provide more useful information in error

messages.

Example—A spelling mistake causes a syntax error in a dBXL program, as follows:

DIPSLAY NEXT 10

OOPS: Unrecognized command verb: DIPSLAY

To make the error message more useful, the programmer displays the available disk space and free

memory.

SET OOPS TO STR(DISKSPACE(),9,0)+" ", " RAM:"+STR(MEMORY(),6,0)

The next time the error occurs, the following message appears:

DIPSLAY NEXT 10

8481008 Unrecognized command verb: DIPSLAY RAM: 129344

SEE ALSO:
Command SET MESSAGE; functions DISKSPACE(), MEMORY(), and MESSAGE().

SET ORDER SECTION 2

The dBASE® Language Handbook 480 Back to CONTENTS

SET ORDER

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET ORDER TO [<expN>]

DEFINITION:
Designates a master index from the list of open index files. It does so without closing and re-

opening indexes, thus executing faster than SET INDEX TO <filelist>.

<expN> is the index file's relative position in the index list. The list follows the SET INDEX and

USE commands as in the following examples:

USE accounts INDEX acct,month,trans

SET INDEX TO acct,month,trans

ACCT, MONTH, and TRANS are index files 1, 2, and 3, respectively.

<expN> ranges from 0 to 7, depending on the number of files in the list. The primary index controls

the order in which records appear. All other open indexes remain open.

SET ORDER TO 0, or SET ORDER TO alone, removes index control entirely, without actually

closing the index files. Records appear in numerical order, and changes to the database file do not

update the indexes.

A subsequent SET ORDER TO <expN> reinstates index control. If you add or change key fields

after SETting ORDER TO 0, you must REINDEX the affected index files.

The ORDER() function returns the name of the primary index.

RECOMMENDED USE:
Use SET ORDER TO [<expN>] to change the primary index, or to disable the index order (by

omitting <expN>).

Example—An order entry program in a large department store tracks orders by item, date, and

manufacturer. The program uses the main ORDERS file with an index file list. SET ORDER

changes the primary index as required. ORDERS is indexed on ITEM, DATEORD, and MFG.

USE orders INDEX ITEM,DATEORD,MFG

SET ORDER SECTION 2

The dBASE® Language Handbook 481 Back to CONTENTS

In this line, ITEM is index 1 (the primary index), DATEORD is index 2, and MFG is index 3.

When you LIST the database, note that the order is alphabetical by ITEM. ORDER(1) returns the

primary index's name (ITEM).

. ? ORDER()

 ITEM

 . LIST

 Record# ITEM MFG DATEORD

 3 China plate Rollings 02/17/88

 2 End table SWC Corp. 10/04/87

 1 Hide-a-way bed Int. Mattress 03/22/88

When you SET ORDER TO 2, the second index in the list (DATEORD) becomes the master.

When you SET ORDER TO 3, MFG becomes the primary index.

 . LIST

 Record# ITEM MFG DATEORD

 1 Hide-a-way bed Int. Mattress 03/22/88

 3 China plate Rollings 02/17/88

 2 End table SWC Corp. 10/04/87

SET ORDER TO 0 removes index control, but leaves the index files open. Records appear in

numerical order.

LIMITS/WARNINGS:
Because SET ORDER does not move the record pointer, a new order does not become active until

you issue a command that does, such as FIND, GOTO, or LIST.

VARIATIONS:
Clipper, dBASE IV, FoxBASE+: SET ORDER TO 0 does not prevent indexes from being updated

when you add or change key fields in the database file. SET ORDER TO 0 simply deactivates the

primary index. dBXL and Quicksilver follow dBASE III PLUS.

dBASE IV: SET ORDER TO <expN> does not work with multiple index files (extension MDX).

Instead, use the command:

SET ORDER TO TAG <MDX tag> [OF <MDX filename>]

Use the OF <MDX filename> option when you have more than one multiple index file open and

duplicate TAGs.

Example—A scheduling program in a university tracks research projects by number, starting date,

and completion date. The program uses the PROJECTS file with a production multiple index file

(called PROJECTS). SET ORDER changes the primary index as required. PROJECTS is indexed

on three TAGs: PROJ_NUM, START, and COMPLETE.

SET ORDER SECTION 2

The dBASE® Language Handbook 482 Back to CONTENTS

. USE projects ORDER proj_num && Production MDX activated automatically,

 && and master index set to PROJ_NUM

A DISPLAY STATUS shows the open database with PROJ_NUM as the master index TAG.

. DISPLAY STATUS

 Currently Selected Database

 Select area: 1, Database in Use: D:\DBASE\PROJECTS.DBF Alias PROJECTS

 Production MDX file: D:\DBASE\PROJECTS.MDX

 Master Index TAG: PROJ_NUM Key: proj_num

 Index TAG: START Key: start

 Index TAG: COMPLETE Key: complete

When you SET ORDER TO TAG START, the second TAG index in the MDX becomes the

master.

. DISPLAY STATUS

Currently Selected Database

 Select area: 1, Database in Use: D:\DBASE\PROJECTS.DBF Alias PROJECTS

 Production MDX file: D:\DBASE\PROJECTS.MDX

 Index TAG: PROJ_NUM Key: proj_num

 Master Index TAG: START Key: start

 Index TAG: COMPLETE Key: complete

The need to use TAGs rather than numbers is a minor inconvenience you can overcome with the

MDX() and TAG() functions.

To SET the TAG order by number, use TAG() to store the TAG name in a variable. For readability,

name the variable with the TAG number.

tag1 = TAG(1)

 PROJ_NUM

Now, you can use TAG1 as an argument in the SET ORDER command, as follows:

SET ORDER TO &tag1

SEE ALSO:
Commands INDEX, LIST, and SET INDEX; functions MDX(), NDX(), and TAG().

SET PATH SECTION 2

The dBASE® Language Handbook 483 Back to CONTENTS

SET PATH

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET PATH TO [<pathname>]

DEFINITION:
Specifies MS-DOS directory trees where dBASE searches for files not located in the current

directory. SET PATH TO by itself restores the default path (current directory).

The current directory is the one from which you started dBASE, or the one you change to using

the MS-DOS CHDIR command. If you change disk drives with the SET DEFAULT command,

the directory on the new drive is the current directory.

A pathname consists of a disk drive designator followed by a list of DOS directories separated by

backslashes. The path list consists of a series of paths separated by commas or semicolons.

DEFAULT:
Current directory

RECOMMENDED USE:
Use SET PATH to specify directories (besides the default one) in which to search for files.

Example—An insurance agency maintains customer history records and claim reports in separate

directories for better organization. The history records are in \CUSTHIST and the claims are in

\CLAIMRPT. A single line in the program directs the application to search the proper directories:

SET PATH TO \CLAIMRPT,\CUSTHIST

To store the history records and claim reports on separate disks, include drive designators in the

command:

SET PATH TO C:\CLAIMRPT, F:\CUSTHIST

Now your application can find claim reports on drive C and history records on drive F.

LIMITS/WARNINGS:
Note: SET PATH affects only searches. It does not affect the DIRectory command. DIR only

shows files in the current directory. Also, any files you create are always placed in the current

directory unless you specify a disk drive or path. Many users find this inconvenient, especially

when restoring MEM files from a directory specified by SET PATH. To SAVE the MEM file back

SET PATH SECTION 2

The dBASE® Language Handbook 484 Back to CONTENTS

where it came from, you must specify drive and directory explicitly. Avoid this problem by using

the DOS Change Directory command (CD) from inside dBASE to move to your data drive. (dBXL

and Quicksilver have their own CD command that works the same way.)

Let's assume that dBASE itself is in a directory called \DBMS. MEMory and data files are in

\DATA. First run dBASE as in this example:

C> CD \DBMS <Enter>

C> DBASE <Enter>

Then, from inside dBASE, issue the command

. RUN CD \DATA

\DATA becomes the current directory, even though it is not the one from which you started

dBASE.

Note: SET PATH does not affect the DOS PATH command, or vice versa.

VARIATIONS:
Clipper: You cannot use a semicolon to continue the SET PATH command on another line like

other commands.

dBXL, Quicksilver: SET DBF or SET NDX limits searches to the current directory and the DBF

and NDX directories for database and index files, respectively. dBXL and Quicksilver do not

search directories specified by SET PATH. Without SET DBF or SET NDX, dBXL and

Quicksilver search the current directory and the specified PATHs for all types of files.

FoxBASE+: Changing the PATH does not prevent programs loaded in memory from executing.

Be sure to CLEAR PROGRAM to remove the currently loaded program from memory.

SEE ALSO:
Commands CD, CLEAR PROGRAM, DIR, SET DBF, SET DEFAULT, and SET NDX.

SET POINT SECTION 2

The dBASE® Language Handbook 485 Back to CONTENTS

SET POINT

DIALECTS:
dBASE IV only.

SYNTAX:
SET POINT TO [<expC>]

DEFINITION:
Changes the decimal point symbol to another symbol in all numeric output.

<expC> is any character.

You continue to specify decimal points in PICTURE templates, but they display as the new

symbol.

SET POINT TO with no argument returns the decimal point to the default.

RECOMMENDED USE:
Use SET POINT to customize numeric output for handling international funds or specialized units.

Example—A program tracks monetary exchanges. Some currencies use a comma instead of a

decimal point. The programmer uses SET POINT to change the decimal point. Note that SET

SEPARATOR changes the commas to periods.

SET SEPARATOR TO "."

SET POINT TO ","

mconvert = 673372.22

? mconvert PICTURE "$9,999,999.99"

$$$673.372,22

SEE ALSO:
Commands @...SAY, SET CURRENCY, and SET SEPARATOR.

SET PRECISION SECTION 2

The dBASE® Language Handbook 486 Back to CONTENTS

SET PRECISION

DIALECTS:
dBASE IV only.

SYNTAX:
SET PRECISION TO [<expN>]

DEFINITION:
Specifies the degree of numeric accuracy in operations using BCD (type N) data.

<expN> indicates the number of digits used internally in mathematical operations, ranging from

10 to 20.

DEFAULT:
16

RECOMMENDED USE:
Use SET PRECISION to increase numeric accuracy for scientific and engineering applications.

Example—Scientists plotting spacecraft trajectories increase the numeric precision to 20.

SET PRECISION TO 20

mdegrees = 38.487112489

Displaying memory shows the numeric value of MDEGREES:

MDEGREES priv N 38.49 (38.48711248900000000)

LIMITS/WARNINGS:
SET PRECISION does not affect the numeric display; SET DECIMALS does that job.

SEE ALSO:
Command SET DECIMALS.

SET PRINT SECTION 2

The dBASE® Language Handbook 487 Back to CONTENTS

SET PRINT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET PRINT ON/OFF

DEFINITION:
Directs all output, except @...SAYs, to the printer. Output also goes to the screen. Use the

command SET DEVICE TO PRINT to direct @...SAYs to the printer.

DEFAULT:
OFF

RECOMMENDED USE:
Most commands that display data on the screen allow the TO PRINT option. It has the same effect

as SET PRINT ON, except that it applies only to the current command. Use SET PRINT ON to

print the results of several commands. Use TO PRINT for single commands.

Example 1—An accounting program LISTs data on the printer. The program SETs PRINT ON,

executes two LIST commands, then SETs PRINT OFF.

USE ar_main

SET PRINT on

LIST terms, past_due, clients

Record# TERMS PAST_DUE CLIENT

 1 NET30 53.00 ACME SOCKS

 2 NET30 464.00 MATSON LAW

 3 NET10 2982.30 ROBINSON

 4 COD 9292.99 JOHNSON

LIST ALL terms, past_due, clients FOR past_due > 3000

Record# TERMS PAST_DUE CLIENT

 4 COD 9292.99 JOHNSON

SET PRINT off

With the TO PRINT option, printing stops when output ends.

VARIATIONS:
Clipper: You can use the logical expressions .T. or .F. to mean ON or OFF in the SET command.

Enclose the logical value in parentheses.

Clipper, FoxBASE+, and Quicksilver: SET PRINT ON also sends print output to a file when you

first SET PRINTER TO <filename>.

SET PRINT SECTION 2

The dBASE® Language Handbook 488 Back to CONTENTS

dBASE IV: SET PRINT ON also sends print output to a file when you first SET PRINTER TO

FILE <filename>.

SEE ALSO:
Commands LIST, SET DEVICE, and SET PRINTER.

SET PRINTER SECTION 2

The dBASE® Language Handbook 489 Back to CONTENTS

SET PRINTER

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET PRINTER TO [LPT1/LPT2/LPT3/COM1/COM2]

DEFINITION:
Directs printed output to the specified DOS device. LPT1, LPT2, and LPT3 are parallel printer

ports. COM1 and COM2 are serial communication ports.

Note that printing does not actually begin until you either SET PRINT ON, or SET DEVICE TO

PRINT.

DEFAULT:
LPT1 (PRN)

RECOMMENDED USE:
Many PCs contain more than one kind of port. This gives you flexibility in choosing a printer

(either serial or parallel), and it lets you connect more than one printer to a computer.

Example 1—A mail order company tracks telephone orders using dBASE. To keep from having

to change forms, the operator enters orders on a computer attached to three printers, each with its

own form.

Printer 1 prints packing slips. Printer 2 produces invoices. Printer 3, a laser printer, produces

personalized letters. The order fulfillment program uses SET PRINTER TO to switch printers.

PROCEDURE ord_prt

* Prints three types of forms for order tracking program. Sends

* output to three different printers

*

SET PRINTER TO lpt1 && LPT1 (parallel) connected to printer 1

SET DEVICE TO print && Direct output to a printer

DO pack_prt && Program PACK_PRT prints packing slips

SET PRINTER TO lpt2 && LPT2 (parallel) connected to printer 2

DO inv_prt && Program INV_PRT prints invoices

SET PRINTER TO com1 && COM1 (serial) connected to printer 3

DO ltr_prt && Program LTR_PRT produces form letters

SET DEVICE TO screen && Direct output to screen instead of printer

SET PRINTER SECTION 2

The dBASE® Language Handbook 490 Back to CONTENTS

LIMITS/WARNINGS:
You can use the DOS MODE command to redirect output at the DOS level. For example, if your

computer has no LPT2, you can redirect it to a serial port with the command

C> MODE LPT2:=COM1:

LPT2: redirected to COM1:

dBASE III PLUS then recognizes LPT2 as a valid device. When connecting your computer to

serial printers, you must use the DOS MODE command to configure the serial port.

Clipper, dBASE IV, dBXL, FoxBASE+, and Quicksilver: SET PRINTER TO without an output

device uses the default setting.

dBASE III PLUS: Your computer may freeze if you omit a device name. This condition may also

damage open database files. To avoid it, be sure to specify only valid device names (check your

typing!). dBASE III PLUS produces a syntax error if you specify a device not installed on your

computer.

dBASE IV: Produces syntax errors if you specify a device not installed on your computer.

VARIATIONS:
Clipper: You can specify a filename, instead of a DOS device, as a destination (e.g., SET

PRINTER TO mfile). Clipper then directs all printer output to the file. Unless you specify an

extension in the filename, Clipper assigns PRN. The filename may contain a disk drive designator

and a full pathname. If you specify an existing file, it will be overwritten.

Clipper produces no error message or warning when you select a non-existent devicea tradeoff for

allowing a filename as a device. Note that misspelling a device name, instead of producing an error

message, will create a disk file with the incorrect name.

Clipper can send @...SAYs to a disk file, but only when you SET DEVICE TO PRINT.

dBASE IV: You can specify a filename, instead of a DOS device, as a print destination with the

command

SET PRINTER TO FILE <filename>

The output file is formatted for the currently selected printer driver. You select printer drivers with

the system variable _pdriver. For example, to change to the ASCII driver, issue the statement

 _pdriver = "ASCII.PR2"

To change to an Epson LX-80, use the statement

 _pdriver = "LX80.PR2"

SET PRINTER SECTION 2

The dBASE® Language Handbook 491 Back to CONTENTS

Note that the specified driver must be in the default directory.

Formatted print output files have a PRT extension. If you specify ASCII.DPR as a printer driver,

SET PRINTER TO FILE gives the output file a TXT extension.

After selecting a printer driver, you can then issue SET PRINTER TO FILE <filename>. Output

will go to the specified file, formatted for the designated printer driver. You can then print the file

from DOS with COPY <filename.prt> <device>

You can direct print output to a network file server. On 3Com and IBM PC networks, use

SET PRINTER TO \\<computer name>\<printer name> = <destination>

<computer name> and <printer name> are the server and printer names assigned by the network.

<destination> is the DOS device (LPT1, LPT2, or LPT3) on the specified server.

Example—A file server FS1 has two shared printers, a Mannesmann Tally on LPT1 and an Epson

FX-100 on LPT2. To select the Tally, an application issues the command

SET PRINTER TO \\FS1\TALLY=LPT1

On a Novell network, the SPOOL utility selects the printer. To switch to a shared network printer,

issue

SET PRINTER TO \\SPOOLER/\\CAPTURE

(Note that SPOOLER and CAPTURE are synonyms).

On Novell, 3Com, and IBM PC networks, to flush the print spooler and return to the default local

printer, issue

SET PRINTER TO <default>

If the default is a serial printer on COM2, issue

SET PRINTER TO COM2

dBXL: SET PRINTER TO <filename> not available. You can send @...SAYs to a disk file using

SET DEVICE TO ALTERNATE and SET ALTERNATE ON.

FoxBASE+: You can send printer output to a disk file with the command

SET PRINTER TO <filename>

SET PRINTER SECTION 2

The dBASE® Language Handbook 492 Back to CONTENTS

The output file has no assigned extension. Two more DOS device names, PRN and CON, are valid.

PRN is a synonym for LPT1. CON refers to the console. SET PRINTER TO CON duplicates

output on the screen.

You can send @...SAYs to a disk file, but only when you SET DEVICE TO PRINT.

Quicksilver: Lets you send printer output to a disk file; however, it does not allow pathnames in

the destination filename. Nor does it overwrite an existing file of the same name. Instead, it

appends the new output to the old file. To avoid this, ERASE the existing file before you SET

DEVICE TO PRINT or SET PRINT ON.

Quicksilver can send @...SAYs to a disk file, but only when you SET DEVICE TO PRINT.

Example 2—A financial analyst wants to incorporate end-of-year reports in word processing

documents. Using SET PRINTER TO <filename> and SET DEVICE TO PRINT sends formatted

output to disk files. This works only in Clipper, FoxBASE+, and Quicksilver.

SET PRINTER TO eo_year && File EO_YEAR is given a PRN extension in

 && Clipper, none in FoxBASE or Quicksilver

SET DEVICE TO print && Begin sending @...SAY output to EO_YEAR

DO p_and_l && Procedure P_AND_L prints profit and loss

 && statement using @...SAYs

SET DEVICE TO screen && Resume sending @...SAY output to the screen

SET PRINTER TO && Reset PRINTER to the default (LPT1)

SEE ALSO:
Commands @...SAY, ?, ???, SET DEVICE, and SET PRINT.

SET PROCEDURE SECTION 2

The dBASE® Language Handbook 493 Back to CONTENTS

SET PROCEDURE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET PROCEDURE TO [<filename>]

DEFINITION:
Opens a PROCEDURE file, loading the PROCEDUREs within it into memory. Only one

procedure file may be opened at a time.

SET PROCEDURE TO by itself closes the open procedure file.

Procedures are executed like other programs, using the DO command. When you issue DO with

an open procedure file, dBASE first looks for the procedure to execute. If it doesn't find the

procedure, it then checks for a program file (extension PRG). It then opens and reads the program,

beginning execution.

Note that a program file and a procedure may have the same name. If so, dBASE executes the

procedure unless you specify the program file with a disk drive designator or pathname.

DEFAULT:
The procedure file name has a PRG extension by default.

RECOMMENDED USE:
Put commonly used subroutines in PROCEDURE files. Because the PROCEDURE file is already

open, DOing a procedure requires no file opening.

This can benefit data entry applications, especially when used for on-line validation routines and

computations. During data entry, even slight delays can upset an operator's rhythm.

Also, PROCEDURES allow more levels of nested programs because more programs can be active.

A procedure file containing many procedures counts as only one open file.

Example—A real estate management system consists of many program files and a procedure file

containing 32 procedures. At the beginning of the main program, REALMAIN.PRG, the

programmer includes the command to open the procedure file REALCALC.PRG. In

REALCALC.PRG, procedure FUTURE computes future value based on TERM, PRINCIPAL,

and INTEREST entered in REALMAIN.

* REALMAIN.PRG

SET PROCEDURE TO realcalc

STORE 0 to term,principal,interest

SET PROCEDURE SECTION 2

The dBASE® Language Handbook 494 Back to CONTENTS

PUBLIC fval

@ 10,03 SAY " Enter principal: " GET principal

@ 11,03 SAY "Enter term in months: " GET term

@ 12,03 SAY " Enter interest rate: " GET interest

READ

interest = interest / 12

DO future WITH principal,term,interest

? "Future value: " + TRANSFORM (fval,"$999,999,999.99")

* <more statements>

* REALCALC.PRG

PROCEDURE future

PARAMETERS principal,term,interest

fval = principal * (1 + interest / 100) ^ term

* <more procedures>

VARIATIONS:
Clipper: Allows procedures anywhere in the compiled program without SET PROCEDURE TO.

However, if a program file contains procedures and is not referenced by a DO <program name>

elsewhere in the application, Clipper cannot find it at compile time. You must either use SET

PROCEDURE TO<program name> to locate the procedures at compile time, or compile the

procedure file separately, then link it.

There is no arbitrary limit on the number of procedure files. However, note that using procedure

files offers no performance advantage. All programs and procedures ultimately reside in an

executable file or in overlay files.

Procedure and program names must be unique.

dBASE III PLUS, dBASE IV, and FoxBASE+: A procedure file can open itself as shown here:

* MENU.PRG

SET PROCEDURE TO menu

DO proc1

PROCEDURE proc1

* <procedure statements>

PROCEDURE proc2

* <procedure 2 statements>

This lets you distribute an application as a single PRG file, without the need for a calling file to

open it.

dBASE IV: All PROCEDUREs must end with a RETURN statement. You can put procedures in

any program without a SET PROCEDURE command. Just put them at the end of the program file.

Statements after a PROCEDURE...RETURN, except for other PROCEDUREs and FUNCTIONs,

will never execute. A file can contain up to 1,170 procedures (limited by available memory).

SET PROCEDURE SECTION 2

The dBASE® Language Handbook 495 Back to CONTENTS

For best performance and fewest object files, put as many procedures as possible in the main

program file.

If a program file contains procedures and is not referenced by a DO <program name> elsewhere

in the application, dBASE IV cannot find it. You must use SET PROCEDURE TO <program

name> to locate the procedures at runtime.

You may DO a procedure in the current program file, or in the active PROCEDURE file. From a

subroutine, you may also DO a procedure located in a calling program.

dBASE IV searches areas for the named procedure in the following order:

1. Currently executing object file (extension DBO)

2. An open procedure file using SET PROCEDURE TO

3. The other most recently opened calling object file

4. An object file with the same name as the procedure

5. A program file (extension PRG) with the same name as the procedure

6. An SQL program file (extension PRS) with the procedure name.

dBASE IV compiles program files before executing them.

Warning: dBASE IV will not execute a program on disk with the same name as an active

procedure. The procedure always takes precedence.

dBXL,Quicksilver: The PROCEDURE statement must be the first command in the procedure

file. This prevents procedure files from calling themselves as in dBASE III PLUS and FoxBASE+.

Using procedures in Quicksilver has no performance advantage.

FoxBASE+: Using procedures offers a significant performance advantage. Fox Software offers a

utility FOXBIND that puts programs in a single procedure file. It inserts the PROCEDURE

<filename> declarations automatically.

Warning: FoxBASE+ has difficulty differentiating between procedures and program files with the

same name.

To avoid this problem, 1) avoid duplicate names or 2) issue the CLEAR PROGRAM command

before issuing another DO.

Note: In dBASE III PLUS (but not dBASE IV), a drive designator alone can differentiate between

a procedure and a program file in a DO <filename> command. FoxBASE+ requires a pathname.

SEE ALSO:
Commands COMPILE, DO, PARAMETERS, and PROCEDURE; function PROGRAM().

SET PROMPT SECTION 2

The dBASE® Language Handbook 496 Back to CONTENTS

SET PROMPT

DIALECTS:
dBXL only.

SYNTAX:
SET PROMPT TO [<expC>]

DEFINITION:
Redefines the interactive prompt. It may display character strings and system information.

SET PROMPT TO alone resets the prompt to the default.

RECOMMENDED USE:
Use SET PROMPT to provide system information to interactive users. The prompt message may

contain any of these system variables:

$a Active database alias

$b Vertical line (|)

$d System date

$f Active database name

$g Right angle bracket (>)

$h Backspace

$i Master index of active database

$n Default disk drive

$p Current directory of default drive

$s Space

$t System time

$v dBXL version number

$w Work area number of active database

$_ Carriage return/Line feed

Example—A researcher must use five open files when gathering data for a project. From the

interactive mode, the researcher defines the prompt to provide information about the selected

database.

SET PROMPT TO "> File: $a Index: $i Area: $w Drive: $p $_>"

The prompt expression may also contain memory variables, internal functions, and other string

operators. For example:

user = "John O'Toole"

space = DISKSPACE()

SET PROMPT TO "USER:"+user+" DISKSPACE:"+TRANSFORM(space,"99,999,999")+"$_>"

 USER:John O'Toole DISKSPACE: 5,519,560

 >

SEE ALSO:
Command SET STATUS; functions DISKSPACE() and TRANSFORM().

SET REFRESH SECTION 2

The dBASE® Language Handbook 497 Back to CONTENTS

SET REFRESH

DIALECTS:
dBASE IV only.

SYNTAX:
SET REFRESH TO <expN>

DEFINITION:
On a local area network, determines how often the screen is updated during BROWSE and EDIT

to reflect changes made by other users. To use SET REFRESH, you must first use the CONVERT

command to prepare databases for multiuser applications.

<expN> is the number of seconds between refreshes, in the range from 0 to 3,600 (one hour).

On a single-user system, SET REFRESH has no effect.

In the BROWSE mode, SET REFRESH updates all records except the current one. In EDIT, SET

REFRESH updates the current record, but only if it detects no keyboard input during the refresh

interval.

DEFAULT:
0

RECOMMENDED USE:
Use SET REFRESH in applications with few transactions. It is quite distracting to watch data

change on the screen during entry. (You can reduce the number of updates by increasing the refresh

interval.) You can also use SET REFRESH in "read-only" screens where changes won't be a

distraction.

When doing global transactions, take exclusive use of the file and make updates in batches. In

general, SET REFRESH is useful in simple interactive "lookup" applications.

Example—An inventory application at a supermarket displays products in categories. The

manager views the file in the BROWSE mode. To update it, she must first exit to a controlled data

entry mode.

SET REFRESH TO 5

BROWSE NOEDIT NOAPPEND LOCK 1 FIELDS item,price,dept

SET REFRESH TO 0

SPECIAL USE:
You can set the refresh rate in the CONFIG.DB file with

SET REFRESH SECTION 2

The dBASE® Language Handbook 498 Back to CONTENTS

REFRESH = <expN>

SEE ALSO:
Commands BROWSE, CONVERT, and EDIT; functions CHANGE() and LKSYS().

SET RELATION SECTION 2

The dBASE® Language Handbook 499 Back to CONTENTS

SET RELATION

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET RELATION TO [<exp> / <expN> INTO <alias>]

DEFINITION:
Links the currently selected database with another open database identified by its <alias>. SET

RELATION links the files by a key index expression <exp> or by a numeric expression <expN>

that evaluates to a record number.

When linked by a key expression, the child database must be indexed on it. When linked by a

numeric expression (record number), indexes must not be used.

SET RELATION links two databases in a parent-child relationship. The active database is the

parent, the INTO database is the child. When the parent's record pointer moves, the child's moves

to the record matching the key expression. If no match is found, the child's pointer moves to the

end-of-file, and the FOUND() function returns false (.F.).

dBASE III PLUS permits only one relation from one database into another. A parent database can

have only one child. However, a child may have many parents. The biological analogy is a bit

shaky here. You may also create a chain of relations, in which a child is itself a parent to another

child.

SET RELATION TO also eliminates any previously set relation.

The RELATION does not take effect until you move the record pointer in the parent file.

DEFAULT:
SET RELATION TO alone turns off the currently established RELATION.

RECOMMENDED USE:
Use SET RELATION to reduce data redundancy and to simplify programming of multifile data

entry screens and reports.

The key expression method of SETting RELATIONS is more flexible and reliable than the

numeric expression (record number) method because record numbers are independent of the data.

That is, a PACK or SORT changes record numbers, leaving the potential for errors.

If you must use a numeric key (for example, if there is not enough disk space for an index), control

deletions and additions carefully. Record number relations work best when records match one-for-

one.

SET RELATION SECTION 2

The dBASE® Language Handbook 500 Back to CONTENTS

Example 1—A mailing list database MAIL.DBF contains 100,000 records. Each consists of

NAME, ADDRESS1, ADDRESS2, and ZIPCODE. The program stores CITY and STATE in a

related file called ZIPSTATE to conserve disk space and save data entry time.

The operator enters NAME, ADDRESS1, ADDRESS2, and ZIPCODE into MAIL.DBF. The

program then searches ZIPSTATE using SEEK. If ZIPCODE is not found, the program prompts

the operator to add the CITY and STATE. They are then available the next time the operator enters

that ZIPCODE. As ZIPSTATE grows, less data entry is necessary. When generating reports or

labels from MAIL, the relation points to the proper CITY/STATE record for a given ZIPCODE.

LABELGEN.PRG prints one-across labels using the database MAIL.DBF with a relation

established into ZIPSTATE.

* LABELGEN.PRG

* ZIPCODE field is common to both databases

SELECT A && Refer to relations by alias or work area letter

USE mail

SELECT B

USE zipstate INDEX zipdex && Indexed on ZIPCODE

SELECT A

SET RELATION TO zipcode INTO B

SET PRINT on

indent = 10 && Easy-to-change indent value

DO WHILE .NOT. EOF()

 ? SPACE(indent) + name ? SPACE(indent) + address1

 ? SPACE(indent) + address2

 ? SPACE(indent) + TRIM(B->city) + ", " + B->state + " " + zipcode

 ?

 ?

 SKIP

ENDDO

SET PRINT off

Note that LABELGEN.PRG extracts CITY and STATE directly from ZIPSTATE using the work

area designator B->.

Assume that the space saved per record in MAIL equals the space wasted per record in ZIPSTATE.

If MAIL grows to 150,000 records, but ZIPSTATE stops growing at 5,000, you save 145,000

CITY and STATE fields. If these fields are 22 bytes long, the total savings are 3,190,000 bytes.

That is substantial, even in today's multi-megabyte world.

Example 2—A medical application stores histories and billing information in separate files related

by patient number (PAT_NO). This avoids the duplication of billing information in each record.

The billing file acts as parent. The following commands establish the relation:

SELECT A && Establish a work area and open

SET RELATION SECTION 2

The dBASE® Language Handbook 501 Back to CONTENTS

USE billing && the parent BILLING.DBF.

SELECT B && Change areas. Open child HISTORY.DBF, indexed

USE history INDEX pat_no && on PAT_NO, a field common to both files

SELECT A && Return to original work area

* Set relation to the key expression (PAT_NO) in the child in work area B

SET RELATION TO pat_no INTO history

With the relation established, moving the record pointer in BILLING causes the one in HISTORY

to move to a record with the same PAT_NO.

Example 3—The same medical application as in Examples 1 and 2 stores insurance information

in file INSURE. INSURE also contains a key field called PAT_NO (patient number). To relate

INSURE to HISTORY and BILLING simultaneously requires a "chained" relation. Using

BILLING as the parent, you could depict it as follows:

 BILLING->HISTORY->INSURE

In the model, BILLING is the parent of HISTORY and HISTORY is the parent of INSURE. When

the pointer moves in BILLING, the ones in HISTORY and INSURE follow. Of course, if there is

no match in HISTORY, there can be no match in INSURE.

SELECT A && Establish a work area

USE billing && and open the parent BILLING.DBF

SELECT B && Change areas

USE history INDEX pat_no && Open child HISTORY.DBF indexed on PAT_NO

SELECT C && Change areas again and

USE insure INDEX pat_no2 && open INSURE with index PAT_NO2

SELECT A

SET RELATION TO pat_no INTO history SELECT B

SET RELATION TO A->pat_no INTO insure

Note that the relation in work area B refers to a key expression in area A and a child database in

area C. When the pointer in BILLING moves, the one in HISTORY moves to the corresponding

record. When the record pointer in HISTORY moves, the one in INSURE moves to the

corresponding record. You can set up to four indexed relations using this method (because you can

have up to ten open files). Using record numbers and no indexes, you could set up to nine relations.

VARIATIONS:
Clipper: You can specify multi-child relations in a single SET RELATION command using the

syntax

SET RELATION TO [<exp> / <expN> INTO <alias> [,...8]]

Up to 8 children may be related to a parent database file.

Clipper also has an ADDITIVE option that lets you add new relations in the current work area,

using the form

SET RELATION SECTION 2

The dBASE® Language Handbook 502 Back to CONTENTS

SET RELATION [ADDITIVE] TO [<exp> / <expN> INTO <alias> [,...8]

Example 4—Example 2 also maintains a schedule database along with medical history and billing

information. Using the schedule database, a doctor can view the billing and history files, plus look

up the date of the patient's next visit. The following sequence establishes the relations.

SELECT A

USE billing

SELECT B

USE history INDEX pat_no

SELECT C

USE schedule INDEX pat_no2

SELECT D

USE transact INDEX pat_no3

SELECT A

SET RELATION TO pat_no INTO history, TO pat_no INTO schedule

An additional relation can be set in area A without releasing the previous relation:

SET RELATION ADDITIVE TO pat_no INTO transact

Moving the record pointer in BILLING causes the ones in HISTORY, SCHEDULE, and

TRANSACT to move to records with the same PAT_NO.

Note that ADDITIVE comes after RELATION in Clipper.

dBASE IV: You can specify multi-child relations in a single SET RELATION command using

SET RELATION TO [<exp> / <expN> INTO <alias> [,...8]]

You may relate up to 9 children to a parent database file. You can also use the SET SKIP command

to specify a one-to-many relationship from a parent record in one database to multiple records in

another database. See SET SKIP for details.

FoxBASE+: The ADDITIVE option lets you set multiple relations. If you put ADDITIVE after

SET RELATION, existing relations remain

intact. We can establish ones like those in Example 4 as follows:

SELECT A

USE billing

SELECT B

USE history INDEX pat_no

SELECT C

USE schedule INDEX pat_no2

SELECT A

SET RELATION TO pat_no INTO history

SET RELATION TO pat_no INTO schedule ADDITIVE

SET RELATION SECTION 2

The dBASE® Language Handbook 503 Back to CONTENTS

Note that ADDITIVE comes at the very end in FoxBASE+.

Quicksilver: The default allows up to 10 open databases, six physically and up to four virtually.

Although Quicksilver only opens six physically, it cleverly swaps additional files to make 10

appear to be open. Unlike databases, relations must have their own physical buffer areas. The

normal allowance is six relations, corresponding to the default number of physical buffer areas.

To increase the maximum number of relations to 10, re-install a large-memory linker library for a

maximum of 10 physical buffer areas. To do this, run the install program using the linker libraries

DB3PCL.LIB (included with Quicksilver) or DB3MSL.LIB (available separately from

WordTech).

SEE ALSO:
Commands SELECT, SET INDEX, SET ORDER, SET SKIP, and USE.

SET REPROCESS SECTION 2

The dBASE® Language Handbook 504 Back to CONTENTS

SET REPROCESS

DIALECTS:
dBASE IV only.

SYNTAX:
SET REPROCESS TO <expN>

DEFINITION:
Determines how many times dBASE IV retries a record- or file-locking operation in multiuser

applications.

The retry continues until the lock succeeds or the counter is exhausted. The counter (<expN>)

ranges from -1 to 32,000. (Specifying -1 retries the lock indefinitely.)

After exhausting the reprocess counter, if the lock fails in a full-screen mode (BROWSE or EDIT),

dBASE IV displays an error message that you can trap with the ON ERROR command.

In other contexts, RLOCK() and FLOCK() simply return false (.F.), making recovery the

programmer's responsibility.

DEFAULT:
0

RECOMMENDED USE:
Always SET REPROCESS to as low a value as possible. If the system generates errors because

files are inaccessible, raise the value in increments of 20 or 50 and test the results. The only way

to find the best value is trial and error, since it depends on how well the application is designed.

The best designed multiuser applications do not lock files and records longer than necessary to

make the update.

Example—A real estate company uses dBASE IV on a local area network. During periods of

heavy use, error messages report that other users have locked records and files. The programmer

SETs REPROCESS TO 500 to give the FLOCK() and RLOCK() functions more time to succeed.

USE property

SET REPROCESS TO 500

* <SEEK appropriate record>

IF RLOCK()

 REPLACE property WITH mprop, saleprice WITH msale

 UNLOCK

ELSE && If RLOCK() fails,

 DO recover && do error-handling procedure

ENDIF

SET REPROCESS SECTION 2

The dBASE® Language Handbook 505 Back to CONTENTS

LIMITS/WARNINGS:
Avoid SET REPROCESS TO -1 if someone might leave a file locked indefinitely. If a user down

the hall locks a file you want and leaves for lunch, SET REPROCESS TO -1 sends your computer

to lunch as well.

SEE ALSO:
Commands ON ERROR, SET AUTOLOCK, SET DELAY, SET LOCK, and SET REPROCESS;

functions FLOCK(), LOCK(), and RLOCK().

SET RETRACE SECTION 2

The dBASE® Language Handbook 506 Back to CONTENTS

SET RETRACE

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
SET RETRACE ON/OFF

DEFINITION:
Controls the method of screen writing. Normally, it is continuous, creating a very fast display. On

some terminals, however, this causes screen interference (snow). It depends on the type of color

card and monitor. To eliminate snow, SET RETRACE ON, slowing the screen display.

DEFAULT:
OFF

RECOMMENDED USE:
If you use the PC-DOS Quicksilver libraries, you may encounter snow with a Color Graphics

Adapter (CGA) or Enhanced Graphics Adapter (EGA). SET RETRACE ON will normally correct

this problem.

dBXL's SETUP program lets you install dBXL with RETRACE ON or OFF. The SETUP program

modifies the configuration file (CONFIG.XL), adding the statement RETRACE=<ON/OFF>. You

can also install dBXL to use interrupt 10 for all screen displays. This lets you run on non-standard

PCs and operating systems. If you install dBXL for interrupt 10 displays, SET RETRACE ON

uses interrupt 10.

LIMITS/WARNINGS:
Some older IBM PCs will not run Quicksilver-compiled programs without special installation

because of the way Quicksilver writes to the screen. As older IBM PCs do not support horizontal

retrace, SET RETRACE ON locks up the system. To correct this problem, use the Quicksilver

INSTALL program to install Video Attributes and change the SET RETRACE command to use

interrupt 10. Then put SET RETRACE ON in your program.

If you use the MS-DOS Quicksilver libraries, SET RETRACE has no effect. Quicksilver

applications compiled for MS-DOS use the ANSI.SYS device driver to write to the screen.

Note: SET RETR means SET RETRY in Quicksilver, not SET RETRACE.

VARIATIONS:
FoxBASE+: A command line option inhibits "snow" on non-IBM personal computers. To use it,

enter

SET RETRACE SECTION 2

The dBASE® Language Handbook 507 Back to CONTENTS

C> FOXPLUS -NOTIBM

from the DOS prompt. The NOTIBM switch is not available in FoxBASE+/386.

SEE ALSO:
Command SET COLOR.

SET RETRY SECTION 2

The dBASE® Language Handbook 508 Back to CONTENTS

SET RETRY

DIALECTS:
Quicksilver only.

SYNTAX:
SET RETRY TO [<expN>]

DEFINITION:
Sets the number of times to RETRY a record lock (RLOCK() or LOCK()), a file lock (FLOCK()),

or an automatic record or file lock (SET AUTOLOCK ON). RETRY also determines how many

times Quicksilver tries to open a database file for exclusive use.

The attempts continue until the lock succeeds or the RETRY counter is exhausted. <expN> must

be between 0 and 65535, inclusive.

If the lock fails, the program ends and control returns to DOS unless the ON ERROR or ON

NETERROR command specifies a remedial action.

SET RETRY is similar to dBASE IV's SET REPROCESS command.

DEFAULT:
10

SET RETRY TO alone restores the default setting.

RECOMMENDED USE:
SET RETRY to a high number on networks with a high volume of transactions and many users.

This reduces the chance of locking errors due to unavailable files or records.

Example—A commodity investment firm uses a Quicksilver program on a local area network.

When many brokers enter orders simultaneously, network errors occur. Apparently, the RETRY

default of 10 did not accommodate the heavy load of locking requests. To correct the problem, the

programmer increases the number of retries to 200.

SET RETRY TO 200

SEE ALSO:
Commands ON ERROR, SET AUTOLOCK, and SET REPROCESS.

SET SAFETY SECTION 2

The dBASE® Language Handbook 509 Back to CONTENTS

SET SAFETY

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SET SAFETY ON/OFF

DEFINITION:
Protects files from being destroyed by warning the user when an operation or command will

overwrite one.

The dBASE III PLUS SAFETY prompt is:

<filename> already exists, overwrite it? (Y/N)

The dBASE IV SAFETY prompt is:

File already exists

 Overwrite Cancel

SET SAFETY OFF to disable the SAFETY feature.

DEFAULT:
ON

RECOMMENDED USE:
SET SAFETY OFF in programs since all operations that overwrite files are under the program's

control.

Affected commands include COPY, CREATE, INDEX, JOIN, MODIFY STRUCTURE, SAVE,

SORT, TOTAL, and ZAP.

VARIATIONS:
Clipper, Quicksilver: Assume SET SAFETY OFF.

FoxBASE+: SAFETY does not protect files overwritten by the SET PRINTER command.

SEE ALSO:
Command SET PRINTER.

SET SCOREBOARD SECTION 2

The dBASE® Language Handbook 510 Back to CONTENTS

SET SCOREBOARD

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET SCOREBOARD ON/OFF

DEFINITION:
Controls whether system messages appear on line 0 when STATUS is SET OFF.

With SET SCOREBOARD ON, messages appear on line 0. The messages include: "Del" (deleted

record), "Ins" (INSERT mode on), "Num" (Num Lock on), and "Caps" (Caps Lock on). Valid

range and valid date parameters also appear upon invalid input during data entry.

DEFAULT:
ON

RECOMMENDED USE:
SET SCOREBOARD OFF in programs when you want to use line 0 for custom menus, borders,

or prompts.

LIMITS/WARNINGS:
SET SCOREBOARD OFF turns line 0 messages off. It has no effect when the STATUS bar is

active (SET STATUS ON).

Warning: Avoid using line 0 for menus and formats if you SET SCOREBOARD ON.

VARIATIONS:
Clipper: Also controls MEMOEDIT() messages.

dBASE IV: Be sure to SET SCOREBOARD OFF when you use horizontal PAD menus on line

0.

SEE ALSO:
Command SET STATUS.

SET SEPARATOR

DIALECTS:
dBASE IV only.

SET SEPARATOR SECTION 2

The dBASE® Language Handbook 511 Back to CONTENTS

SYNTAX:
SET SEPARATOR TO [<expC>]

DEFINITION:
Specifies the numeric separator character in PICTURE template output.

You can change it from the default comma. <expC> is any character.

You continue to specify commas in PICTURE templates, but they display as the new symbol.

SET SEPARATOR TO with no argument restores the default comma.

SET SEPARATOR does not affect the decimal point. Use SET POINT instead.

RECOMMENDED USE:
Use SET SEPARATOR in applications dealing with international funds or specialized units of

measurement.

Example—A program converts dollars to pesos. The programmer uses SET SEPARATOR to

change the numeric separator to a period, and SET POINT to change the decimal point to a comma.

SET SEPARATOR TO "."

SET POINT TO ","

mamount = 823372.22

? mamount PICTURE "$9,999,999.99"

$$$823.372,22

SEE ALSO:
Commands @...SAY, SET CURRENCY, and SET POINT.

SET SKIP SECTION 2

The dBASE® Language Handbook 512 Back to CONTENTS

SET SKIP

DIALECTS:
dBASE IV only.

SYNTAX:
SET SKIP TO [<alias1>[,<alias2>...]]

DEFINITION:
Lets you define a one-to-many relation, in which a parent record may have multiple child records

in a related file. You can then move the pointer among the child records, without moving the

pointer in the single parent.

When issuing a command that uses a scope (such as LIST or DISPLAY), the parent record appears

to repeat for each matching child record.

SET SKIP requires an active relation defined by SET RELATION.

<alias1>,<alias2>... is a list of open database file aliases linked by active relations. You can specify

some or all of the open databases.

SET SKIP TO with no argument returns the relation to one-to-one.

RECOMMENDED USE:
Use SET SKIP to create detail reports for a parent record.

Example—A doctor's office program has a PATIENT master file and a VISIT transaction file.

The files are related by a common patient number, stored in PA_NUM and VIS_NUM. Each

patient has multiple visits. With SET SKIP, the DISPLAY ALL command shows the parent record

matching multiple child records. For example, patient Belair visited the doctor on 09/09/88,

07/11/87, and 06/13/87.

USE visit ORDER vis_num IN 2 && Child file

USE patient ORDER pa_num IN 1 && Parent file

SET RELATION TO pa_num INTO visit && Relate by VIS_NUM (same as PA_NUM)

SET SKIP TO patient, visit && SET SKIP to both files

* Display all data using ALIAS->for clarity, although it is not

* necessary for displaying data from the selected work area

DISPLAY ALL patient->name, patient->phone, visit->visdate, visit->condition

 2 Belair 503-555-2222 09/09/88 Checkup

 2 Belair 503-555-2222 07/11/87 Mumps

 2 Belair 503-555-2222 06/13/87 Headache

 3 Randall 888-555-8382 04/12/89 Flu

SET SKIP SECTION 2

The dBASE® Language Handbook 513 Back to CONTENTS

 3 Randall 888-555-8382 02/02/89 Hangnail

 3 Randall 888-555-8382 10/18/88 Sore throat

 1 Sanderson 619-555-1212 10/11/88 No problem

 1 Sanderson 619-555-1212 08/02/88 Rash

SEE ALSO:
Commands DISPLAY ALL and SET RELATION.

SET SOFTSEEK SECTION 2

The dBASE® Language Handbook 514 Back to CONTENTS

SET SOFTSEEK

DIALECTS:
Clipper only.

SYNTAX:
SET SOFTSEEK ON/OFF/(<expL>)

DEFINITION:
Controls "closest match" SEEKing. With SET SOFTSEEK ON, SEEKing a nonexistent record

moves the pointer to the record with the next higher key value than the search argument.

If no record has a higher key value, the pointer moves to the end-of-file and FOUND() returns

false (.F.).

SET SOFTSEEK does not work with the FIND command.

RECOMMENDED USE:
SET SOFTSEEK ON is especially useful for processing records within ranges of values, when the

exact limits may not be present.

Example—A sales report shows transactions beginning with 02/02/88. If no transactions occurred

on this date (perhaps because of the Groundhog Day Picnic), the pointer normally moves to the

End-of-File, and no records are processed. To overcome this problem, the programmer SETs

SOFTSEEK ON. Even if the exact date is not found, processing continues with the next available

date.

USE transacts INDEX transdex && Indexed on DTOS(tdate)

startdate = CTOD("02/01/88")

enddate = CTOD("02/29/88")

SEEK DTOS(startdate) && Even if STARTDATE is not FOUND,

DO WHILE tdate < enddate && SOFTSEEK will move pointer to

 SET PRINT on && next record

 *<generate report>

 SET PRINT off

 SKIP

ENDDO

LIMITS/WARNINGS:
SET RELATION ignores the SOFTSEEK setting.

VARIATIONS:
dBASE III PLUS, dBXL, FoxBASE+: You can simulate SET SOFTSEEK ON in four steps:

SET SOFTSEEK SECTION 2

The dBASE® Language Handbook 515 Back to CONTENTS

1. APPEND a BLANK record to the database (be sure the index is active).

2. REPLACE the search argument into the new blank key field. This moves the new record

to its correct index position.

3. DELETE the new record.

4. SKIP to the next record.

The pointer is now at the next higher record in the index. Unfortunately, you have a deleted dummy

record in your file which you should later remove by PACKing or reuse. You can hide it

temporarily with SET DELETED ON.

dBASE IV: The SET NEAR command controls closest match searching. SET NEAR works with

SEEK or FIND.

SEE ALSO:
Commands FIND, INDEX, SEEK, and SET NEAR.

SET SPACE SECTION 2

The dBASE® Language Handbook 516 Back to CONTENTS

SET SPACE

DIALECTS:
dBASE IV only.

SYNTAX:
SET SPACE ON/OFF

DEFINITION:
Determines whether expressions displayed with ? and ?? are separated by a space.

DEFAULT:
ON

RECOMMENDED USE:
Earlier versions of dBASE always put a space between expressions in a list printed with ? and ??.

SET SPACE lets programmers omit the space for greater control over output. Spaces can be

explicitly defined in the expression list.

Example—In a magazine subscription program, a programmer prints variables using ?. Although

there are no spaces in the expression list, they appear between expressions.

? TRIM(subscribe),TRIM(address),TRIM(city)

 Kalman 515 Main Street Boston

To omit the spaces, the programmer SETs SPACE OFF.

? TRIM(subscribe),TRIM(address),TRIM(city)

 Kalman515 Main StreetBoston

To insert spaces in the expression list with complete control, the programmer can use the SPACE()

function or literal spaces.

? TRIM(subscribe),SPACE(20),TRIM(address)," ",TRIM(city)

 Kalman 515 Main Street Boston

SEE ALSO:
Command ?/??.

SET SQL SECTION 2

The dBASE® Language Handbook 517 Back to CONTENTS

SET SQL

DIALECTS:
dBASE IV only.

SYNTAX:
SET SQL ON/OFF

DEFINITION:
Enables the Structured Query Language processing (SQL) mode from the interactive prompt. SET

SQL ON activates SQL, an alternate set of commands for creating, modifying, and querying

databases.

When you SET SQL ON, dBASE IV recognizes SQL statements and a only a subset of traditional

dBASE commands.

Programs that contain SQL must have a PRS extension. Such programs may not mix SQL and

traditional dBASE data handling commands. Because dBASE IV recognizes the PRS extension,

SET SQL ON is not necessary in programs.

DEFAULT:
OFF

RECOMMENDED USE:
dBASE IV has two languages for manipulating data: its own language and SQL embedded in a

dBASE-language subset.

SQL is an industry-standard language for accessing and maintaining databases. Because it is

standard, future versions of dBASE will be able to access data on mainframes and minicomputers,

and on SQL-based database servers on local area networks.

Use SET SQL ON from the interactive prompt to enable the SQL mode. You may not alternate

between SET SQL ON and SET SQL OFF within a program.

LIMITS/WARNINGS:
The dBASE IV Runtime Version does not execute SQL programs. In PRS files (SQL programs),

you may not use a semicolon as a line continuation character. The semicolon indicates the end of

an SQL statement.

You may not use user defined functions in SQL mode.

SET SQL ON disables dBASE file-handling commands and functions. SQL commands replace

them. The disabled commands and functions in dBASE IV Version 1.0 are:

SET SQL SECTION 2

The dBASE® Language Handbook 518 Back to CONTENTS

ALIAS()

APPEND

[BLANK]

APPEND

[FROM]

APPEND

MEMO

ASSIST

AVERAG

E

BOF()

BROWSE

CALCUL

ATE

CHANGE

CONTIN

UE

COPY

MEMO

COPY

STRUCT

URE

 [EXTENDED]

COPY TO

[ARRAY]

COUNT

CREATE [FROM

CREATE LABEL/

REPORT/QUERY

CREATE TAG

DBF()

DECLARE

DELETE

DELETED()

DELETE

FILE/TAG

DISPLAY

DISPLAY FILES/

 INDEXES/

 STRUCTURE/

HISTORY

EDIT

EOF()

EXPORT

FIELD()

FIND

FLOCK()

FOUND()

GETENV()

GO[TO]

IIF()

IMPORT

INDEX

INSERT

JOIN

LABEL FORM

LIST

FILES/INDEXES/

STRUCTURE/HIST

ORY

LOCATE

LOOKUP()

LIST

MEMOLINES()

MLINE()

MODIFY

STRUCTURE

NDX()

ORDER()

PACK

RECALL

RECCOUNT()

RECSIZE()

REINDEX

REPLACE

REPORT FORM

RLOCK()

SCAN...ENDSCAN

SEEK

SEEK()

SELECT

SET BLOCKSIZE

SET CARRY

SET CATALOG

SET DELETED

SET DOHISTORY

SET ECHO

SET ESCAPE

SET EXCLUSIVE

SET FIELDS

SET FILTER

SET INDEX

SET

MEMOWIDT

H

SET NEAR

SET ORDER

SET

SAFETY

SET SKIP

SET STEP

SET

UNIQUE

SET VIEW

SKIP

SORT

SUM

TAG()

TOTAL

UPDATE

ZAP

Note that the list of excluded commands and functions will change in future dBASE IV versions.

SET STATUS SECTION 2

The dBASE® Language Handbook 519 Back to CONTENTS

SET STATUS

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SET STATUS ON/OFF

DEFINITION:
Controls the status bar displayed on line 22 of the screen. With SET STATUS ON, a bar appears

across the bottom of the screen containing system information. It includes: current drive, active

database file, current record, and total number of records. The STATUS line also indicates "Del"

(deleted record), "Ins" (INSERT mode on), "Caps" (Caps Lock on), and "Num" (Num Lock on).

SET STATUS also controls display messages on line 24. With it ON, messages defined with the

SET MESSAGE command appear there, as well as invalid RANGE and invalid DATE messages.

SET STATUS OFF disables line 24 messages.

DEFAULT:
ON, but you can change it by putting STATUS=OFF in the CONFIG file.

RECOMMENDED USE:
Use SET STATUS OFF to disable the status bar when you run a program with custom screens. If

your program addresses line 22 with STATUS ON, the status bar overwrites the output.

LIMITS/WARNINGS:
Note: The status line always appears in ASSIST, CREATE/MODIFY REPORT, and BROWSE,

regardless of the SET STATUS command.

SEE ALSO:
Commands SET MESSAGE and SET PROMPT.

SET STEP SECTION 2

The dBASE® Language Handbook 520 Back to CONTENTS

SET STEP

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SET STEP ON/OFF

DEFINITION:
Pauses program execution after each statement to help in debugging.

With SET STEP ON, the prompt

Press SPACE to step, S to suspend, or Esc to cancel...

appears for each program line.

Pressing the space bar executes the next program line. All operations, except the screen display,

work as usual. (The screen display may become difficult to read as the SET STEP prompt

overwrites your screen output).

Pressing "S" suspends program execution. You can then do other operations and resume execution

later by issuing the RESUME command.

Pressing the ESCape key CANCELs program execution, returning control to the interactive

prompt.

DEFAULT:
OFF

RECOMMENDED USE:
SET STEP is a powerful debugging tool. During program suspension, you can manipulate files

and create and inspect memory variables to determine the effects of program statements. You can

also execute other programs and commands, including debugging commands such as SET

DEBUG, SET ECHO, and SET TALK.

Example 1—A sales report program called SALESGEN.PRG generates erroneous results.

Monthly sales total $24,000, yet the report shows only $16,000 among the three salespeople (MW,

JM, and RC).

To debug the program, the programmer SETs STEP ON, then issues the command DO

SALESGEN. When the program starts to print the results, she suspends execution. A LIST of the

active database file shows:

SET STEP SECTION 2

The dBASE® Language Handbook 521 Back to CONTENTS

 . LIST

 Record# SALES CODE RDATE

 1 12000.00 MW 02/10/87

 3 4000.00 RC 02/14/87

She notices that record 2 does not appear. DISPLAY STATUS shows an active index called

RDATE (reporting date) with a key of RDATE. She realizes that record 2 has a duplicate key and

deduces that the index was created with UNIQUE inadvertently SET ON. The obvious solution is

create a new index without UNIQUE. The file now looks like:

 . LIST

 Record# SALES CODE RDATE

 1 12000.00 MW 02/10/87

 2 8000.00 JM 02/10/87

 3 4000.00 RC 02/14/87

The programmer then issues the RESUME command to continue program execution. This is a

difficult error to spot, as it appears only when two salespeople report on the same day.

VARIATIONS:
Clipper: Use DEBUG.OBJ, a debugging module you can link into your applications.

dBASE IV: Use DEBUG to activate the symbolic debugger. The debugger makes SET STEP

unnecessary.

Quicksilver: Use the symbolic debugging tool dB Debugger.

SEE ALSO:
Commands DEBUG, SET DEBUG, SET ECHO, SET TALK, SET TRAP, and SUSPEND.

SET TALK SECTION 2

The dBASE® Language Handbook 522 Back to CONTENTS

SET TALK

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SET TALK ON/OFF

DEFINITION:
Controls whether certain commands echo results on the screen during execution.

DEFAULT:
ON

RECOMMENDED USE:
With SET TALK ON, file handling commands (such as APPEND FROM, COPY TO, and

INDEX) display record counters on the screen. Other commands such as AVERAGE and SUM

show record counts and calculation totals. Memory variable assignments echo the STOREd values

on the screen. (This is especially helpful for debugging because you can see values change).

SET TALK OFF turns off record counters, calculation totals, and memory variable assignments.

It does not affect the SCOREBOARD or MESSAGE display.

To control the record counters displayed by the file handling commands (APPEND FROM,

INDEX, etc.), use the SET ODOMETER command.

LIMITS/WARNINGS:
Writing to the screen with SET TALK ON generally degrades program performance. For best

performance, SET TALK OFF.

VARIATIONS:
Clipper, Quicksilver: SET TALK is always assumed OFF.

SEE ALSO:
Commands DEBUG, SET ECHO, SET ODOMETER, and SET STEP.

SET TIME SECTION 2

The dBASE® Language Handbook 523 Back to CONTENTS

SET TIME

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
SET TIME TO <hh:mm:ss>

DEFINITION:
Changes the system time to the specified value on the 24-hour clock. For example, 12:00:00 means

12 noon, and 18:00:00 is 6 p.m.

The TIME value is an unquoted string:

XL> SET TIME TO 05:05:30

XL> ? TIME()

 05:06:20

Specifying a TIME value with a memory variable requires a macro:

XL> STORE "12:00:00" TO tstring

XL> SET TIME TO &tstring

XL> ? TIME()

 12:01:02

SEE ALSO:
Command SET CLOCK; functions DATE() and TIME().

SET TITLE SECTION 2

The dBASE® Language Handbook 524 Back to CONTENTS

SET TITLE

DIALECTS:
dBASE III PLUS and dBASE IV.

SYNTAX:
SET TITLE ON/OFF

DEFINITION:
Controls the dBASE III PLUS/dBASE IV file title prompt when a CATALOG

is active.

With SET TITLE ON, dBASE III PLUS and dBASE IV ask for a title any time you create a new

database file. dBASE then adds the title to the active catalog.

With SET TITLE OFF, the prompt does not appear and no file title is added. You may add one

manually by EDITing or REPLACEing the TITLE field in the active catalog file located in work

area 10.

DEFAULT:
ON

RECOMMENDED USE:
SET TITLE and SET CATALOG are designed primarily for use in the interactive mode.

SPECIAL USE:
SETting CATALOG TO a nonexistent filename creates a new database file. This is the only way

to create a database file under program control in dBASE III PLUS and dBASE IV. Some

developers use this trick to supply programs to users as single program files. The program can then

create other files using COPY STRUCTURE EXTENDED and CREATE FROM.

To create files in this way, you must first SET TITLE OFF and SET SAFETY OFF. Otherwise,

the end user will be prompted unnecessarily for the CATALOG title.

SEE ALSO:
Commands COPY STRUCTURE EXTENDED, CREATE FROM, SELECT, SET CATALOG,

and SET SAFETY.

SET TRAP SECTION 2

The dBASE® Language Handbook 525 Back to CONTENTS

SET TRAP

DIALECTS:
dBASE IV only.

SYNTAX:
SET TRAP ON/OFF

DEFINITION:
Controls activation of the debugger when dBASE IV encounters a program error.

When you SET TRAP ON, an error stops execution and calls the debugger.

The ON ERROR command takes precedence over SET TRAP.

DEFAULT:
OFF. Program errors produce an error message and prompt the user to Cancel, Ignore, or Suspend.

RECOMMENDED USE:
Use SET TRAP ON during program development and testing. When an error occurs, you can set

breakpoints, view variables, and execute the offending program line-by-line to locate the problem.

SEE ALSO:
Commands DEBUG, SET DEBUG, SET DEVELOPMENT, SET ECHO, SET STEP, and

SUSPEND.

SET TYPEAHEAD SECTION 2

The dBASE® Language Handbook 526 Back to CONTENTS

SET TYPEAHEAD

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET TYPEAHEAD TO <expN>

DEFINITION:
Changes the size of the keyboard typeahead buffer. <expN> is the number of keystrokes; it must

be an integer from 0 to 32,000 inclusive.

SET TYPEAHEAD TO 0 turns off the TYPEAHEAD buffer, and disables the INKEY() function

and the ON KEY command.

SET TYPEAHEAD works only when you SET ESCAPE ON.

DEFAULT:
20. In full-screen operations, such as EDIT, APPEND, or BROWSE, TYPEAHEAD only holds

20 characters.

RECOMMENDED USE:
You may sometimes notice that you can type faster than a dBASE program can tolerate. You can

often enter menu selections even before seeing the prompts if you have memorized the responses.

The typeahead buffer holds keystrokes until the program can accept them.

Example—Occasionally, a program forces the user to read the on-screen prompts for warnings or

instructions. In this example, SET TYPEAHEAD TO 0 disables the keyboard buffer for important

messages:

CLEAR

SET TYPEAHEAD TO 0

WAIT "Press 'A' to archive or any other key to cancel" TO urgent

IF urgent = 'D'

 DO archive

ENDIF

VARIATIONS:
Clipper: The largest value is 32,768. If you SET TYPEAHEAD TO 0, the Alt-C and Alt-D keys

may not interrupt execution properly from a tight loop.

dBXL: The largest value is 129.

FoxBASE+: The largest value is 128.

SET TYPEAHEAD SECTION 2

The dBASE® Language Handbook 527 Back to CONTENTS

SEE ALSO:
Commands CLEAR TYPEAHEAD, KEYBOARD, and ON KEY; function INKEY().

SET UDF SECTION 2

The dBASE® Language Handbook 528 Back to CONTENTS

SET UDF

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
SET UDF TO [<filename>] / ? / <pattern>]

DEFINITION:
Opens the specified function file. If one is already open, SET UDF TO closes it before opening

the next one.

SET UDF TO with no arguments closes an open function file.

SET UDF TO ? and SET UDF TO <pattern> display a menu of PRG files. ? shows all PRG files.

<pattern> shows only ones matching the specified pattern. For example, to display all PRG files

starting with "B" issue

SET UDF TO B*

DEFAULT:
The file is assumed to have a PRG extension.

RECOMMENDED USE:
SET UDF tells your application where to look for its user defined functions. Use SET UDF at the

beginning of your application, or anytime you want to execute a user defined function in another

UDF file. SET UDF TO also tells Quicksilver which UDF file to compile. This lets you use the -

A option for automatic compilation.

Example—A dBXL reservation system uses 68 user defined functions. To circumvent the UDF

file limit of 32 functions, the programmer uses SET UDF to change function files when necessary.

mvar = 10

SET UDF TO showfuncs && UDF file contains display-oriented functions

? SHOWPAGE(mvar1) && User defined function shows page 10 of a report

SET UDF TO de_funcs && Switch to data entry user defined functions

* <More statements>

SEE ALSO:
Commands FUNCTION and SET PROCEDURE.

SET UNIQUE SECTION 2

The dBASE® Language Handbook 529 Back to CONTENTS

SET UNIQUE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SET UNIQUE ON/OFF

DEFINITION:
Determines whether an index file will include records with duplicate keys. With SET UNIQUE

ON, the INDEX command includes only the first record with a particular key value. SET UNIQUE

ON is equivalent to INDEX ON <exp> TO <filename> UNIQUE.

SET UNIQUE is only relevant when an index file is created. An INDEX created with it ON

remains UNIQUE, even when updated or REINDEXed.

With SET UNIQUE OFF, the INDEX command includes all records. Records with duplicate keys

appear grouped together in numerical order.

DEFAULT:
OFF

RECOMMENDED USE:
Use SET UNIQUE to view only unique records or to purge duplicates from a file.

Example 1—A library system contains one record for each book. The librarian wants to produce

an author index without duplicates.

USE booklist

LIST author

Record# author

 1 Melville

 2 Howard

 3 Shakespeare

 4 Hooper

 5 Shakespeare

SET UNIQUE ON

INDEX ON author TO authindx

100% indexed 4 Records indexed

LIST author

Record# author

 4 Hooper

 2 Howard

SET UNIQUE SECTION 2

The dBASE® Language Handbook 530 Back to CONTENTS

 1 Melville

 3 Shakespeare

The librarian could also use the INDEX command with the UNIQUE option:

INDEX ON author TO authindx UNIQUE

Example 2—Duplicate records in mailing lists cost extra postage, handling, and materials. SET

UNIQUE ON offers a simple way to purge duplicates.

First, determine the significant key fields. In a typical mailing list, the first four letters of the

LASTNAME, the ZIPcode, and the first three digits of the ADDRESS will suffice.

Next, INDEX on these fields either using the INDEX UNIQUE option or making sure UNIQUE

is SET ON. Finally, COPY TO a temporary file. This file now contains only UNIQUE records.

USE maillist && Use the mailing list file

SET UNIQUE on && Turn unique on

* Create an index based on parts of the significant key fields

* You may need to review the SUBSTR() function

INDEX ON SUBSTR(lastname,1,4) + zip + SUBSTR(address,1,3) TO mailpurge

* Now only UNIQUE records appear in the INDEX

* The temporary file will contain only records that appear in the INDEX

COPY TO tempfile

USE

* TEMPFILE.DBF is now the master mailing list

VARIATIONS:
Clipper: In versions before Summer '87, SET UNIQUE affects all open indexes. It is not related

to a specific index file. In the Summer '87 version, the UNIQUE attribute applies to an index file

when it is created. For example, an index created with SET UNIQUE ON will remain unique

regardless of the current UNIQUE setting. Also in Summer '87, you can use the logical expressions

(.T.) or (.F.) to mean ON or OFF in the SET command. Enclose the logical value in parentheses.

SEE ALSO:
Commands COPY, INDEX, LIST, and SET INDEX TO; functions INDEXKEY() and SUBSTR().

SET USERHELP SECTION 2

The dBASE® Language Handbook 531 Back to CONTENTS

SET USERHELP

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
SET USERHELP ON/OFF

DEFINITION:
Determines whether dBXL and Quicksilver display programmer-defined help messages when a

user presses the F1 key during a READ. The help messages are an option in the @...SAY

command, as shown here:

@ 10,10 SAY "Enter Password: " GET psw ;

 HELP "If you forget your password, press ESC"

The F1 key displays the help message defined in the current @...SAY.

SET USERHELP ON/OFF works with SET USERHELP TO which defines the window where the

help message appears.

DEFAULT:
ON. If no help messages are specified, pressing the F1 key produces "No help available." To

suppress that existentially discouraging message, SET USERHELP OFF.

RECOMMENDED USE:
Use SET USERHELP ON/OFF to control the help option of the @...SAY command. In programs

where you provide no HELP, SET USERHELP OFF.

VARIATIONS:
dBXL: Redefining F1 with the ON KEY command turns off help messages, regardless of the

USERHELP setting.

Quicksilver: Redefining F1 with the ON KEY or SET FUNCTION command turns off help

messages unless you SET USERHELP.

SEE ALSO:
Command @...SAY...HELP and SET USERHELP TO.

SET USERHELP TO SECTION 2

The dBASE® Language Handbook 532 Back to CONTENTS

SET USERHELP TO

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
SET USERHELP TO [<WINDOW window name> / <window spec>]

DEFINITION:
Defines a window in which to display help messages defined by the HELP option of

@...SAY...GET.

The help messages appear when the user presses the F1 key, and SET USERHELP is ON.

SET USERHELP TO with no options restores the default user help window.

DEFAULT:
Upper right corner of the screen (row 1, column 50 to row 8, column 78 with a one-character

border).

OPTIONS:
WINDOW <window name> is an existing window created by the WSET WINDOW command.

<window spec> is a complete window specification as follows:

<top row>,<left col>,<bot row>,<right col>

 [CHARACTER <background char>]

 [COLOR [<text],[[enhanced][,frame>]]

 [FRAME <tl, t, tr, ls, rs, bl, b, br> / [DOUBLE]

See WSET WINDOW TO for details on specifying windows.

RECOMMENDED USE:
Use SET USERHELP TO to position programmer-defined help messages on the screen. When

the user presses the F1 key during a READ, the message appears in the specified window. When

the user presses another key, the message disappears.

Example—A crowded editing screen does not leave much room for detailed explanations. Using

the HELP option of the @...SAY...GET command, programmers can include custom help

messages for each GET (See @...SAY...HELP). SET USERHELP TO incorporates dBXL and

Quicksilver windowing to display the help message.

SET USERHELP TO SECTION 2

The dBASE® Language Handbook 533 Back to CONTENTS

In this example, a service station management system includes custom help with each GET in an

editing screen.

* GAS.PRG

CLEAR CHAR chr(177)

WSET WINDOW gashelp TO 1,1,4,50 DOUBLE

* Set userhelp to window GASHELP

SET USERHELP TO WINDOW gashelp

* Open file and create variables with the same names as fields

USE gasmaster AUTOMEM

@ 02,02 SAY "Enter pump reading: " GET preading PICTURE "#####" ;

 HELP "5-digit number from dial 2"

@ 03,02 SAY "Enter gallons left: " GET gallons PICTURE "####" ;

 HELP "4-digit reading from dial 4"

READ

When the user presses F1, the associated HELP message appears in window GASHELP.

SEE ALSO:
Commands @...SAY and WSET WINDOW.

SET VIEW SECTION 2

The dBASE® Language Handbook 534 Back to CONTENTS

SET VIEW

DIALECTS:
dBASE III PLUS, dBASE IV, and dBXL.

SYNTAX:
SET VIEW TO <view filename>/? (dBASE III PLUS)

SET VIEW TO <query filename>/<view filename>/? (dBASE IV)

DEFINITION:
dBASE III PLUS and dBXL: Opens a view file (extension VUE) created with CREATE/

MODIFY VIEW or CREATE VIEW FROM ENVIRONMENT.

A view file contains a "snapshot" of the environment, including information about open database

files, active relations, and active filters. SET VIEW TO <filename> opens the databases and

activates relations specified in the view file. SET VIEW TO ? with an open catalog presents a

menu of VUE files.

Specifically, a view contains all open database and index files and their work area numbers, the

current work area number, all active relations, the active field list, the active filter, and the name

of the open format file.

Note: SET VIEW TO updates an open catalog with the name of the VUE file, when SET

CATALOG is ON. However, database files opened by SET VIEW TO are not added to the catalog.

dBASE IV: SET VIEW executes a query file (extension QBO or QBE) created by the

CREATE/MODIFY QUERY/VIEW command or by the dBASE IV query-by-example program.

SET VIEW also recognizes dBASE III PLUS view files (extension VUE).

dBASE IV searches for view or query files in this order:

1. Query object files (extension QBO).

2. Query source files (extension QBE).

3. dBASE III PLUS view files (extension VUE).

QBO and QBE files do not work with dBASE III PLUS.

RECOMMENDED USE:
Use dBASE IV's SET VIEW to reestablish queries generated by the query-by-example program

in the Control Center.

Use the dBASE III PLUS/dBXL SET VIEW to restore the working environment of a previous

interactive session. This is convenient for experimenting with the dBASE interpreter or for

SET VIEW SECTION 2

The dBASE® Language Handbook 535 Back to CONTENTS

recovering from interruptions. It is also good for keeping a copy of the environment in case of

power problems or user errors.

Example—A real estate agent establishes filters and relations while using a database of investment

properties. Her partner needs to use the computer briefly for another application. Before quitting

dBASE, the agent can CREATE VIEW FROM ENVIRONMENT to preserve the open files and

relationships.

. CREATE VIEW FROM ENVIRONMENT

 Enter view file name: property

 . CLOSE DATA

 . CLEAR ALL

Upon returning to dBASE, the agent simply issues the command

. SET VIEW TO property

This restores all open files, relations, and filters. DISPLAY STATUS shows the environment just

as she left it:

. DISPLAY STATUS

Currently Selected Database:

Select area: 1, Database in Use: C:PROPERTY.DBF Alias: PROPERTY

Filter: CITY = "Houston"

Related into: PROPVALU

Relation: ZIPCODE

Select area: 2, Database in Use: C:PROPVALU.DBF Alias: PROPVALU

Master index file: C:ZIPEX.NDX Key: ZIPCODE

Alternate file:

File search path:

Default disk drive: C: Print destination: PRN:

Margin = 0

Current work area = 1

VARIATIONS:
dBXL: SET VIEW TO <pattern> lets you restrict which files appear in the menu. For example,

you can display all VUE files starting with "A" as follows:

SET VIEW TO A*

SEE ALSO:
Commands CREATE/MODIFY VIEW/QUERY, CREATE VIEW FROM ENVIRONMENT,

SET CATALOG, SET FIELDS, SET FILTER, SET INDEX, SET ORDER, and SET RELATION.

SET WINDOW SECTION 2

The dBASE® Language Handbook 536 Back to CONTENTS

SET WINDOW

DIALECTS:
dBASE IV only.

SYNTAX:
SET WINDOW OF MEMO TO <window name>

DEFINITION:
Lets you specify a window to use when editing memo fields in operations such as APPEND,

BROWSE, CHANGE, EDIT, and GET/READ.

When the user moves the cursor to a memo field and presses Ctrl-Home, the designated window

opens.

The designated window must already be defined. If not, dBASE IV reports, "Window has not been

defined."

The WINDOW option of the @...GET command overrides SET WINDOW OF MEMO.

DEFAULT:
If you do not SET a WINDOW or use the WINDOW option of the @...GET command, memo

editing uses the full screen.

RECOMMENDED USE:
SET WINDOW OF MEMO works only with dBASE IV's editor. If you specify a different editor

with the WP setting in CONFIG.DB (WP=<editor>), memo editing uses the full screen.

Example—A data entry program displays SAYs and GETs at the top of the screen. The program

reserves the lower half of the screen for memo editing.

DEFINE WINDOW dataentry FROM 11,01 TO 23,50

SET WINDOW OF MEMO TO dataentry

* <Statements>

@ 11,03 SAY "Your note: " GET notememo && NOTEMEMO is a memo field

READ

When the user moves the cursor to NOTEMEMO and presses Ctrl-Home, window DATAENTRY

opens and editing begins.

SEE ALSO:
Commands @...GET...WINDOW, ACTIVATE WINDOW, DEFINE WINDOW, and READ.

SET WRAP SECTION 2

The dBASE® Language Handbook 537 Back to CONTENTS

SET WRAP

DIALECTS:
Clipper only.

SYNTAX:
SET WRAP ON/OFF/(<expL>)

DEFINITION:
Controls whether the cursor bar in a light bar menu "wraps" from the last selection to the first, and

back, when the user presses the appropriate cursor keys.

With SET WRAP ON and the cursor on the last selection, pressing the down or right arrow moves

it to the first selection. With the cursor on the first selection, pressing the up or left arrow moves

it to the last selection.

SET WRAP works only with @...PROMPT...MENU TO lightbar menus.

DEFAULT:
OFF. The cursor cannot normally move beyond the first and last selections.

RECOMMENDED USE:
SET WRAP ON to make long light bar menus easier to use. This saves keystrokes in moving from

one end of the menu to the other. SET WRAP does not affect light bar functions such as ADIR()

and ACHOICE().

Example—A menu offers four report choices. With SET WRAP ON, the user can move the cursor

bar from the first to the last selection with one keystroke.

SET WRAP ON

@ 05,01 PROMPT "1 across labels"

@ 06,01 PROMPT "2 across labels"

@ 07,01 PROMPT "4 across labels"

@ 08,01 PROMPT "6 across labels"

MENU TO which

DO CASE

 CASE which = 1

 * <more statements>

SEE ALSO:
Commands @...PROMPT and MENU TO; functions ACHOICE() and ADIR().

SHOW MENU/POPUP SECTION 2

The dBASE® Language Handbook 538 Back to CONTENTS

SHOW MENU/POPUP

DIALECTS:
dBASE IV only.

SYNTAX:
SHOW MENU <menu name> [PAD <pad name>] / POPUP <popup name>

DEFINITION:
Displays the specified menu or popup without activating it.

OPTIONS:
If you specify PAD <pad name>, SHOW MENU displays the menu with the

specified PAD highlighted.

RECOMMENDED USE:
Use SHOW MENU/POPUP to display dummy menus and popups during program development.

Also use them to display MENUs and POPUPs in user defined menuing routines. As the user

defines the menu or popup, the routine can display the results immediately without interfering with

program execution.

Example—A programmer lets users define menus with a program that prompts for PAD names

and PROMPTs. The SHOW MENU command near the end simulates the menu as the user enters

definitions. The program stores the menu definitions in array DEF[].

* UDM.PRG - Generates a MEM file containing a menu definition

CLEAR

SET TALK OFF

SET SAFETY OFF

SET SCOREBOARD OFF

DECLARE def[6,3] && Array to hold menu definition

mct = 1

DO WHILE mct <=6

 STORE SPACE(10) TO def[mct,1] && Store default menu name

 STORE SPACE(20) TO def[mct,2] && Store default prompt name

 STORE SPACE(55) TO def[mct,3] && Store default command

 mct = mct + 1

ENDDO

mname = SPACE(10)

@ 04,01 SAY "Menu name " GET mname VALID .NOT. " "$TRIM(mname)

READ && Get menu name

DEFINE MENU &mname && Define menu with user defined name

ctr = 1

DO WHILE ctr <= 6

SHOW MENU/POPUP SECTION 2

The dBASE® Language Handbook 539 Back to CONTENTS

* Get menu definitions, increase array counter for six possible PADs

 @ 05,01 SAY "PAD Name " GET def[ctr,1] VALID .NOT. " "$TRIM(def[ctr,1])

 @ 06,01 SAY "Prompt " GET def[ctr,2]

 @ 07,01 SAY "Valid dBASE command" GET def[ctr,3]

 READ

 IF def[ctr,1] = " " && If user leaves PAD blank, then RETURN

 RETURN

 ENDIF

 * Define menu PADs and PROMPTs

 DEFINE PAD &def[ctr,1] OF &mname PROMPT TRIM(def[ctr,2])

 SHOW MENU &mname && Use SHOW MENU to display menu prototype

 ctr = ctr+1

ENDDO

SAVE ALL LIKE def* TO &mname && Save array in a MEM file

CLEAR ALL

RELEASE MENUS

* End of UDA.PRG

To decode menu definitions stored in an array, use the AMENU program that follows. AMENU

asks for the MEM file name (the menu name), then activates the menu based on the stored values.

* AMENU.PRG

SET SCOREBOARD OFF

mname = SPACE(10)

@ 04,5 SAY "Enter name of menu to activate: " GET mname PICTURE "@!"

READ

RESTORE FROM &mname ADDITIVE && Contains an array called def[x,3]

DEFINE MENU &mname

nuctr = 1

DO WHILE def[nuctr,1]<> " "

 DEFINE PAD &def[nuctr,1] OF &mname PROMPT TRIM(def[nuctr,2])

 ON SELECTION PAD &def[nuctr,1] OF &mname &def[nuctr,3]

 nuctr = nuctr + 1

ENDDO

ACTIVATE MENU &mname

SEE ALSO:
Commands DEFINE MENU and DEFINE PAD.

SKIP SECTION 2

The dBASE® Language Handbook 540 Back to CONTENTS

SKIP

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SKIP [<expN>]

DEFINITION:
Moves the record pointer in the active database file <expN> records.

The pointer will not move forward past the end-of-file (EOF) or backward past the beginning-of-

file (BOF).

SKIP with no argument moves the pointer forward one record.

At the end-of-file, the EOF() function is true (.T.). The record number function RECNO() returns

a value 1 greater than the last record number. Any further SKIPs forward do nothing except

produce an error message.

With the record pointer at the first record, SKIP -1 moves it to the beginning-of-file. There the

BOF() function is true (.T.). RECNO() returns the first record number. In an unindexed file, that

number is always 1. In an indexed file, it could be anything because of the ordering by key values

rather than record numbers.

At beginning-of-file, any further SKIPs backward do nothing except produce an error message.

Example 1—A library management system displays book summaries, one at a time. To "page"

through the database, the user presses "F" to move forward or "B" to move backward.

DO WHILE .t.

 * <@...SAY...GETs>

 maction = "?"

 * Ask for user response. Force it to uppercase with "!" picture

 @ 11,12 SAY "Skip (F)wd (B)wd (E)xit" GET maction PICTURE "!"

 READ

 DO CASE

 * Move forward only if user enters with "F" and not end-of-file

 CASE maction = "F" .AND. .NOT. EOF()

 SKIP

 * Skip backward only if user enters "B" and not beginning-of-file

 CASE maction = "B" .AND. .NOT. BOF()

 SKIP -1

 CASE maction = "E" && Exit DO loop if user enters "E"

 CLEAR

SKIP SECTION 2

The dBASE® Language Handbook 541 Back to CONTENTS

 EXIT

 ENDCASE

ENDDO

LIMITS/WARNINGS:
SKIP ignores records hidden by SET DELETED ON or SET FILTER TO <condition>.

VARIATIONS:
Clipper: SKIP 0 writes the database file buffer to disk if its contents have changed. Normally,

Clipper does not do this until the record pointer moves. SKIP 0 forces writing without moving the

pointer. This avoids lost data in the event of power loss, user error, or program failure. SKIP 0

does not affect index files.

Unlike dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+, Clipper produces no error messages

if you try to SKIP beyond the beginning-or end-of-file. This is sensible since beginning- and end-

of-file are easily detected with the EOF() and BOF() functions.

Clipper, dBXL, Quicksilver: To move the record pointer in an unselected work area, use the

command

SKIP [<expN>] ALIAS <selection>

<selection> can be a work area number or letter, an ALIAS you assign when opening a file, or the

actual filename.

For example, if the selected work area is 1, to SKIP 10 records in a file MAIL in area 2, use the

command

SKIP 10 ALIAS 2

SKIP 10 ALIAS 2 is equivalent to:

SELECT 2

SKIP 10

SELECT 1

To use SKIP...ALIAS in dBXL and Quicksilver, you must have a file open in the current work

area.

dBASE IV: You can move the record pointer in an unselected database using the command

SKIP [<expN>] IN <alias>

where <alias> is the database alias or filename.

Quicksilver: Leave a space before the minus sign when SKIPping backwards. Clipper, dBASE

III PLUS, dBASE IV, dBXL, and FoxBASE+ all allow

SKIP SECTION 2

The dBASE® Language Handbook 542 Back to CONTENTS

SKIP-1

without a space.

To prevent an error at compile time, Quicksilver requires

SKIP -1

Quicksilver does not produce error messages if you try to SKIP beyond the beginning- or end-of-

file.

SEE ALSO:
Command GO; functions BOF(), EOF(), and RECNO().

SLEEP SECTION 2

The dBASE® Language Handbook 543 Back to CONTENTS

SLEEP

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
SLEEP <expN> / UNTIL "HH:MM:SS"

DEFINITION:
Causes a program to pause <expN> seconds or until a specific time. With SET ESCAPE ON,

pressing the ESCape key ends the pause and passes control to the next program line.

OPTIONS:
UNTIL pauses the program until a time <expC1>, a 24-hour time string in the form "HH:MM:SS"

(hours, minutes, and seconds). If the time you specify has already passed, SLEEP UNTIL does not

pause.

RECOMMENDED USE:
Use SLEEP instead of a DO WHILE loop to pause program execution. A DO WHILE pause

requires four program lines, whereas SLEEP requires only one. Also, the timing of DO WHILE

loops depends on the computer's speed. SLEEP measures real seconds on the clock.

"Real time" pauses can greatly enhance applications programs. You may have run programs in

which screen messages and prompts rush by so fast you can't read themthe faster the computer,

the faster the messages. As computers run even faster, such programs may become suitable only

for speed readers.

Example 1—A programmer wants to add brief messages to a data entry screen. For example,

when the operator encounters the End of File, the programmer wants to display a brief, but

readable, message.

IF .NOT. EOF() && Continue data entry or editing until end-of-file

 * <statements>

 SKIP && Move to the next record

ELSE

 ?? chr(7)

 @ 24,01 SAY "End of file. There are no more entries."

 SLEEP 3 && Wait three seconds

 @ 24,00 && Clear message line

ENDIF

Example 2—An inventory system uses three databases totaling over 15 megabytes in size. The

programmer wants to reindex them, but wisely avoids doing so until other network users have

gone home.

SLEEP SECTION 2

The dBASE® Language Handbook 544 Back to CONTENTS

SLEEP UNTIL "22:00:00" && Wait until 10 p.m.

USE invent1

INDEX ON partno TO inv1dex

USE invent2

INDEX ON partno TO inv2dex

USE invent3

INDEX ON descrip TO inv3dex

LIMITS/WARNINGS:
The dBXL and Quicksilver manuals (Version 1.2b) document an additional option, UNTIL

<expC1>,<expC2>, where <expC1> is the time and <expC2> is a date string in the form

"MM/DD/YY" (month, day, year). This option does not work.

VARIATIONS:
Clipper, dBASE IV, FoxBASE+: An optional numeric argument in the INKEY() function makes

it pause in real seconds. For example,

? INKEY(40)

waits for forty seconds, or until you press a key. INKEY() also returns the ASCII version of the

key pressed, for example

mkey = INKEY(40) && If the user presses "u",the key value

? mkey && is stored in variable MKEY

117

INKEY(0) pauses until the user presses a key.

dBASE III PLUS: The following short procedure emulates the SLEEP command:

* SLEEP.PRG

PARAMETER seconds

PRIVATE timecount,matchtime,keypress STORE 0 to keypress,timecount

DO WHILE timecount < seconds .AND. keypress = 0

 STORE TIME() TO matchtime

 DO WHILE TIME() = matchtime

 ENDDO

 timecount = timecount + 1

 keypress = INKEY()

ENDDO

In a DO WHILE loop, SLEEP.PRG monitors the TIME() function until the clock ticks. Then the

DO WHILE loop exits and the memory variable TIMECOUNT is increased by 1. When

TIMECOUNT equals the number of seconds specified in the SECONDS parameter, SLEEP.PRG

ends and the pause terminates. If you press a key while SLEEP is running, the INKEY() function

SLEEP SECTION 2

The dBASE® Language Handbook 545 Back to CONTENTS

stores the keystroke in memory variable KEYPRESS. At that point, the DO WHILE condition

becomes false (KEYPRESS no longer is 0), and SLEEP

terminates.

To include SLEEP.PRG in a program, use the command:

DO SLEEP WITH <expN>

where <expN> is the number of seconds. Unlike the SLEEP command, pressing the ESCape key

interrupts the program's execution as expected.

SEE ALSO:
Command DO WHILE; function TIME().

SORT SECTION 2

The dBASE® Language Handbook 546 Back to CONTENTS

SORT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SORT [<scope>] TO <filename> ON <field1> [/A] [/C] [/D]

 [,<field2> [A/] [/C] [/D]...10] [ASCENDING/DESCENDING]

 WHILE <condition>] [FOR <condition>]

DEFINITION:
Copies the active database file to a new file, arranging records in alphabetical, chronological, or

numerical order. The sort key consists of one or more character, numeric, or date fields. Data types

may be mixed; the key cannot involve logical or memo fields.

SORTing on multiple fields first arranges the new database according to <field1>. Within

<field1>, it orders records according to <field2>. Within <field2>, it orders records according to

<field3>, etc. Put the most important SORT key first.

DEFAULT:
Order is ascending ASCII.

SORT determines alphabetical and numerical order by ASCII rank. For example, ASCII "B" is 66,

and ASCII "a" is 97. Hence "a" follows "B" in ascending SORTed order. This differs from a

standard "telephone book" or "alphabetical" ordering.

The new database file has a default extension of DBF. SORT updates a catalog if one is active.

OPTIONS:
/A, the default, SORTs in ascending order. /D SORTs in descending order. /C does not distinguish

case. It may be combined with /A or /D. If you specify multiple key fields in the SORT command,

each may have its own options. dBASE III PLUS, dBASE IV, and dBXL also allow the keywords

ASCENDING and DESCENDING for /A and /D.

The ASCENDING and DESCENDING options affect all fields not already designated with the /A

or /D options. ASCENDING or DESCENDING cannot go inside the field list. It must go at the

beginning or end, as in these examples:

SORT DESCENDING ON <field1>/A, <field2>, <field3> TO <file>

or

SORT ON <field1>/A, <field2>, <field3> DESCENDING TO <file>

SORT SECTION 2

The dBASE® Language Handbook 547 Back to CONTENTS

or

SORT ON <field1>/A, <field2>, <field3> TO <file> DESCENDING

To limit the number of records copied to the new file, SORT allows scope, WHILE, and FOR

clauses. Also, SORT excludes deleted records from the new file if you SET DELETED ON.

Likewise, it will not copy records hidden by an active filter.

RECOMMENDED USE:
SORT works best for small databases because it requires temporary files up to three times the size

of the original. It is also generally slower than indexing.

SORTing a database increases the speed of subsequent sequential processing. It is also useful for

archiving large databases in SORTed order.

Example 1—A store manager must produce an inventory report containing tool bin codes between

4567 and 8999. Some bins hold several kinds of tools, so several tools have the same bin code.

The manager wants to list the highest bin number first, with the tools sorted in ASCENDING

order. (Note: BIN_CODE is a character field). Unsorted, the file TOOLMAIN looks like this:

USE toolmain

LIST bin_code,tool

Record# bin_code tool

 1 4569 Lock-tite

 2 6000 Saw

 3 6001 Vice

 4 4568 Wrench

 5 4569 Broadhead

 6 4569 Phillips

 7 9010 Hammer

To produce the desired results, the manager issues the following SORT command:

SORT ON bin_code /D,tool /A TO tsort FOR bin_code > "4566" .AND. bin_code <

"9000"

 6 record sort complete.

USE tsort

LIST bin_code,tool

Record# bin_code tool

 1 6001 Vise

 2 6000 Saw

 3 4569 Broadhead

 4 4569 Lock-tite

 5 4569 Phillips

 6 4568 Wrench

SORT SECTION 2

The dBASE® Language Handbook 548 Back to CONTENTS

SORT rearranged BIN_CODE in descending order, and TOOLs in ascending order within it. Note

that the scope excluded record 7 since it was outside the specified range.

LIMITS/WARNINGS:
Clipper (Summer '87, file date 12-21-87): The WHILE option causes intermittent errors and locks

up the computer. To avoid this problem, use the FOR option in an indexed file with an approximate

scope. Base your approximation on the probable number of matching records in the index.

For example, assume a database contains medical bills indexed on patient ID. The scope (NEXT

50) estimates the number of bills for the patient.

USE patient INDEX id && Indexed on patient ID

m_id = "1582"

SEEK m_id && SEEK first occurrence of ID

SORT NEXT 50 ON invoice FOR id = m_id && Estimate 50 patient invoices

Clipper and FoxBASE+: Do not have a specified limit, except for the command line limit.

dBASE III PLUS, dBASE IV, dBXL, and Quicksilver: Allow up to 10 key SORT fields.

VARIATIONS:
INDEX, the common alternative to SORT, orders records by creating a logical map of the database

file. It does not physically alter the database file, nor does it create a new file. Instead, INDEX

creates an INDEX filea map that controls how records appear in the database file. Unlike SORT

keys, INDEX keys can consist of any valid expression, including functions and string and numeric

expressions.

FoxBASE+: The FIELDS <fieldlist> option lets you copy only specific fields to the new file. It

goes at the end of the SORT command line:

FIELDS <fieldlist>

<fieldlist> may contain fields from the active database, plus fields from another open, unselected

database using an alias prefix (->).

FoxBASE+ does not allow the ASCENDING and DESCENDING options.

Example 2—A prospect file has 30 fields. The sales representative needs a sorted list containing

only NAME and PHONE for a calling program. The following command produces the report.

SORT ON name TO namesort FIELDS name,phone

Only the two fields, NAME and PHONE, appear in the sorted file NAMESORT.

Quicksilver: Allows only the following limited version of SORT in versions before 1.2:

SORT SECTION 2

The dBASE® Language Handbook 549 Back to CONTENTS

SORT ON <field1>[+<field2>...] [DESCENDING] TO <filename>

Key fields must be concatenated with plus signs instead of commas. The only option is

DESCENDING, and it must be spelled out. In addition, key fields must all be ordered the same

wayeither all ASCENDING (the default) or all DESCENDING. No scope, FOR, or WHILE

clauses ate allowed. To work around the limited SORT command, use the INDEX and COPY

commands. Quicksilver Version 1.2 corrects most of these limitations.

Quicksilver Version 1.2 does not allow the ASCENDING and DESCENDING options.

SEE ALSO:
Commands COPY, INDEX, and SET FIELDS.

STORE SECTION 2

The dBASE® Language Handbook 550 Back to CONTENTS

STORE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
STORE <exp> TO <memory variable list>

DEFINITION:
Assigns values to memory variables. If a variable with the same name already exists, the new value

replaces the old one. Otherwise, STORE creates a variable and gives it the value of <exp>. <exp>

can be any valid expression, including other memory variables or database field names. When you

STORE a field name in a memory variable, the variable takes the value of the field's contents.

The number of memory variables in the list is restricted only by the 254-character command line

limit.

The equal sign operator works like STORE except that it can only assign a value to one memory

variable at a time.

RECOMMENDED USE:
Use STORE to assign the same value to a list of memory variables. For single variables, use the

equal sign operator. In dBASE III PLUS, dBXL, and FoxBASE+, = (equal sign operator) executes

slightly faster than STORE. dBXL shows the greatest speed difference. Clipper, dBASE IV, and

Quicksilver show no difference.

Example—A towing company invoicing program GETs user input in memory variables and

computes totals. We use STORE to create a list of variables. The equal sign operator initializes a

single variable, TOT_CHARGE, to the value of a numeric expression.

* Initialize multiple memory variables with STORE

STORE 0 TO service,rate,towing,hours

* GET user input

@ 01,01 SAY "Service: " GET service

@ 02,01 SAY " Rate: " GET rate

@ 03,01 SAY " Towing: " GET towing

@ 04,01 SAY " Hours: " GET hours

READ

* Initialize a single variable with the equal sign.

tot_charge = service + mileage + towing + (rate*hours)

? tot_charge && Print total charge on the screen

STORE SECTION 2

The dBASE® Language Handbook 551 Back to CONTENTS

LIMITS/WARNINGS:
dBASE III PLUS: Using STORE or the equal sign operator with REPLICATE() can lock up the

computer when trying to create strings beyond the 254-character limit, as in the following:

mspace = SPACE(130)

mtest = REPLICATE(mspace,254) && REPLICATE repeats MSPACE 254 times

 && in an attempt to create a string

This problem generally occurs when the string length computes to 33020 or more.

VARIATIONS:
dBXL, Quicksilver: STORE AUTOMEM automatically assigns the contents of the current

record's fields to memory variables. It gives the new memory variables the same names and data

types as the corresponding fields. They can then be displayed for editing using @...SAY...GET.

The memory variable indicator, m->, differentiates between memory variables and fields with the

same names.

STORE <exp> TO <array name> initializes every element of an existing dBXL/Quicksilver array

with the specified expression, as follows:

DIMENSION marray[2,2]

STORE SPACE(10) TO marray

FoxBASE+: STORE <exp> TO <array name> initializes every element of an existing array with

the specified <exp>.

SEE ALSO:
Commands ACCEPT, DIMENSION, PRIVATE, PUBLIC, READ, and REPLACE.

SUM SECTION 2

The dBASE® Language Handbook 552 Back to CONTENTS

SUM

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SUM [<scope>] [<expression list>] [TO <memory variable list>][FOR <condition>] [WHILE

<condition>]

DEFINITION:
Sums numeric fields, or expressions incorporating numeric fields, within the active database.

When TALK is SET ON, the results are displayed. With SET TALK OFF, the results are not

displayed, and it is assumed you will store them in memory variables.

If the memory variables don't exist, SUM creates them. If you SUM more than one expression, the

first result goes into the first memory variable, the second goes into the second variable, and so

on. This continues until there are no more results, or no more memory variables.

DEFAULT:
SUM adds all numeric fields unless you provide an expression list. It adds all records unless you

specify a <scope>, FOR, or WHILE clause.

OPTIONS:
Scope, FOR, and WHILE options limit the SUM to selected records. <expression list> selects

numeric records by field name, or by expressions containing field names.

RECOMMENDED USE:
In both the interactive and program modes, SUM provides a way to process many records at a time

quickly and easily. Use it as an alternative to complex programming that SKIPs through a file and

increments counters.

SUM provides a powerful query capability that gives immediate results in the interactive mode.

SUM adds numeric data items and, if you choose, stores the results in memory variables.

Example—A magazine management system tracks author pay (a miniscule amount in most

cases!). To determine the total expenditure for articles, the system SUMs the MONTHPAY and

YTOD (year-to-date) fields for articles submitted in the current month. The SUM of MONTHPAY

goes into variable MONTHTOT. YTOD goes into variable CUMULAT. The SUM includes only

records for which the article is no older than 30 days (no earlier than 12/20/87).

. USE authors

. LIST

 Record# AUTHOR MONTHPAY YTOD ADATE TITLE

SUM SECTION 2

The dBASE® Language Handbook 553 Back to CONTENTS

 1 Foley 450.00 2455.00 01/02/88 Roman Holiday

 2 Raffield 224.00 8721.22 12/22/87 Travels to China

 3 Hanson 1000.00 6877.22 12/27/87 Undersea Worlds

 4 Banyon 453.22 2378.33 10/10/87 '88 Nights

. ? DATE()

 01/20/88

. SUM ALL monthpay,ytod TO monthtot,cumulat FOR adate >= (date()-30)

 3 records summed

 monthpay ytod

 1674.00 18053.44

. ? monthtot

 1674.00

 . ? cumulat

 18053.44

The results can now be displayed or incorporated into reports.

The SUM list can include other kinds of expressions. For example, to roughly project the annual

expenditures for articles, multiply the monthly total by 12.

. SUM monthpay*12 TO projpay

 4 records summed

 monthpay*12

 25526.64

VARIATIONS:
Clipper: Because TALK is always assumed OFF, SUM requires a memory variable list.

dBASE IV: SUM creates floating point (type F) memory variables.

You can save SUM results in a one-dimensional array. The first result goes in the first array

element, the second in the second element, and so on. If there are more array elements than results,

the remaining elements are unchanged. If there are more results than array elements, the remaining

results are not preserved.

Example—To produce a summary report, a property management program SUMs rents and other

income. The results go into an array.

USE rents

DECLARE mresults[4]

 SUM unit1, unit2, unit3, unit4 TO ARRAY mresults FOR month = 6

 DISPLAY MEMORY

 User Memory Variables

 MRESULTS pub A [4]

SUM SECTION 2

The dBASE® Language Handbook 554 Back to CONTENTS

 [1] elem N 24 (24.00000000000000000)

 [2] elem N 246962.16 (246962.1600000000000)

 [3] elem N 10403.17 (10403.17000000000000)

 [4] elem N 6644.59 (6644.590000000000000)

 1 out of 500 memvars defined (and 4 array elements)

dBXL: Does not allow SCOPE before the expression list. The SCOPE must follow.

Quicksilver: Because TALK is always assumed OFF, SUM requires a memory variable list.

SEE ALSO:
Commands AVERAGE, CALCULATE, COUNT, DECLARE, and TOTAL.

SUSPEND SECTION 2

The dBASE® Language Handbook 555 Back to CONTENTS

SUSPEND

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+.

SYNTAX:
SUSPEND

DEFINITION:
Pauses execution of a program, leaving memory variables and other environment attributes intact.

SUSPEND is intended primarily for debugging.

SUSPEND returns to the interactive prompt, from which you can examine and create memory

variables and manipulate files.

RESUME restarts a SUSPENDed program. Control passes to the next line.

RECOMMENDED USE:
You can also invoke SUSPEND by selecting the SUSPEND option when you run a program with

SET STEP ON, after a program error occurs, or after pressing ESCape during program execution

if ESCAPE is SET ON. In all these situations, dBASE III PLUS, dBASE IV, dBXL, and

FoxBASE+ prompt you to "Cancel, Ignore or Suspend."

When an error occurs, dBXL's FIX option lets you change and re-execute the program line that

generated it.

Place SUSPEND at strategic points in your programs when they produce unexpected or confusing

results. For example, put it in a report program that prints the wrong invoice number or other

erroneous data. You can then examine the databases and memory variables, using DISPLAY

STATUS and DISPLAY MEMORY, to determine whether values have been assigned incorrectly

or the data has been corrupted.

Example—A receivables program draws data from two files and merges it into a single invoice.

For an unknown reason, the report prints blank name and address fields.

ACCTNAME (work area 1) holds billing information. ACCTTRANS (work area 2) holds

transaction records. The program moves to area 2, gets the account number, and SEEKs a matching

number in area 1. Back in area 2, the program merges data from both files.

Because the program prints a blank invoice, the programmer puts a SUSPEND command after

SEEK. When the program pauses, the programmer displays the account number and notices that

it has no match in the ACCTNAME file. Because the SEEK cannot find a match, the ACCTNAME

pointer moves to End of File.

SUSPEND SECTION 2

The dBASE® Language Handbook 556 Back to CONTENTS

SET DEVICE TO print

SELECT 1

USE acctname INDEX acctno

SELECT 2

USE accttrans

DO WHILE .NOT. EOF()

 CLEAR

 searchno = acctno

 SELECT 1

 SEEK searchno

 SUSPEND

 SELECT 2

 @ 02,01 SAY "Acct. #: " + acctno

 @ 05,10 SAY "Name............: " + acctname->name

 @ 06,10 SAY "Address.........: " + acctname->address

 @ 07,10 SAY "Transaction Date: " + dtoc(tdate) + "Amount: " + ;

 STR(tamount,7,2) + "Item: " + itemno

 @ 08,10 SAY "--"

ENDDO

To correct the problem, the programmer modifies the program to check for a valid ACCTNAME

before printing an invoice. (A prompt warns the user if there is an account number for a nonexistent

ACCTNAME). Once debugged, the program prints properly:

 Acct. #: 5453

 Name............: Wolfen Communication

 Address.........: 2939 S. Main Street

 Transaction Date: 02/02/88 Amount: 2393.99 Item: 2233

LIMITS/WARNINGS:
During SUSPEND, you cannot edit the open program file. You must first issue the CANCEL

command. To edit a procedure file, you must first CLOSE PROCEDURE.

dBXL is the exception, since it lets you edit the executing command line with the FIX option.

VARIATIONS:
Clipper: SUSPEND not available. Instead, link the DEBUG.OBJ module to your Clipper

applications.

dBASE IV: If you SET TRAP ON, pressing ESCape runs the debugger.

Quicksilver: SUSPEND not available. Pressing the ESCape key lets you display, but not change,

memory variables. For extensive debugging, include WordTech's dB Debugger module in your

applications.

SUSPEND SECTION 2

The dBASE® Language Handbook 557 Back to CONTENTS

SEE ALSO:
Commands CANCEL, DEBUG, DO, RESUME, SET DEBUG, SET ECHO, SET PROCEDURE,

SET STEP, SET TALK, and SET TRAP.

TEXT SECTION 2

The dBASE® Language Handbook 558 Back to CONTENTS

TEXT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
TEXT

 [<character data>]

ENDTEXT

DEFINITION:
Displays an unformatted block of text. Within it, no expressions or other commands are evaluated.

Macros (&) are ignored.

TEXT output goes to the currently selected device (printer or screen).

DEFAULT:
TEXT...ENDTEXT begins displaying on the next available line, starting with line 1. It will not

display on line 0.

RECOMMENDED USE:
TEXT...ENDTEXT provides a convenient way to include help or information messages in

programs without using @...SAY or ? statements.

Example—In a hotel reservation system, a TEXT...ENDTEXT block presents information on

report selections.

* <statements>

CLEAR

TEXT

 Report Selection Descriptions

 1. % Occupancy: Compares actual bookings with

 hotel capacity by month and year

 2. Gross income: Totals and subtotals of all income before expenses.

 3. Gross loss: Computes expenses due to breakage,

 vandalism, and bad debts.

ENDTEXT

LIMITS/WARNINGS:
dBASE III PLUS, dBXL: Avoid starting text lines with CASE, DO CASE, ENDCASE, DO

WHILE, ENDDO, IF, ELSE, or ENDIF. If you start a control structure immediately before a

TEXT...ENDTEXT block, the interpreter searches for its terminator within the block. If the

interpreter finds a corresponding command, the control structure becomes unbalanced and

execution terminates. This problem is most common with IF...ELSE...ENDIF since IF and ELSE

TEXT SECTION 2

The dBASE® Language Handbook 559 Back to CONTENTS

are commonly used words. No one is likely to use the word ENDDO for anything other than ending

a DO WHILE.

In the following example, the interpreter assumes ELSE is a command, causing a syntax error on

the next line:

mflag = .f.

IF mflag

 TEXT

 Please enter the customer's name and address, or

 else leave blank to exit.

 You can reenter this information later.

 ENDTEXT

ENDIF

VARIATIONS:
Clipper: The options TO PRINT and TO FILE <filename> send TEXT blocks to the printer or to

a file. They follow the TEXT statement on the same line.

SEE ALSO:
Commands @...SAY, ?, and SET PRINT.

TOTAL SECTION 2

The dBASE® Language Handbook 560 Back to CONTENTS

TOTAL

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
TOTAL ON <key expression> TO <filename> [<scope>] [FIELDS <field list>]

 [WHILE <condition>] [FOR <condition>]

DEFINITION:
Sums numeric fields for groups of records with the same keys, and sends the results to a summary

database file.

 The records to be summed must be either INDEXed or SORTed (grouped) on the key expression

to be TOTALed.

TOTAL copies only one record to the summary file for each group of records with the same key.

Numeric fields in the summary record contain totals for its group. Other fields contain the data

from the first record in the group. The summary file has the same structure as the original database.

TOTAL updates an open dBASE III PLUS or dBASE IV catalog.

DEFAULT:
All records TOTAL unless you specify a scope, FOR, or WHILE clause. All numeric fields

TOTAL unless you specify a FIELD list.

OPTIONS:
FIELDS <field list> specifies the numeric fields to TOTAL. It does not affect which fields are

copied to the summary file.

Scope, WHILE, and FOR select records to TOTAL.

RECOMMENDED USE:
The TOTAL command is really a subtotal command, as it produces totals for subgroups in a file.

Example—A sales application tracks amounts. The main transaction file is indexed on the

salesperson's identification number ID. Using TOTAL, the program creates a summary file

SALESTOT containing a total for each salesperson.

Notice that records in SALES are grouped by their key field ID. AMOUNT is the only numeric

field.

USE sales

INDEX ON id TO idex

TOTAL SECTION 2

The dBASE® Language Handbook 561 Back to CONTENTS

LIST

Record# LNAME ID ITEM AMOUNT

 1 Elliot A900 Sofa 246.33

 6 Elliot A900 Matress 234.22

 2 Petri Z000 Sleeper 266.33

 4 Petri Z000 Rocker 1092.44

 3 Wilander X999 Table 888.00

 5 Wilander X999 Desk 476.49

 7 Wilander X999 Bed 209.92

TOTAL ON id TO salestot

 7 records totalled

 3 records generated

SELECT 2

USE salestot

LIST

Record# LNAME ID ITEM AMOUNT

 1 Elliot A900 Sofa 480.55

 2 Petri Z000 Sleeper 1358.77

 3 Wilander X999 Table 1574.41

The summary file contains the total AMOUNT for each group, plus the data from the first record

in each group.

LIMITS/WARNINGS:
Totals in the summary file can exceed the field length and cause numeric overflow. Use MODIFY

STRUCTURE to lengthen the fields in the original database to accommodate the largest possible

number.

The FIELDS option only affects which numeric fields to TOTAL, not which ones to copy.

VARIATIONS:
Clipper: If you do not use a FIELDS list, no fields will be totalled.

SEE ALSO:
Commands AVERAGE, CALCULATE, COUNT, INDEX, and SUM.

TYPE SECTION 2

The dBASE® Language Handbook 562 Back to CONTENTS

TYPE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
TYPE <filename> [TO PRINT]

DEFINITION:
Lists the contents of a text file. TYPE requires a full filename and extension.

If the file is not in the current directory, you must specify a drive and directory. TYPEd files must

contain only ASCII characters.

OPTIONS:
TO PRINT directs output to the printer.

RECOMMENDED USE:
In the interactive mode, use TYPE to view and print program files and ASCII documents. In

programs, use it to display help text for end users. The text must not exceed a single screen, since

the overflow will scroll out of view. The TYPE command generally doesn't provide enough control

over text to be useful in programs. TEXT... ENDTEXT is an alternative way to display blocks of

text, or store text in MEMO fields.

LIMITS/WARNINGS:
You may not TYPE an open file, i.e., a program file may not TYPE itself. You cannot TYPE

database, memory, or index files.

VARIATIONS:
Clipper: TO PRINT not available. You can print or send TYPEd output to a file using DOS

redirection:

TYPE <filename> > <filename>/PRN

dBASE IV: The TO FILE option sends TYPEd output to a text file as follows:

TYPE <filename> TO FILE <filename2>

Unless you specify otherwise, dBASE IV supplies a TXT extension.

The NUMBER option prints line numbers. For example:

TYPE <filename> NUMBER

TYPE SECTION 2

The dBASE® Language Handbook 563 Back to CONTENTS

The line numbers are helpful in debugging programs. If you SET HEADING ON, dBASE IV also

TYPEs the filename, page number, and system date on each page.

SEE ALSO:
Commands MODIFY COMMAND, SET HEADING, SET PRINT, and TEXT...ENDTEXT.

UNLOCK SECTION 2

The dBASE® Language Handbook 564 Back to CONTENTS

UNLOCK

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, FoxBASE+, and Quicksilver.

SYNTAX:
UNLOCK [ALL]

DEFINITION:
Multiuser command to release current record and file locks on the active database. The current

lock is the last FLOCK(), RLOCK(), or LOCK() issued on the current database.

Records and files can be UNLOCKed only by the user who locked them. UNLOCK does not affect

files opened with USE <filename> EXCLUSIVE.

OPTIONS:
UNLOCK ALL removes record and file locks from all open database files.

RECOMMENDED USE:
One aim of multiuser programming is to keep files and records locked as briefly as possible. This

lets users on a network share data more efficiently.

Example—You can only REPLACE a record if you lock either it or the file. To avoid

inconveniencing other users, first lock the record with the RLOCK() function. Next, REPLACE

the record. Finally, UNLOCK it as quickly as possible. (Notice that if the RLOCK() fails, an error

trapping subroutine FAILLOCK executes).

IF RLOCK()

 REPLACE amount WITH 2345.33

 UNLOCK

ELSE

 DO faillock

ENDIF

LIMITS/WARNINGS:
dBASE III PLUS: An UNLOCKed record remains locked to other users until you move the

pointer. To correct this, issue GOTO RECNO() immediately after UNLOCK. This will reset the

LOCK()/RLOCK() status.

VARIATIONS:
dBASE IV: You can UNLOCK a record or file in an unselected work area by using the IN <alias>

option, as follows:

UNLOCK IN <alias>

UNLOCK SECTION 2

The dBASE® Language Handbook 565 Back to CONTENTS

SEE ALSO:
Functions FLOCK(), LOCK(), and RLOCK().

UPDATE SECTION 2

The dBASE® Language Handbook 566 Back to CONTENTS

UPDATE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
UPDATE ON <key field> FROM <alias> REPLACE <field1> WITH <exp1>

 [,<field2> WITH <exp2>...] [RANDOM]

DEFINITION:
Replaces fields in records of the current database with data from other databases.

The current database must be INDEXed or SORTed on the <key field>. Data is replaced for

records with matching key fields.

The FROM database must also be INDEXed or SORTed unless you specify the RANDOM option.

The FROM database must be open in another work area.

Specifying field expressions from the unselected databases requires the ALIAS->FIELD syntax.

If the current file contains records with duplicate key fields, only the first record is UPDATEd.

DEFAULT:
UPDATE affects all records in the active database. It ignores MEMO fields.

OPTIONS:
You can UPDATE multiple fields with the "<field2> WITH <exp2>" option. The number of fields

you can UPDATE is restricted by the command length limit.

RANDOM lets you UPDATE from an unindexed or unsorted database.

RECOMMENDED USE:
Because it affects all records in the active database, use UPDATE for interval batch updates. For

example, use it for daily, weekly, or monthly updates to databases such as inventories, client

histories, or general ledgers. In this context, files you UPDATE FROM are transaction files.

Example—An accounting application consists of a general ledger file (GL) and a transaction file

that tracks payables and receivables (AR_AP). GL is indexed on ACCT. AR_AP is unindexed.

At the end of each week, the program UPDATEs the year-to-date totals in GL from AR_AP.

USE gl

INDEX ON acct TO account

UPDATE SECTION 2

The dBASE® Language Handbook 567 Back to CONTENTS

LIST acct,category,ytod

Record # ACCT CATEGORY YTOD

 1 0001 PAYABLES 12000.00

 2 0002 RECEIVABLES 88500.00

 3 0003 PAYROLL 70000.50

SELECT 2

USE ar_ap

LIST acct,transacts

Record # ACCT TRANSACTS

 1 0002 4500.33

 2 0001 888.88

SELECT 1

UPDATE ON acct FROM ar_ap REPLACE ytod WITH ytod + ar_ap-transacts RANDOM

 2 records updated

LIST acct,category,ytod

Record # ACCT CATEGORY YTOD

 1 0001 PAYABLES 12888.88

 2 0002 RECEIVABLES 93000.33

 3 0003 PAYROLL 70000.50

Because there is no matching record for ACCT 0003 in AR_AP, its YTOD does not change.

LIMITS/WARNINGS:
On local area networks, you must USE the current file with the EXCLUSIVE option or lock it

with FLOCK().

SET DELETED ON ignores deleted records in the source files, but deleted records in the target

file are updated.

SEE ALSO:
Commands COPY, JOIN, and TOTAL.

UPSCROLL SECTION 2

The dBASE® Language Handbook 568 Back to CONTENTS

UPSCROLL

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
UPSCROLL <expN>

DEFINITION:
Moves the current screen or window area up <expN> lines. Nothing happens if <expN> is negative

or 0.

If you move the text off the screen or outside the window area, it will be erased.

RECOMMENDED USE:
Use UPSCROLL with DOWNSCROLL to provide scrollable help screens or lookup windows.

Example—An invoicing application requires the entry of a customer account number for each

invoice. If the operator forgets a number, he or she can look it up in a scrollable help window.

* HELPWIN.PRG

SET TALK OFF

WSET WINDOW acctlook TO 10,01,23,40 && Create window specification

WSELECT 1 && Select window area

WUSE acctlook && Use acctlook window

USE SALES

keypress = 0

? "Account number" && List account numbers

LIST accounts

DO WHILE keypress # 32 && DO WHILE user does not press space bar

 keypress = INKEY() && Store INKEY() to KEYPRESS variable

 DO CASE

 CASE KEYPRESS = 5 && If user presses up arrow,

 UPSCROLL 1 && scroll up 1

 CASE KEYPRESS = 24 && If user presses down arrow,

 DOWNSCROLL 1 && scroll down 1

 ENDCASE

ENDDO

SEE ALSO:
Commands DOWNSCROLL, WSELECT, WSET WINDOW, and WUSE.

USE SECTION 2

The dBASE® Language Handbook 569 Back to CONTENTS

USE

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
USE [[<filename>] [INDEX <index file list>] [ALIAS <alias name>]

 [EXCLUSIVE]]

DEFINITION:
Opens a database file in the current work area and moves the record pointer to the logical top of

file. If the file is unindexed, the top is record 1. In an indexed file, the top is the record with the

lowest key value.

Files may not be USEd in more than one work area at a time.

USE <filename> first closes the previously active database, format file, and index. It does not

affect files in other work areas. USE alone simply closes the open files.

In dBASE III PLUS and dBASE IV, USE ? displays a list of cataloged database files when SET

CATALOG is ON.

DEFAULT:
USE assumes the database file has a DBF extension, unless you specify otherwise.

USE assumes the INDEX files have an NDX extension in dBASE III PLUS, dBXL, and

Quicksilver, NDX or MDX in dBASE IV, NTX in Clipper, and IDX in FoxBASE+. (USE also

recognizes NDX format in Clipper if you link the NDX.OBJ module with your application).

USE searches the current directory unless you specify a drive or path.

OPTIONS:
INDEX opens up to seven index files in the current work area. It is the same as SET INDEX TO

<index file list>. SET INDEX TO by itself

and CLOSE INDEXES close indexes.

ALIAS assigns a name to the current work area. The default is the database file name. (You can

also SELECT a work area by number or letter).

EXCLUSIVE prevents another network user from opening the file. It is accessible only to whoever

opened it until he or she closes it.

USE SECTION 2

The dBASE® Language Handbook 570 Back to CONTENTS

RECOMMENDED USE:
USE opens a database and indexes in the current work area. You can open several databases

simultaneously in separate areas by changing areas and issuing more USEs.

Example—An environmental impact program stores data on the suitability of land for industrial

use. The program compares a database of observations (OBSERVE) against a database of federal

government specifications (FEDERAL) to assign a suitability grade.

The program opens FEDERAL in work area 1 and OBSERVE in area 2. It then examines

OBSERVE and searches FEDERAL for matching keys using SEEK. Procedure GRADESUB

computes a grade based on the TEST and QUOTIENT values. The DO WHILE loop repeats the

analysis for every record in OBSERVE.

SELECT 1 && Select work area 1 (the default)

USE federal INDEX dnsty,altud && Open FEDERAL.DBF with two indexes

SELECT 2 && Select work area 2

USE observe && Open OBSERVE.DBF

DO WHILE .NOT. EOF() && Continue until end of FIELD.DBF

 mtest = test && TEST is a field in OBSERVE

 mcompare = quotient && QUOTIENT is a field in OBSERVE

 SELECT 1

 SEEK mtest && Search for value of TEST

 DO gradesub WITH mcompare && MCOMPARE is passed as a parameter

 SELECT 2 && to procedure GRADESUB

 SKIP && Move to next record in OBSERVE

ENDDO

USE && Close files in current area (2)

SELECT 1

USE && Close files in area 1

VARIATIONS:
dBASE IV: You may open up to 10 index files per active database, and 47 TAGs per multiple

index file. Multiple index files count as one open DOS file.

dBASE IV allows several options, in the form

USE [<database filename>] [IN <work area number>]

 [INDEX <NDX or MDX file list>

 [ORDER <NDX filename>/<tag> [OF <MDX filename>]]]

 [ALIAS <alias>] [EXCLUSIVE] [NOUPDATE]

You can use a database in an unselected work area with the IN option, where <work area number>

is between 1 to 10. You can specify index files (extension NDX) and multiple index files (MDX)

on the same line. When you specify an NDX or MDX filename, dBASE IV first looks for an MDX

file. If it doesn't find one, it looks for an NDX. If an MDX file and an NDX file have the same

name, the NDX file will not be opened.

USE SECTION 2

The dBASE® Language Handbook 571 Back to CONTENTS

If an index file is first in the list, it becomes the controlling (master) index. If a multiple index file

comes first, the database remains in natural order until you SET ORDER or invoke the USE

command with an ORDER clause.

The ORDER clause specifies which index or multiple index TAG controls the database's order.

Use the OF <mdx filename> option if the master TAG is in a file other than the production MDX.

To USE SALES.DBF with MDXs MONTHMDX and AMTMDX, and an index file PARTNO,

issue the command

USE sales INDEX monthmdx,amtmdx,partno ORDER nmonth OF amtmdx

The ORDER clause indicates that the TAG NMONTH in AMTMDX controls the index order.

The DELETE TAG command closes individual indexes by name, whereas SET INDEX TO and

CLOSE INDEXES close all open indexes.

The NOUPDATE clause opens the specified database for read-only use.

dBXL, Quicksilver: USE first searches for database and index files in the directory specified by

SET DBF and SET NDX. If you do not SET DBF or SET NDX, USE searches in the current

directory. If it does not find the files there, it checks the paths defined by SET PATH.

The AUTOMEM option creates a set of memory variables with the same names and data types as

all non-memo fields in the database.

SEE ALSO:
Commands CLEAR ALL, CLOSE DATABASES, DELETE TAG, INDEX, SET INDEX, and

SET ORDER.

WABANDON SECTION 2

The dBASE® Language Handbook 572 Back to CONTENTS

WABANDON

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WABANDON [<area number> [TO <area number>]] / [ALL]

DEFINITION:
De-selects window areas, returning control to area 0.

OPTIONS:
<area number> specifies an area defined by the WSELECT command.

<area number> TO <area number> specifies a range of areas to de-select from lowest to highest.

ALL de-selects all areas.

LIMITS/WARNINGS:
You may not WABANDON area 0.

SEE ALSO:
Command WSET WINDOW.

WAIT SECTION 2

The dBASE® Language Handbook 573 Back to CONTENTS

WAIT

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
WAIT [<prompt>] [TO <memory variable>]

DEFINITION:
Pauses program execution until the user presses a key. WAIT displays the message "Press any key

to continue.." on the next available line, starting in column 0.

OPTIONS:
<prompt> replaces the default message. The new message must be delimited with double quotation

marks, single quotation marks, or square brackets.

TO <memory variable> stores the pressed key in a character memory variable. If the variable does

not already exist, WAIT creates it. If the user presses a non-printing character, such as the Enter

key, the variable gets a null value.

RECOMMENDED USE:
Use WAIT to pause between screen displays. It lets the user read program prompts, then press a

key when ready to proceed.

Example—A help screen in an airline reservation system describes how to use a menu option.

When the ticket agent finishes reading the screen, she presses a key to return to the menu.

TEXT

 Option 3 removes a passenger from the standby queue

 and advances all other waiting passengers.

ENDTEXT

WAIT

With the TO <memory variable> option, you can use WAIT to process user selections. The

following example asks the user whether to print a report or display it on the screen. If the user

presses Y or y, the report prints. Other keys have no effect.

WAIT "Send report to the printer? (Y/N) " TO response

IF response $ "Yy"

 SET PRINT on

 ENDIF

WAIT SECTION 2

The dBASE® Language Handbook 574 Back to CONTENTS

SPECIAL USES:
Sometimes, you may want to pause without displaying a message. Or you may want to display a

message at a particular coordinate. To do this, use WAIT with a null string and supply a message:

@ 10,25 SAY "Press any key to continue"

WAIT ""

An alternative is the INKEY() function in Clipper, dBASE IV, and FoxBASE+. INKEY() with a

numeric argument pauses for the specified number of seconds. For example, ? INKEY(10) pauses

for 10 seconds. INKEY(0) pauses until the user presses a key. INKEY() also returns the ASCII

version of the key.

Quicksilver's SLEEP command also pauses program execution for a specified length of time.

SEE ALSO:
Commands ACCEPT and SLEEP; function INKEY().

WCLOSE SECTION 2

The dBASE® Language Handbook 575 Back to CONTENTS

WCLOSE

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WCLOSE [[<area number> [TO <area number>]] / [ALL]]

DEFINITION:
Closes windows and displays the previous screen.

OPTIONS:
WCLOSE by itself closes the current window and sets the selected area to 0.

WCLOSE <area number> closes the specified window. You may issue it from any other window;

however, if you WCLOSE the active window, the selected area is set to 0.

WCLOSE <area number> TO <area number> specifies a range of windows to close. It must be

specified from lowest area to highest. If you WCLOSE the active window, the selected area is set

to 0.

RECOMMENDED USE:
WCLOSE windows in the reverse of the order in which you opened them.

LIMITS/WARNINGS:
You cannot WCLOSE area 0.

SEE ALSO:
Command WSET WINDOW.

WCOPY SECTION 2

The dBASE® Language Handbook 576 Back to CONTENTS

WCOPY

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WCOPY TO <area number>

DEFINITION:
Duplicates the current window and its frame in another window area.

If a window already exists in the target area, it is cleared.

LIMITS/WARNINGS:
You cannot copy to area 0 or to the currently selected area.

SEE ALSO:
Command WSET WINDOW.

WDISPLAY SECTION 2

The dBASE® Language Handbook 577 Back to CONTENTS

WDISPLAY

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WDISPLAY [[<area number> [TO <area number>]] / [ALL]]

DEFINITION:
Clears the specified window(s) and re-displays the frames.

OPTIONS:
<area number> is a window with the number from WSELECT.

<area number> TO <area number> clears and re-displays a range of windows specified from

lowest number to highest.

ALL clears and re-displays all windows in all areas.

SEE ALSO:
Command WSET WINDOW.

WDISPLAY STATUS SECTION 2

The dBASE® Language Handbook 578 Back to CONTENTS

WDISPLAY STATUS

DIALECTS:
dBXL only.

SYNTAX:
WDISPLAY STATUS

DEFINITION:
Lists information about the current window settings. It lists the current window area number, the

WSET FRAME setting, and all active window names and definitions.

RECOMMENDED USE:
Use WDISPLAY STATUS to determine the current window settings. This is helpful during

program design and debugging.

Example—While developing an accounting program, the programmer notices that lists are going

to the wrong window. To trace the problem, the programmer uses WDISPLAY STATUS to show

the current windows.

SUSPEND

. WDISPLAY STATUS

 WDISPLAY STATUS

 Current window area: 3

 Frame: ON

 Window name Coordinates

 MAIN 2, 2, 23, 20

 SUB1 5, 10, 20, 49

 SUB2 15, 15, 20, 79

VARIATIONS:
dBASE IV: You can view window settings with the DISPLAY STATUS command.

Quicksilver: WDISPLAY STATUS compiles without error, but has no effect.

SEE ALSO:
Commands DISPLAY STATUS, WSELECT, WSET WINDOW, and WUSE.

WMOVE SECTION 2

The dBASE® Language Handbook 579 Back to CONTENTS

WMOVE

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WMOVE TO <top row>[,<left col>]

DEFINITION:
Moves the current window and restores the underlying screen.

On standard PCs, <top row> is a screen row from 0 to 23. <left col> is a screen column from 0 to

79.

RECOMMENDED USE:
Specify <top row> and <left col> as one or two numbers. For example:

WMOVE TO 5,10

WMOVE TO 5

WMOVE TO ,10

LIMITS/WARNINGS:
The window cannot extend beyond the screen's boundaries. Moving a window to a coordinate

beyond the boundary produces an error.

VARIATIONS:
dBASE IV: The MOVE WINDOW command is equivalent to WMOVE.

SEE ALSO:
Commands MOVE WINDOW and WSET WINDOW.

WRELEASE SECTION 2

The dBASE® Language Handbook 580 Back to CONTENTS

WRELEASE

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WRELEASE <name> / ALL

DEFINITION:
Deletes a window, allowing a new one to be WSET. It does not affect the screen.

<name> refers to a window declared with WSET.

RECOMMENDED USE:
dBXL and Quicksilver allow up to 99 active windows. Use WRELEASE to make room for more

windows when you reach the limit.

VARIATIONS:
dBASE IV: RELEASE WINDOWS is similar to WRELEASE.

SEE ALSO:
Commands RELEASE WINDOWS, WSELECT, WSET WINDOW, and WUSE.

WRESTORE SECTION 2

The dBASE® Language Handbook 581 Back to CONTENTS

WRESTORE

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WRESTORE [FROM <screen file>]

DEFINITION:
Displays a window image from memory or from a file saved on disk with WSAVE.

WRESTORE by itself redisplays the image a window covered when it was opened. This

temporarily covers, but does not deactivate the window.

OPTIONS:
FROM <screen file> displays the image saved in a screen file. An SCN extension is the default.

An open window in the current area is closed first.

VARIATIONS:
dBASE IV: RESTORE WINDOWS is similar to WRESTORE.

SEE ALSO:
Commands RESTORE WINDOWS and WSET WINDOW.

WSAVE SECTION 2

The dBASE® Language Handbook 582 Back to CONTENTS

WSAVE

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WSAVE [TO <screen file>]

DEFINITION:
Saves the current window and its contents in a disk file or memory buffer.

WSAVE by itself saves in memory the window image in the selected area. When you close the

window, the image reappears.

OPTIONS:
WSAVE TO <screen file> saves the current window image in a disk file. <screen file> may be

any valid filename. An SCN extension is the default.

The utility program BUILDWIN.EXE combines SCN files into a master file.

VARIATIONS:
dBASE IV: SAVE WINDOW is similar to WSAVE.

SEE ALSO:
Commands SAVE WINDOW, WSELECT, WSET WINDOW, and WUSE.

WSELECT SECTION 2

The dBASE® Language Handbook 583 Back to CONTENTS

WSELECT

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
Selects the active window area.

To open a window, you must first WSELECT an area other than 0.

DEFAULT:
If you do not open a window in the selected area, output goes to the entire screen.

SEE ALSO:
Commands WSET WINDOW and WUSE WINDOW.

WSET FRAME SECTION 2

The dBASE® Language Handbook 584 Back to CONTENTS

WSET FRAME

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WSET FRAME ON/OFF

DEFINITION:
Turns the window frame display ON or OFF.

WSET FRAME OFF suppresses window borders, or "frames." Active windows retain their set

boundaries, but have no borders.

If you WSET FRAME OFF, frames will not appear when you WUSE or WDISPLAY a window.

DEFAULT:
ON

VARIATIONS:
dBASE IV: SET BORDER is similar to WSET FRAME.

SEE ALSO:
Commands SET BORDER, WSELECT, WSET WINDOW, and WUSE.

WSET SIZE SECTION 2

The dBASE® Language Handbook 585 Back to CONTENTS

WSET SIZE

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WSET SIZE TO <top row>,<left col>,<bot row>,<right col>

DEFINITION:
Changes the size of the current window, after first erasing it.

WSET SIZE uses four parameters representing points on the screen. <top row>,<left col> is the

top left corner of the new text window. <bot row>,<right col> is the bottom right corner.

LIMITS/WARNINGS:
Note that the coordinates give the corners of the text window, not the frame. The frame occupies

an extra space.

SPECIAL USES:
dBXL and Quicksilver: Windowing commands work on 132 column video boards. Your board

should come with a setup utility for changing from 80 to 132 column mode. To use the 132 column

mode, put the following commands at the beginning of your applications:

WSET FRAME OFF

WSELECT 0

RUN <setup utility>

WSET SIZE TO 0, 0, 24, 131

LIMITS/WARNINGS:
If you specify a GET field that extends into the frame, dBXL may freeze, and you must reboot

your computer.

SEE ALSO:
Command WSET WINDOW.

WSET TITLE SECTION 2

The dBASE® Language Handbook 586 Back to CONTENTS

WSET TITLE

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WSET TITLE TO [<expC> [LEFT/CENTER/RIGHT]]

DEFINITION:
Defines a character expression to display at the top of the active window's frame.

To display titles, WSET FRAME must be ON. Note that changes made with WSET TITLE do not

appear until you issue WDISPLAY.

You may also set titles when you WUSE a window.

DEFAULT:
WSET TITLE by itself centers <expC> (CENTER is unnecessary).

OPTIONS:
WSET TITLE TO by itself erases an existing title and restores the original frame.

LEFT, RIGHT, and CENTER position the title.

LIMITS/WARNINGS:
Defining a window title wider than the window causes an error.

SEE ALSO:
Command WSET WINDOW.

WSET WINDOW SECTION 2

The dBASE® Language Handbook 587 Back to CONTENTS

WSET WINDOW

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WSET WINDOW <name> TO <top row>,<left col>,<bot row>,<right col>

 [CHARACTER <background char>]

 [COLOR <text],[[enhanced][,frame>]]

 [FRAME <tl, t, tr, ls, rs, bl, b, br> / DOUBLE]

DEFINITION:
Specifies a window for display with WUSE.

<name> must be a unique name of up to 10 characters. It may not contain an equal sign, ampersand,

left parenthesis, or comma.

WSET WINDOW uses four parameters representing points on the screen. <top row>,<left col> is

the top left corner of the text window. <bot row>,<right col> is the bottom right corner.

OPTIONS:
CHARACTER defines a single character to fill the window's background.

COLOR lets you specify text, enhanced (GETs), and frame colors. SET COLOR TO can also

specify colors, but only for text and enhanced modes. Only WSET WINDOW can set frame colors.

You can specify window and frame colors using standard color codes. Use a pair of codes

separated by a slash to control foreground and background. You can also use the bright (+) and

blinking (*) attributes for foreground colors. If you do not specify colors, the default is white on

black (W/N).

FRAME lets you specify frame characters.

Choose characters in the format <tl, t, tr, ls, rs, bl, b, br>, where tl is top left, t is top edge, tr is top

right, ls is the left side, rs is the right side, bl is bottom left, b is bottom, and br is bottom right.

You may specify either literal characters individually enclosed in quotation marks, or extended

ASCII characters (ASCII graphics) using the CHR() function. For example, to specify a frame

with x's at the corners and horizontal and vertical lines at the top, bottom and sides, you would use

the following specification:

WSET WIND small TO 12,23,20,56 FRAME "x","-","x","|","|","x","-","x"

This produces a window SMALL extending from coordinates 12,23 to 20,56. The frame would

look like:

WSET WINDOW SECTION 2

The dBASE® Language Handbook 588 Back to CONTENTS

x--x

| |

| |

| |

| |

| |

| |

| |

x--x

With no FRAME specification or DOUBLE option, the frame defaults to a single line.

Note that FRAME and DOUBLE are mutually exclusive.

RECOMMENDED USE:
Use windows to display prompts, menus, and reports without disturbing the underlying text. They

make it easy to create sophisticated user interfaces by letting you "layer," move, or resize screen

objects.

Example—A mailorder firm tracks sales transactions by account number and item. All sales are

made to existing clients whose names and account information are stored elsewhere in the system.

The two program modules open five windows. One is simply a background window. Another

contains a welcoming message. The third is for data entry. A fourth is for "lookup." The fifth

displays a user prompt. DWIN.PRG first displays a welcoming message, and prompts the user to

press the space bar to continue. A data entry window then appears. If the user leaves the

ACCOUNT NUMBER field blank, LOOKUP.PRG displays the contents of a client/account

number file. When the user finishes entering data, the message "Add Another?" appears. Pressing

"Y" continues the program. Pressing "N" closes all windows and exits.

Create these two sample files to run DWIN.PRG:

ACCTDATA.DBF

Field Field Name Type Length Dec

 1 ACCT Character 4

 2 ITEMNO Character 4

 3 AMOUNT Numeric 9 2

ACCTLOOK.DBF

Field Field Name Type Length Dec

 1 ACCTNO Character 4

 2 NAME Character 20

* DWIN.PRG Demonstrates dBXL's and Quicksilver's windowing

SET SCOREBOARD off

SET TALK off

* Include SET HEADING off for dBXL only.

WSET WINDOW SECTION 2

The dBASE® Language Handbook 589 Back to CONTENTS

SET HEADING off && Omits FIELD names from the DISPLAY command

WSET FRAME on && Display window frames

WCLOSE all && Be sure no window areas are open

**** Set window names, coordinates, background CHARACTERs and FRAMEs

* CHR(176) and CHR(178) are extended ASCII graphics characters

WSET WINDOW backgrnd TO 1,1,24,78 CHARACTER CHR(176)

WSET WINDOW welcome TO 5,10,18,70

WSET WINDOW acctadd TO 2,2,12,40 ;

FRAME CHR(178),CHR(178),CHR(178),CHR(178),CHR(178),CHR(178),CHR(178),CHR(178)

WSET WINDOW lookup TO 7,7,23,50

WSET WINDOW qmessage TO 9,20,12,37 CHARACTER "?"

WSELECT 1 && Select window area 1 and

WUSE backgrnd && use BACKGRND window

WSELECT 2 && Select window area 2 and use WELCOME window

WUSE welcome

* Display TEXT message

TEXT

 WELCOME TO THE ACCOUNT MANAGEMENT SYSTEM

 This program module adds a new account transaction.

 If you forget a client's account number, leave the

 input field blank and press ENTER.

 Press SPACE BAR to continue.

ENDTEXT

WAIT "" && Pause without message (null string)

WCLOSE && Close current window area

** Window and work area nos. match only to make it easy to associate them

SELECT 3 && Select work area 3

USE acctdata AUTOMEM && Use ACCTDATA. Create AUTOMEM variables.

WSELECT 3 && Select window area 3

WUSE acctadd TITLE " ADD A NEW ACCOUNT " && Use window with a TITLE

DO WHILE .t.

 WSELECT 3 && Always return to window area 3 at top of DO WHILE

 SELECT 3

 * GET AUTOMEM variables with M-> to differentiate them from FIELDs

 @ 03,03 SAY " Enter item number: " GET m->itemno

 @ 04,03 SAY " Enter amount: " GET m->amount

 @ 05,03 SAY "Enter account number: " GET m->acct PICTURE "####"

 @ 07,03 SAY " LEAVE ACCOUNT NUMBER

BLANK "

 @ 08,03 SAY " FOR ACCOUNT LOOKUP TABLE. "

 READ

 IF EMPTY(m->acct) && If M->ACCT is empty,

 DO lookup && DO LOOKUP program.

 LOOP && Return to top of DO WHILE

 ENDIF

WSET WINDOW SECTION 2

The dBASE® Language Handbook 590 Back to CONTENTS

 APPEND AUTOMEM && APPEND AUTOMEM variables

 CLEAR AUTOMEM && Reset AUTOMEM variables to blank or 0

 WSELECT 5 && Select window area 5

 WUSE qmessage && Display QMESSAGE window

 lmove = 30 && DO WHILE animates QMESSAGE window by

 DO WHILE lmove > 5 && decrementing WMOVE column coord

 WMOVE TO 9,lmove && LMOVE is the column coordinate.

 lmove = lmove - 1 && Subtract 1 from LMOVE until it equals 5

 ENDDO

 WSET SIZE TO 9,05,14,60 && Enlarge window

 WSET TITLE TO " ARE YOU SURE? " && Set title within FRAME

 WDISPLAY && Redisplay FRAME with title

 response = .t. && Use logical variable for

 @ 01,08 CLEAR TO 03,25 && user RESPONSE

 @ 02,10 SAY " Add another?" GET response PICTURE "Y"

 READ

 IF .NOT. response && If user chooses not to add another,

 WCLOSE ALL && close all window areas and

 RETURN && RETURN to calling level

 ELSE

 WCLOSE && If user chooses to add another, close only

 ENDIF && area 5 and the QMESSAGE window.

ENDDO

* LOOKUP.PRG

* Called from DWIN.PRG

WSELECT 4

WUSE lookup TITLE " LOOK UP ACCOUNT NUMBERS "

SELECT 4

USE acctlook && Use lookup database

re_do = .t.

DO WHILE re_do && Repeat DISPLAY as long as RE_DO is true

 DISPLAY ALL TRIM(acctno) + " " + TRIM(name)

 * Display message at current row and column

 ?

 @ ROW(),COL()+2 SAY "Redisplay? " GET re_do PICTURE "Y"

 READ

ENDDO

WRESTORE && Restore screen image beneath LOOKUP window

USE

VARIATIONS:
dBASE IV: DEFINE WINDOW is similar to WSET WINDOW.

SEE ALSO:
Commands DEFINE WINDOW, WCLOSE, WMOVE, WRESTORE, WSAVE, WSELECT,

WSET FRAME, WSET TITLE, and WUSE.

WSET WINFILE SECTION 2

The dBASE® Language Handbook 591 Back to CONTENTS

WSET WINFILE

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WSET WINFILE TO <filename>

DEFINITION:
Opens a master screen file created by the WordTech BUILDWIN.EXE utility. The WRESTORE

command can then retrieve WSAVEd screens by name.

If WRESTORE cannot find the specified screen in the open master file, it searches the current

directory for an individual file with the same name.

DEFAULT:
The master screen file has a WIN extension by default.

SEE ALSO:
Commands WSAVE, WRESTORE, WSELECT, WSET WINDOW, and WUSE.

WUSE SECTION 2

The dBASE® Language Handbook 592 Back to CONTENTS

WUSE

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WUSE [<window name>] [TITLE <string> [LEFT/CENTER/RIGHT]]

DEFINITION:
Opens a window in the currently selected window area. If a window is already open, WUSE closes

it before opening the new one.

You must define windows with the WSET WINDOW command before you can WUSE them.

OPTIONS:
WUSE by itself closes the current window.

WUSE <window name> opens the specified window in the current area.

TITLE defines a character expression to display at the top of the frame. LEFT, CENTER, and

RIGHT position the title; CENTER is the default. If the title is too long for the frame, it will be

truncated.

To display titles, WSET FRAME must be ON.

VARIATIONS:
dBASE IV: ACTIVATE WINDOW is similar to WUSE.

SEE ALSO:
Commands ACTIVE WINDOW, WSELECT, WSET FRAME, WSET TITLE, and WSET

WINDOW.

ZAP SECTION 2

The dBASE® Language Handbook 593 Back to CONTENTS

ZAP

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ZAP

DEFINITION:
Removes all records from the active database. ZAP is equivalent to DELETE ALL followed by

PACK, except that ZAP reclaims disk space used by memo fields.

ZAP executes much faster than the DELETE ALL/PACK combination because it does not have

to look for DELETED records.

ZAP reindexes the open index files (with no records).

RECOMMENDED USE:
Use ZAP to permanently remove records from a database file. ZAPped records cannot be

RECALLed.

Example—A large inventory system maintains a transaction log in a database file. Every year, an

archiving module copies the transaction log to a removable magnetic tape, then ZAPs the

transaction log to start over.

USE tlog INDEX tdex,transdate

DO tapebak && TAPEBAK subroutine makes archive tape

ZAP

USE

SEE ALSO:
Commands DELETE, RECALL, and PACK; function DELETED().

ZAP SECTION 3

The dBASE® Language Handbook 594 Back to CONTENTS

SECTION 3

 dBASE LANGUAGE FUNCTIONS

& SECTION 3

The dBASE® Language Handbook 595 Back to CONTENTS

&

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
&<memory variable>[.<expC>]

(Macro substitution function)

DEFINITION:
The macro substitution function & replaces a character memory variable's name with its value.

The value is treated as a literal, as if you had typed it instead of &<memory variable>. You can

use the macro almost anywhere a literal can appear. Also, you can have several macros on one

line.

The computer ignores ampersands (in character strings) that are not associated with valid memory

variables. Two ampersands (&&) on a command line indicate a comment.

The legal uses of macros vary. For example, interpreters let you store entire commands in macros

and execute them:

. STORE '? "Executing contents of MCOMMAND"' TO mcommand

. &mcommand

Executing contents of MCOMMAND

Clipper and Quicksilver do not allow this.

OPTIONS:
Sometimes, spaces trail a substituted value. To remove them and concatenate the value with

another character expression, put a period in-between. For example, the following commands build

a filename ACCTMAIN by concatenating variable FILEDESC with the literal "MAIN".

STORE "acct" TO filedesc

USE &filedesc.main

The period is called the macro terminator. It does not appear in the resulting string.

RECOMMENDED USE:
Programmers use macro substitution to write general purpose subroutines. It lets a routine do

different tasks or use different data. Another use is to embed variables in character strings.

& SECTION 3

The dBASE® Language Handbook 596 Back to CONTENTS

Example 1—Tired of writing new file-handling routines for each application, a programmer

creates a generic version. The parameter FILEUSE designates which file to open. The macro (&)

substitutes the parameter's value into the USE command.

* GENFILE.PRG

* Generic file handling program

PARAMETERS fileuse

USE &fileuse

* <statements>

To execute GENFILE.PRG using the INVENTRY file, issue the command

DO genfile WITH "inventry"

Example 2—A program merges data with text to produce personalized notices. As it skips through

the database file, it stores the field contents in memory variables. It then prints a confirmation

using embedded macros.

name = "Ms. Joanna McNally"

apptdate= "March 3, 1987"

?

? "

? "&name,"

?

? "This is to confirm your appointment of &APPTDATE. If you"

? "cannot make it, please call our office as soon as possible."

The printed confirmation is:

Ms. Joanna McNally:

This is to confirm your appointment of March 3, 1987. If you

cannot make it, please call our office as soon as possible.

Example 3—To allow different search conditions, a report routine appears in a program

repeatedly. An alternative is to specify the search condition with macro substitution.

For example, a typical literal condition in a DO WHILE statement might be:

DO WHILE lname = "St. James"

By adding the macro to the DO WHILE, the programmer needs only one routine:

* SERCHRPT.PRG

PARAMETERS condition

USE sales

DO WHILE &condition

& SECTION 3

The dBASE® Language Handbook 597 Back to CONTENTS

 @ ROW(),COL()+10 SAY trim(fname)+" " + lname

 SKIP

ENDDO

The program passes CONDITION to the report routine as a parameter:

DO serchrpt WITH "lname = 'St. James'"

Example 4—In dBASE III PLUS, dBASE IV, dBXL, and FoxBASE+, you can store commands

in memory variables and execute them with a macro. This lets an application have its own

command processor. The following program presents a custom prompt and accepts commands

typed by the user. The macro function executes them as if they were typed at the interactive

prompt. You can add validation to provide a custom interactive environment.

Note: You should add validation to prevent the user from entering commands that will corrupt the

program environment, such as CLEAR, CLEAR MEMORY, or RELEASE.

To illustrate validation, this program fragment uses an IF statement to test input. If the user enters

"USE payfile", the program ignores it and repeats the prompt, using the LOOP command to return

to the top of the DO WHILE. The user can quit by typing "QUIT", "RETURN", or "EXIT".

DO WHILE .t.

 ACCEPT "Enter command-> " TO process

 IF UPPER(process) = "USE payfile"

 @ 01,01 SAY "You do not have clearance to look at PAYFILE"

 LOOP

 ENDIF

 * <more validation statements>

&process && Execute pseudo command processor

ENDDO

LIMITS/WARNINGS:
Macro may not exceed the system string/command length limits. For other LIMITS and

WARNINGS, see VARIATIONS.

VARIATIONS:
Clipper: Allows SET command switches in macros. For example, to SET BELL ON in Clipper,

you could use:

switch = "ON"

SET BELL &switch

You can thus restore SET command switches from memory variables, MEM files, or databases.

You can also change SET switches based on user input.

Unlike any other system, Clipper allows recursive macros.

& SECTION 3

The dBASE® Language Handbook 598 Back to CONTENTS

Clipper, Quicksilver: Both compilers restrict commands and parts of commands in macros, but

both allow command parameters. For example, the following macro is illegal.

pname = "DO submodule"

&pname

The legal usage is to put only the filename in the macro.

pname = "submodule"

DO &pname

Also, do not include keywords such as FOR and WHILE in macro expressions. The following

usage is illegal because the expression includes FOR.

STORE "FOR lname = 'Smith'" TO condition

LIST lname &condition

Instead, separate the variable elements and leave the keyword as a literal as follows:

STORE "lname" TO field

STORE "lname = 'Smith'" TO condition

LIST &field FOR &condition

Both Clipper and Quicksilver restrict commas in macro expressions. Quicksilver prohibits them

entirely. In Clipper, avoid putting comma-delimited INDEX file and FIELD lists in macros.

Clipper allows commas in SET COLOR TO commands. Here is the correct way to specify an

INDEX file list with macros:

ixfile1 = "statedex"

ixfile2 = "zipdex"

SET INDEX to &ixfile1,&ixfile2

Both compilers reevaluate a macro in a DO WHILE statement if its value changes.

dBASE III PLUS, dBXL, FoxBASE+: Macros in a DO WHILE statement are not reevaluated

during iterations. Therefore, changes to the macro value within the loop do not affect the DO

WHILE. Clipper, dBASE IV, and Quicksilver reevaluate the DO WHILE statement.

dBASE IV: Does not allow macros in user defined functions.

Quicksilver: Does not allow CCALL arguments, commands, or parts of commands in a macro.

Macros may contain command parameters. Does not allow commas in macro expressions or

macros in SET command switches.

& SECTION 3

The dBASE® Language Handbook 599 Back to CONTENTS

Macro comparison chart

 Clipper dBASE dBASE dBXL FoxBASE+ Quicksilver

 III Plus IV

Recursion 

DO WHILE reevaluation   

Command execution    

Keyword substitution (limited)    

String substitution      

Commas in macros (limited)    

Macro in UDF  n/a   

SEE ALSO:
Commands ?, DO, and DO WHILE.

ABS() SECTION 3

The dBASE® Language Handbook 600 Back to CONTENTS

ABS()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ABS(<expN>)

RETURNS:
Numeric

DEFINITION:
Returns the absolute value of a numeric expression. This is the value's magnitude, disregarding its

sign.

RECOMMENDED USE:
Use ABS() to compute absolute differences for statistical analysis.

Example—A statistical program computes the difference between the lowest and highest values

in a market research survey. With the ABS() function, the program need not determine which

number is higher.

stat1 = -57

stat2 = 899

? abs(stat1-stat2)

956

stat1 = 899

stat2 = -57

? abs(stat1-stat2)

956

SEE ALSO:
Functions FLOOR(), INT(), and ROUND().

ACHOICE() SECTION 3

The dBASE® Language Handbook 601 Back to CONTENTS

ACHOICE()

DIALECTS:
Clipper only.

SYNTAX:
ACHOICE(<expN1>,<expN2>,<expN3>,<expN4>,<array1>[,<array2>

 [,<expC>[,<expN5>[,<expN6>]]]])

RETURNS:
Numeric

DEFINITION:
Displays a fully-scrollable menu in a window, using an array for the selections. A light bar serves

as the cursor. Menus may be nested.

ACHOICE() resembles the @...PROMPT...MENU TO command; however, MENU TO is not

scrollable and is limited to 32 prompts per menu.

<expN1>,<expN2> is the top left window coordinate. <expN3>,<expN4> is the bottom right

coordinate.

<array1> is an array of menu selections. They must be character strings.

<array2> is an array of logical elements (.T. or .F.) for each element in array 1. A true (.T.) element

means that the corresponding element in <array1> can be selected. False (.F.) means that the

element appears, but cannot be selected. You can make menu items either all selectable or all non-

selectable, by using .T. or .F. as the argument.

<expC> is a user defined function executed in response to an invalid key. You must specify the

function name in quotation marks, without parentheses or arguments. This feature lets you define

your own keystroke handling routines. If you do not supply a user defined function, ACHOICE()

offers a default mode.

<expN5> indicates the initial item to highlight when the menu is invoked.

<expN6> specifies the initial row position of the cursor relative to the window.

When a selection is made, ACHOICE() terminates the menu and returns the relative number of the

chosen item (the subscript of the associated array element).

Cancelling the menu selection (with ESC) returns 0.

ACHOICE() SECTION 3

The dBASE® Language Handbook 602 Back to CONTENTS

Note: You may omit ACHOICE() options from the end of the argument list (right to left).

However, you may not omit ones from the middle.

ACHOICE() displays choices in the standard color. The selection cursor appears in enhanced

color. Unavailable choices (.F. in <array2>) appear in the unselected color.

ACHOICE() has two modes: default and user defined function.

DEFAULT MODE:
This easily implemented mode is a good choice if you are not experienced in writing user defined

functions. If you do not specify a user defined function, ACHOICE() responds to keys as follows:

Key Action

Up Arrow Up one selection

Down Arrow Down one selection

Home First selection

End Last selection

PgUp Up one page (relative to the window size)

PgDn Down one page (relative to the window size)

Ctrl-PgDn First selection

Ctrl-PgUp Last selection

Enter Make selection, return selection number (element)

ESCape Cancel selection, return 0

Left arrow Cancel selection, return 0

Right arrow Cancel selection, return 0

First letter Select next element with first letter,

 return selection number (element)

A simple ACHOICE() statement is:

mchoice = ACHOICE(01,02,05,15,master)

where 01,02 and 05,15 are the top left and bottom right coordinates respectively. MASTER is an

array of menu selections.

USER DEFINED FUNCTION MODE:

Specifying a user defined function in ACHOICE() shifts more responsibility to the programmer.

Now ACHOICE() responds to fewer keys automatically. Specific actions depend on values passed

between it and the user defined function.

ACHOICE() continues to handle the following keys:

Key Action

Up Arrow Up one selection

Down Arrow Down one selection

PgUp Up one page (relative to the window size)

PgDn Down one page (relative to the window size)

ACHOICE() SECTION 3

The dBASE® Language Handbook 603 Back to CONTENTS

Ctrl-PgDn First selection

Ctrl-PgUp Last selection

Home, End, Enter, and Esc are invalid (keyboard exceptions).

Using the LASTKEY() function and parameters passed to the user defined function by

ACHOICE(), you can customize the response.

When the user presses an invalid key, ACHOICE() calls the user defined function, sending it three

parameters: MODE, CURRENT ELEMENT in the array, and RELATIVE WINDOW POSITION.

The MODE parameters are:

ACHOICE() -------------> user defined function

MODE Description

 0 Idle (no action)

 1 Move cursor past top of list

 2 Move cursor past end of list

 3 Invalid key (keystroke exception)

 4 No item selectable

You must design the user defined function to evaluate these parameters, then return a value to

ACHOICE(). The values are:

User defined function -------------> ACHOICE()

MODE Description

 0 Cancel selection, return 0

 1 Make selection, return selection (element) number

 2 Continue selection

 3 Go to next selection, matching last key pressed

RECOMMENDED USE:
Use ACHOICE() to develop modifiable menu systems. You can store selections and actions in a

database, then load them into arrays for display. To change a selection, you simply change the

database, not the program. ACHOICE() itself is relatively easy to use; however, the array

manipulation may be tricky.

Example—The main menu of an accounting system pops up in the top left corner of the screen.

First, the program DECLAREs two arrays, MASTER and MACTION. MASTER holds the menu

selection text. MACTION holds the corresponding subroutine names. The values are stored in

MENU1.DBF. Its structure and contents are:

 Structure for database: C:\GENLED\MENU1.DBF

 Number of data records: 4

 Date of last update : 01/17/88

 Field Field Name Type Width Dec

 1 MSELECT Character 20

ACHOICE() SECTION 3

The dBASE® Language Handbook 604 Back to CONTENTS

 3 ACTION Character 10

 ** Total ** 31

 . LIST mselect,action

 Record# mselect action

 1 Payroll SUB1

 2 End of Month SUB2

 3 End of Year SUB3

 4 Close Quarter SUB4

The program opens MENU1.DBF and loads field MSELECT into array MASTER and field

ACTION into array MACTION. In a DO WHILE loop, ACHOICE() displays MASTER. Memory

variable MCHOICE contains the element number selected. If the return value is non-zero, the

program executes the subroutine stored in the corresponding element in MACTION.

For example, if the user selects choice 1, "Payroll," the program issues the command DO SUB1.

DECLARE master[4], maction[4]

USE menu1

FOR ctr = 1 TO 4 && Menu1 contains only four records

 master[ctr] = mselect && Load field MSELECT into array

 maction[ctr] = action && Load field ACTION into array

 SKIP

NEXT

USE

* Set color to yellow on blue standard text, red on white

* enhanced text, blue border, brown on blue unselected text

SET COLOR TO gr+/b,r/w,b,,gr/b

DO WHILE .t.

 mchoice = ACHOICE(01,02,05,15,master)

 IF mchoice > 0

 subrout = maction[mchoice]

 DO &subrout

 ELSE

 RETURN

 ENDIF

ENDDO

PROCEDURE sub1 && Each procedure would have additional code

@ 01,35 SAY "Post Payroll "

PROCEDURE sub2

@ 01,35 SAY "End of Month Report"

PROCEDURE sub3

@ 01,35 SAY "End of Year Report "

PROCEDURE sub4

@ 01,35 SAY "Close Quarter "

ACHOICE() SECTION 3

The dBASE® Language Handbook 605 Back to CONTENTS

The user defined function mode can provide more control over key responses. Using the same

data, the following program employs a user defined function AUDF to control menu response. To

avoid repetition, the example does not contain the subroutine calls.

Note that in ACHOICE(), .T. indicates that all elements are available for selection.

DECLARE master[4], maction [4]

USE menu1 && Contains fields MSELECT and ACTION

FOR ctr = 1 TO 4 && Menu1 contains only four records

 master[ctr] = mselect && Load selection field MSELECT into array

 maction[ctr] = action && Load character field ACTION into array

 SKIP

NEXT

mchoice = ACHOICE(01,02,05,15,master,.t.,"audf")

* From here, you can use MCHOICE to execute a subroutine

FUNCTION audf

PARAMETERS mode,celement,relpos

DO CASE

CASE LASTKEY()=19 .OR. LASTKEY()=4 && Trap left or right arrow keys

 RETURN 2 && Continue selection process

 CASE mode=3 && If keystroke exception,

 RETURN 1 && accept entry

 CASE mode=1 .OR. mode=2 && If cursor goes past top or bottom

 ?? CHR(7) && of list, beep

 RETURN 2 && Continue selection process

 OTHERWISE

 RETURN 2

ENDCASE

ACHOICE() is in EXTEND.LIB on the system disk.

SEE ALSO:
Commands @...PROMPT...MENU TO, DECLARE, PARAMETERS, and SET COLOR;

functions ADIR() and LASTKEY().

ACCESS() SECTION 3

The dBASE® Language Handbook 606 Back to CONTENTS

ACCESS()

DIALECTS:
dBASE III PLUS and dBASE IV.

SYNTAX:
ACCESS()

RETURNS:
Numeric

DEFINITION:
Returns the access level of the last user to login through the dBASE III PLUS ADMINISTRATOR

or dBASE IV PROTECT system. ACCESS() always returns 0 in a single-user environment or if

the user does not enter through the dBASE ADMINISTRATOR or PROTECT login screen.

To increase security, include a test for ACCESS() = 0 at the beginning of an application. If

ACCESS() returns 0, the application is running on a single-user system or the user has bypassed

the login screen.

RECOMMENDED USE:
The dBASE III PLUS network administration program and the dBASE IV PROTECT program let

you define access levels for system users. Users can then be restricted from files and parts of an

application program, based on their clearances. Users with an ACCESS() level of 0 may not use

encrypted files.

Example—Walter works in the sales department. His company uses an accounting system on a

local area network for sales support. The system programmer must prevent Walter from accessing

sensitive accounting data. To do so, he uses the ACCESS() function. He precedes certain program

modules with an ACCESS()-checking routine. Walter has access level 4. The security system

keeps Walter from accessing salary records and sales projections for unannounced products.

* COMISSIONS.PRG

* Program to access sales department commissions

IF ACCESS() < 7

 ?

 ? "I'm sorry, you do not have clearance to proceed"

 WAIT "Press a key to return to previous menu"

 RETURN

ENDIF

* <more statements>

ACCESS() SECTION 3

The dBASE® Language Handbook 607 Back to CONTENTS

VARIATIONS:
dBASE IV: If an unauthorized user tries to read or write an encrypted file, the error message

"Unauthorized access level" appears. The user may still USE a file and issue file locks. To prevent

unauthorized locks, the programmer can use ON ERROR and ERROR() to trap error 133

("Unauthorized access level"), then USE or UNLOCK the file.

Note that dBASE IV will not display the login screen unless it finds the file DBSYSTEM.DB at

startup. The file should be in the program directory.

SEE ALSO:
Commands PROTECT and SET ENCRYPTION; functions NETNAME() and USER().

ACOPY() SECTION 3

The dBASE® Language Handbook 608 Back to CONTENTS

ACOPY()

DIALECTS:
Clipper only.

SYNTAX:
ACOPY(<array1>,<array2>[,<expN1>[,<expN2>[,<expN3>]]])

RETURNS:
Nothing

DEFINITION:
Copies elements from one array to another.

<array1> is the source and <array2> is the target.

<expN1> is the element in the source array from which to start copying (inclusive).

<expN2> is the number of elements to copy.

<expN3> is the element in the target array at which to start copying.

RECOMMENDED USE:
Example—In an accounting application, an array AMENU contains ten menu selections. After

closing the quarter, some selections become invalid until another quarter passes (e.g., Close

Quarter, Print Quarterly Report).

For the ACHOICE() function, a logical value in array AACTIVE designates that the corresponding

element in AMENU is active. If the element is false (.F.), the menu selection is unavailable.

When the quarter closes, the program modifies the available menu options by changing the values

in AACTIVE.

DECLARE amenu[10]

DECLARE aactive[10]

* <load arrays, make all elements of AACTIVE true (.T.)>

* <After running quarterly report, copy new values to AACTIVE

* New array is CVALUES with some true elements and some false>

DECLARE cvalues[10]

* <store values in CVALUES>

ACOPY(cvalues,aactive) && Copies all values from CVALUES to AACTIVE

ACHOICE(1,1,10,20,amenu,aactive)

ACOPY() is in EXTEND.LIB on the system disk.

ACOPY() SECTION 3

The dBASE® Language Handbook 609 Back to CONTENTS

SEE ALSO:
Functions ACHOICE(), ADEL(), ADIR(), AFIELDS(), AFILL(), AINS(), ASCAN(), ASEEK(),

and ASORT().

ACOS() SECTION 3

The dBASE® Language Handbook 610 Back to CONTENTS

ACOS()

DIALECTS:
dBASE IV only.

SYNTAX:
ACOS(<expN>)

RETURNS:
Floating point

DEFINITION:
Computes the arccosine (inverse cosine) of <expN>, where <expN> is a value in the range -1.0 to

+1.0.

ACOS() returns a floating point number (an angle in radians) in the range 0 to pi (3.14159).

The SET DECIMALS and SET PRECISION commands determine numeric accuracy.

Use DTOR() and RTOD() to convert degrees to radians and vice versa. A radian is approximately

57.3 degrees.

RECOMMENDED USE:
Use ACOS() in engineering and scientific applications.

Example—An architectural engineering application expresses angles in radians. The cosine of

angle A is 0.32. By taking its ACOS(), the program determines A in radians to be .25.

m_acos = ACOS(.32)

 .25

SEE ALSO:
Functions ASIN(), ATAN(), ATN2(), COS(), SIN(), and TAN().

ACTIVEWIN() SECTION 3

The dBASE® Language Handbook 611 Back to CONTENTS

ACTIVEWIN()

DIALECTS:
Quicksilver only.

SYNTAX:
ACTIVEWIN()

RETURNS:
Logical

DEFINITION:
Indicates whether a window is active in the currently selected area. True if a window is active in

the current WSELECT area.

ACTIVEWIN() is the same as WACTIVE().

SEE ALSO:
Commands WSELECT, WSET WINDOW, and WUSE; function WACTIVE().

ADEL() SECTION 3

The dBASE® Language Handbook 612 Back to CONTENTS

ADEL()

DIALECTS:
Clipper only.

SYNTAX:
ADEL(<expC>,<expN>)

RETURNS:
Nothing

DEFINITION:
Deletes an array element. All succeeding elements move down one. <expC> is the array name.

<expN> is the element to delete.

The last element in the array becomes undefined.

For example, assume a five-element array called TEST containing names for a lookup menu:

FOR ctr = 1 to 5

 ? test[ctr]

NEXT

Johnson

Barreda

Samuelson

Gillette

Wong

Using ADEL() to delete element two, "Barreda," moves all succeeding names down one. Element

five becomes undefined.

ADEL(TEST,3)

 FOR ctr = 1 to 4

 ? test[ctr]

 NEXT

 Johnson

 Samuelson

 Gillette

 Wong

RECOMMENDED USE:
Use ADEL() to remove values from an array containing a menu, lookup table, or pick list.

ADEL() SECTION 3

The dBASE® Language Handbook 613 Back to CONTENTS

Example—An inventory system stores part numbers in an array. The numbers appear on the

screen, allowing the user to delete them with a keystroke. The following program loads the array,

GETs the part numbers, then lets the user scroll through the elements.

CLEAR

USE parts && Open PARTS database

DECLARE parta[20] && Declare array PARTA

FOR ctr = 1 TO 20

 parta[ctr] = partno && Load data from records until

 SKIP && array is full

NEXT

@ 10,01 SAY "Your choice => "

@ 11,01 SAY "Key control...PgUp, PgDn, delete with Ctrl-W, exit with ESC"

ctr = 1

DO WHILE .t.

 @ 10,18 GET parta[ctr]

 READ

 DO CASE

 * LASTKEY values: 18-PgUp, 3-PgDn, 13-Enter

 CASE LASTKEY() = 18 .AND. ctr > 1 && Do not move past first element

 ctr = ctr - 1

 CASE LASTKEY() = 3.AND.ctr < LEN(parta) && Do not move past last element

 ctr = ctr + 1

 CASE LASTKEY() = 23 && Press Ctrl-W to delete element

 ADEL(parta,ctr)

 * more cases

 CASE LASTKEY() = 13

 mpart = parta[ctr]

 EXIT

 ENDCASE

ENDDO

ADEL() is in EXTEND.LIB on the system disk.

LIMITS/WARNINGS:
Summer '87 version (file date 12-21-87, 2:00 a.m.): ADEL() cannot delete the last array element.

To work around this problem, store a blank value (e.g., zero, a space, or a null string) in it.

SEE ALSO:
Command DECLARE; functions ACHOICE(), ADIR(), AFILL(), AINS(), and ASCAN().

ADIR() SECTION 3

The dBASE® Language Handbook 614 Back to CONTENTS

ADIR()

DIALECTS:
Clipper only.

SYNTAX:
ADIR(<expC1> [,<expC2>,[<expC3>,[<expC4>,[<expC5>,[<expC6>]]]]])

RETURNS:
Numeric

DEFINITION:
Returns the number of files in the current directory that match the skeleton specified in <expC1>,

or fills a series of arrays with directory information.

Skeletons must be delimited, for example:

ADIR("*.*")

ADIR("*.DBF")

ADIR("?AR.DBF")

OPTIONS:
The second expression, <expC2>, is an array in which to store the matching filenames. Elements

are character type.

<expC3> is an array that holds the sizes of the matching files. Elements are numeric.

<expC4> is an array that holds the dates of the matching files. Elements are date type.

<expC5> is an array that holds the times of the matching files. Elements are character type.

<expC6> is an array that holds the DOS attributes of the matching files. Elements are character

type. If you do not use this argument, ADIR() recognizes only Archive and Read Only files.

(Archive files are normal DOS read/write files).

 Attribute Description

• A—Archive

• D—Directory

• H—Hidden

• R—Read only

• S—System

To use arrays with ADIR(), you must DECLARE one for each optional argument. Each array must

have the same number of elements as files matching the skeleton.

ADIR() SECTION 3

The dBASE® Language Handbook 615 Back to CONTENTS

Because ADIR() with no optional arguments returns the number of matching files, you can use it

in a DECLARE statement as follows:

DECLARE array[ADIR("*.*")]

If you have several arrays, store the number of matches in a variable, then use it in each

DECLARE. This is faster than repeating ADIR("*.*"):

mct = ADIR("*.*")

DECLARE mname[mct],msize[mct],mdate[mct],mtime[mct],mattrib[mct]

Then use ADIR() as follows:

 ADIR("*.*",mname,msize,mdate,mtime,mattrib)

To get directory values for only selected arrays, use null arguments for the others, as follows:

mnull = ""

ADIR("*.*",mname,mnull,mdate,mnull,mattrib)

Arrays at the end of the list can simply be omitted.

RECOMMENDED USE:
Use ADIR() to list available filenames or display directories.

Example 1—The user interface in an accounting system lets users choose database files to open

from a list on the screen. ADIR() gathers the filenames into an array. Additional array handling

techniques build the menu and selection mechanism.

CLEAR

DECLARE fhold[ADIR("*.*")] && Create array with number of matching files

ADIR("*.*", fhold)

@ 10,01 SAY "Your choice => "

@ 11,01 SAY "Key control...PgUp, PgDn,select with Enter, exit with ESC"

ctr = 1

DO WHILE .t.

 @ 10,20 GET fhold[ctr]

 READ

 DO CASE

 * LASTKEY values: 18 is PgUp, 3 is PgDn, 13 is Enter, 27 is ESC

 * Do not move past first element

 CASE LASTKEY() = 18 .AND. ctr > 1

 ctr = ctr -1

 * Do not move past last element

 CASE LASTKEY() = 3 .AND. ctr < LEN(fhold)

 ctr = ctr + 1

 CASE LASTKEY() = 13 && Press Enter to select file

ADIR() SECTION 3

The dBASE® Language Handbook 616 Back to CONTENTS

 mfile = fhold[ctr] && MFILE is the chosen filename

 EXIT

 ENDCASE

 @ 10,20 SAY SPACE(15)

ENDDO

Example 2—A file backup routine gathers directory information and makes backups based on

specified times and dates. The program stores file information in arrays as follows:

mdbf = ADIR("*.dbf")

DECLARE mnames[mdbf],msize[mdbf],mdate[mdbf],mtime[mdbf]

ADIR("*.dbf",mnames,msize,mdate,mtime)

ADIR() is in EXTEND.LIB on the system disk.

SEE ALSO:
Command DECLARE; functions ACHOICE(), ADEL(), AFILL(), AINS(), and ASCAN().

AFIELDS() SECTION 3

The dBASE® Language Handbook 617 Back to CONTENTS

AFIELDS()

DIALECTS:
Clipper only.

SYNTAX:
AFIELDS([<array1>,[<array2>[,<array3>[,<array4>]]]])

RETURNS:
Numeric

DEFINITION:
Analyzes the active database file's structure and stores the fieldnames, field types, field lengths,

and decimal lengths in arrays.

AFIELDS() also returns the smaller of the number of fields or the length of the shortest array used

in its argument. For example, if you DECLARE MARRAY1[40], AFIELDS(marray1) returns 40.

If you do not specify any parameters, AFIELDS() returns 0.

AFIELDS() stores fieldnames in <array1>, field types in <array2>, field lengths in <array3>, and

decimal lengths in <array4>.

Fieldnames are character strings.

Field types are single characters as follows:

• C—Character

• D—Date

• L—Logical

• M—Memo

• N—Numeric

Field lengths and decimal lengths are numeric.

Note: To skip an array in the AFIELDS() list, use a null-valued variable in its place. For example,

to use fieldnames and decimal lengths only, proceed as follows:

@PROGRAM KWN = num = FCOUNT()

DECLARE mfield[num], mdec[num]

null = ""

null2 = ""

AFIELDS(mfield, null, null2, mdec)

AFIELDS() SECTION 3

The dBASE® Language Handbook 618 Back to CONTENTS

RECOMMENDED USE:
Use AFIELDS() to list database structures in user applications or utility programs.

Example 1—A personnel management system lets users choose fields from a list for inclusion in

reports. The program first opens the database, then stores the field count (FCOUNT()) in variable

NUM. Four arrays (MFIELD, MTYPE, MWIDTH, and MDEC are declared to hold the file

structure attributes. NUM, the field count, determines the number of elements in each array.

USE master

num = FCOUNT()

DECLARE mfield[num], mtype[num], mwidth[num], mdec[num]

AFIELDS(mfield, mtype, mwidth, mdec)

Once you have the structure information in arrays, you can manipulate it with other Clipper

functions.

Example 2—A programmer writes a short program to display file structures. It prompts for the

filename, then lists the fields and their attributes.

CLEAR

fname = SPACE(8)

@ 01,01 SAY "Enter filename without extension: " GET fname PICTURE "@"!

READ

fname = TRIM(fname)

IF .NOT. FILE("&fname..DBF")

 ? "File not found"

 RETURN

ENDIF

CLEAR

USE (fname)

num = FCOUNT()

DECLARE mfield[num],mtype[num],mwidth[num],mdec[num]

AFIELDS(mfield, mtype, mwidth, mdec)

FOR ct = 1 TO num

 * Note: SPACE(10-LEN(mfield[ct])) pads the fieldname string with

 * spaces to make it display in an even column

 ? mfield[ct] + SPACE(10-LEN(mfield[ct])), mtype[ct],;

 STR(mwidth[ct]), STR(mdec[ct])

 IF ct/23 = INT(ct/23) && Execute on multiples of 23 (see INT())

 ?

 WAIT "Press SPACE BAR to view more fields"

 @ ROW(),00 && Clear WAIT message line

 ENDIF

NEXT ct

WAIT "End of field list, press key to exit"

CLEAR

AFIELDS() is in EXTEND.LIB on the system disk.

AFIELDS() SECTION 3

The dBASE® Language Handbook 619 Back to CONTENTS

SEE ALSO:
Commands DECLARE and FOR...NEXT; functions ACHOICE(), ACOPY(), ADEL(), AFILL(),

AINS(), ASCAN(), ASORT(), and FCOUNT().

AFILL() SECTION 3

The dBASE® Language Handbook 620 Back to CONTENTS

AFILL()

DIALECTS:
Clipper only.

SYNTAX:
AFILL(<expC>,<exp>[,<expN1> [,<expN2]])

RETURNS:
Nothing

DEFINITION:
Initializes an array <expC> with the value <exp>.

DEFAULT:
AFILL() fills all elements.

OPTIONS:
Optional numeric arguments specify a range from either <expN1> to the last element, or from

<expN1> to <expN2>.

RECOMMENDED USE:
Use AFILL() to assign default values to array elements.

Example—A shipping and mailing program initializes an array of rates with default zone charges

of 5.00, 7.00, and 10.00 in selected ranges of elements.

CLEAR

DECLARE ratehold[10] && Declare array RATEHOLD

AFILL(ratehold,5.00,1,3) && Fill elements 1, 2, and 3

AFILL(ratehold,7.00,4,4) && Fill elements 4, 5, 6, and 7

AFILL(ratehold,10.00,8,3) && Fill elements 8, 9, and 10

This lets the programmer create a matrix of zones and zone charges. Another array contains the

zones, with each element corresponding to an element in array RATEHOLD. When the user selects

a zone, the program can look up the charge in RATEHOLD. A display of RATEHOLD's contents

shows the defaults:

FOR ctr = 1 TO 10

 ? ratehold[ctr]

NEXT

 5.00

 5.00

 5.00

AFILL() SECTION 3

The dBASE® Language Handbook 621 Back to CONTENTS

 7.00

 7.00

 7.00

 7.00

 10.00

 10.00

 10.00

AFILL() is in EXTEND.LIB on the system disk.

SEE ALSO:
Command DECLARE; functions ADEL(), ADIR(), AINS(), and ASCAN().

AINS() SECTION 3

The dBASE® Language Handbook 622 Back to CONTENTS

AINS()

DIALECTS:
Clipper only.

SYNTAX:
AINS(<expC>,<expN>)

RETURNS:
Nothing

DEFINITION:
Inserts an "empty" (undefined) element into an array. <expC> is the array's name. <expN> is the

element number.

The inserted element pushes everything after it up one position, eliminating the last element.

RECOMMENDED USE:
Use AINS() to add a new value to an array. To avoid losing the last element, be sure to make the

array large enough.

Example—A program scans a database file, storing customer account numbers in array PICK.

When the clerk enters a new customer account, AINS() inserts the new number into the array.

The following program loads the array, GETs the new account number, then lets the user scroll

through the array elements to pick an account number.

USE accounts INDEX acctdex && Open accounts database

DECLARE pick[23] && Declare array PICK

FOR ctr = 1 TO 23

 pick[ctr] = acctno && Load data from each record until

 SKIP && array is full

 IF eof() && If end of file, end array loading

 ctr = 23

 ENDIF

NEXT

macctno = SPACE(8)

@ 10,10 SAY "Enter new acct. number: " GET macctno PICTURE "########"

READ

AINS(pick,1) && Insert new element 1

pick[1] = macctno && Replace new element with new account number

ctr = 1

DO WHILE .t.

@ 10,10 GET pick[ctr]

 READ

AINS() SECTION 3

The dBASE® Language Handbook 623 Back to CONTENTS

 DO CASE

 * LASTKEY values: 18 is PgUp, 3 is PgDn, 13 is Enter

 CASE LASTKEY() = 18 .AND. ctr > 1 && Do not move past first element

 ctr = ctr -1

 CASE LASTKEY() = 3 .AND. ctr < LEN(pick) && Do not move past last element

 ctr = ctr + 1

 CASE LASTKEY() = 13

 mpick = pick[ctr]

 EXIT

 ENDCASE

ENDDO

AFILL() is in EXTEND.LIB on the system disk.

SEE ALSO:
Command DECLARE; functions ADEL(), ADIR(), AFILL(), and ASCAN().

ALIAS() SECTION 3

The dBASE® Language Handbook 624 Back to CONTENTS

ALIAS()

DIALECTS:
Clipper, dBASE IV, and FoxBASE+.

SYNTAX:
ALIAS(<expN>)

RETURNS:
Character string

DEFINITION:
Returns the alias of an open database. <expN> is the work area number. The default (no parameter)

is the alias of the currently selected database.

ALIAS() returns a null string when no database is open in the specified area.

RECOMMENDED USE:
You can use ALIAS() to provide database information to the end user.

Example—A programmer writes a system utility that displays the names of all open files at the

press of a key. The program first saves the screen image, then clears a block and draws a box. A

counter in a DO WHILE loop increments both the selected area and the screen coordinate at which

to display the filename.

@ 01,01 CLEAR TO 18,27 && Clear block on screen.

@ 01,01 TO 18,27 DOUBLE && Draw double line border

@ 02,05 SAY "***OPEN FILES***" && Display header text

@ 03,05 SAY "AREA ALIAS"

increase = 1 && Initialize counter to 1

DO WHILE increase < 11 && Repeat DO WHILE 10 times

 * At coordinate INCREASE+5,05 display the work area number

 * and the name of the file open in the area

 @ increase+5,05 SAY STR(increase,2,0) + " " + ALIAS(increase)

 increase = increase + 1 && Add 1 to counter

ENDDO

SEE ALSO:
Function DBF().

ALLTRIM() SECTION 3

The dBASE® Language Handbook 625 Back to CONTENTS

ALLTRIM()

DIALECTS:
Clipper only.

SYNTAX:
ALLTRIM(<expC>)

RETURNS:
Character

DEFINITION:
Removes leading and trailing blanks from a character string.

ALLTRIM() is equivalent to LTRIM(TRIM(<expC>)).

RECOMMENDED USE:
Use ALLTRIM() to format character strings in reports and on-screen forms.

ALLTRIM() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions LTRIM() and TRIM().

ALTD() SECTION 3

The dBASE® Language Handbook 626 Back to CONTENTS

ALTD()

DIALECTS:
Clipper only.

SYNTAX:
ALTD([<expN>])

RETURNS:
Nothing

DEFINITION:
Activates or disables Clipper's debugger. (To use it, you must link DEBUG.OBJ to your

application.)

If used without an argument, ALTD() activates the debugger, preserving the current screen.

<expN> can have one of three values:

• 0—Pressing Alt-D has no effect.

• 1—Activates the debugger. After resuming program execution without the debugger, pressing Alt-D
reactivates it.

• 2—Activates the debugger and immediately presents a view of active private variables.

ALTD() ignores invalid parameters.

RECOMMENDED USE:
Use ALTD() to selectively activate or disable the debugger at different times or points in a

program.

Example 1—A programmer links the debugger (DEBUG.OBJ) into all new applications. The

debugger can then be activated or disabled using a command line parameter. If the user doesn't

specify a parameter, the debugger is disabled. For security reasons, only the programmer need

know that the debugger is available.

Note: Linking DEBUG.OBJ to your application inflates its size. After testing, relink your

application without it.

* ACCOUNTS.PRG

PARAMETERS dbug && Get command line parameter

IF PCOUNT() = 0 && If no parameters are passed,

 dbug = 0 && disable the debugger

ELSE

 dbug = VAL(dbug)

ENDIF

ALTD() SECTION 3

The dBASE® Language Handbook 627 Back to CONTENTS

ALTD(dbug)

* <program statements>

With a program called ACCOUNTS, entering

ACCOUNTS 0 or ACCOUNTS

disables the debugger.

Entering

ACCOUNTS 1

starts the application and immediately activates the debugger.

Entering

ACCOUNTS 2

starts the application and immediately presents the debugger's Private Variables screen.

SEE ALSO:
Command SET ESCAPE; function SETCANCEL().

AMPM() SECTION 3

The dBASE® Language Handbook 628 Back to CONTENTS

AMPM()

DIALECTS:
Clipper only.

SYNTAX:
AMPM(<expc>)

RETURNS:
Character

DEFINITION:
Converts a 24-hour time string in the form "HH:MM:SS" to its 12-hour equivalent, designating

"am" or "pm".

For example, AMPM("13:12:22") returns the following:

 1:12:22 pm

RECOMMENDED USE:
Use AMPM() in reports or on-screen forms to display the 12-hour time. (The system time and

default TIME() string is 24-hour time).

Example—A point of sale system displays the 12-hour time in the upper right corner of the main

menu. Using INKEY(), the clock ticks until the user presses a key.

* <@...SAY...GETs>

keypress = 0

DO WHILE keypress = 0

 @ 01,69 SAY AMPM(TIME()) && Display 12-hour time

 interval = TIME() && Save time in variable

 keypress = INKEY() && Check for KEYPRESS with INKEY()

 * Stay in DO WHILE until TIME()changes, updating screen each second

 DO WHILE keypress=0 .AND. interval=TIME()

 keypress = INKEY() && Check for KEYPRESS again

 ENDDO

ENDDO

* <CASE structure to process user selections>

AMPM() is in EXTEND.LIB on the system disk.

SEE ALSO:
Function TIME().

ASC() SECTION 3

The dBASE® Language Handbook 629 Back to CONTENTS

ASC()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ASC(<expC>)

RETURNS:
Numeric

DEFINITION:
Returns the ASCII value (0 through 127) of the leftmost character in <expC>.

For example, to return the ASCII value of "A", use:

? ASC("A")

65

The expression can also be a memory variable. This example returns the ASCII value of "R".

string = "Ronald"

? ASC(string)

82

ASC() is the inverse of the CHR() function.

RECOMMENDED USE:
Use ASC() to manipulate character strings, as in encrypting passwords.

Example—For security, a program converts a password PSW into its ASCII equivalent using

ASC().

PSW.PRG accepts PASS and stores its uppercase value in PSW. It then creates two variables, CTR

and SCTR, which act as counters for the DO WHILE. The DO WHILE processes the PSW string

once for each character it contains. The program then creates ASCODE, a character variable

containing a number of spaces equal to twice the length of PSW.

The first line after the DO WHILE contains four functions: SUBSTR, ASC, STR, and STUFF.

They execute from right to left. SUBSTR() evaluates PSW one character at a time, from left to

right, starting at position CTR. As CTR increases, ASC() converts each character to an ASCII

value. STR() converts each numeric ASCII value into a character string of digits. STUFF() then

inserts each ASCII value into the ASCODE string, building it from left to right as SCTR increases.

ASC() SECTION 3

The dBASE® Language Handbook 630 Back to CONTENTS

* PSW.PRG

* Accepts PSW, returns ASCODE. This could also be used like a

* Clipper, dBASE IV, FoxBASE+, or Quicksilver user defined function

* FUNCTION psw && Remove asterisk for Clipper, Quicksilver UDFs.

PARAMETERS pass

PRIVATE ascode,ctr,psw,sctr

psw = UPPER(pass)

STORE 1 TO ctr,sctr

ascode = SPACE(LEN(psw)*2)

DO WHILE ctr <= (LEN(psw))

 ascode = STUFF(ascode,sctr,2,STR(ASC(SUBSTR(psw,ctr,1)),2,0))

 ctr = ctr + 1

 sctr = sctr + 2

ENDDO

* RETURN ascode && Remove asterisk for user defined functions.

To convert the password "Samuel" using PSW.PRG as a procedure, enter:

. DO psw WITH "Samuel"

 836577856976

To convert "Samuel" using PSW as a Clipper, dBASE IV, FoxBASE+, or Quicksilver user defined

function, enter:

? psw("Samuel")

By examining ASCODE after each iteration of the DO WHILE, you can see the string being built

from left to right. The letters that have been converted are at the right.

83 S

8365 SA

836577 SAM

83657785 SAMU

8365778569 SAMUE

836577856976 SAMUEL

You can reverse this process using CHR(), the function that converts ASCII values to characters.

SEE ALSO:
Functions CHR(), IIF(), LEN(), and SUBSTR().

ASCAN() SECTION 3

The dBASE® Language Handbook 631 Back to CONTENTS

ASCAN()

DIALECTS:
Clipper only.

SYNTAX:
ASCAN(<expC>,<exp>[,<expN1> [,<expN2]])

RETURNS:
Numeric

DEFINITION:
Searches an array for an expression <exp>. If an element matches, ASCAN() returns its number.

Otherwise, it returns zero. By default, ASCAN() searches all elements. Two optional numeric

arguments <expN1> and <expN2> contain the starting and ending elements in a range.

RECOMMENDED USE:
Use ASCAN() to do quick array lookups.

Example—An array in a library application contains book reference numbers. It has 400 elements.

DECLARE bookref[400]

* <program code to load data into the array>

element = ASCAN(bookref,"A383AB.33")

? element

222

To search only elements 100 to 200, use the optional numeric arguments:

element = ASCAN(bookref,"ZZ3333",100,200)

 ? element

 0

Reference number ZZ3333 was not found.

ASCAN() is in EXTEND.LIB on the system disk.

SEE ALSO:
Command DECLARE; functions ACHOICE(), ACOPY(), ADEL(), ADIR(), ASORT().

ASIN() SECTION 3

The dBASE® Language Handbook 632 Back to CONTENTS

ASIN()

DIALECTS:
dBASE IV only.

SYNTAX:
ASIN(<expN>)

RETURNS:
Floating point

DEFINITION:
Computes the arcsine (inverse sine) of <expN>.

<expN> is a number in the range -1.0 to 1.0.

ASIN() returns a floating point number (an angle in radians) in the range -1.57079 to 1.57079 (-

pi/2 to pi/2) radians.

The SET DECIMALS and SET PRECISION commands determine numeric accuracy.

Use DTOR() and RTOD() to convert degrees to radians and vice versa. A radian is approximately

57.3 degrees.

RECOMMENDED USE:
ASIN() is used in engineering and scientific applications.

Example—An architectural engineering application expresses angles in radians. The sine of angle

A is 0.50. By taking its ASIN(), the program determines A in radians to be .52.

m_asin = ASIN(.50)

.52

SEE ALSO:
Functions ACOS(), ATAN(), ATN2(), COS(), SIN(), and TAN().

ASORT() SECTION 3

The dBASE® Language Handbook 633 Back to CONTENTS

ASORT()

DIALECTS:
Clipper only.

SYNTAX:
ASORT(<array>,[,<expN1>[,<expN2>]])

RETURNS:
Nothing

DEFINITION:
Sorts an array in ascending order. All elements must be the same data type.

<array> is the array name. <expN1> is the element at which to begin sorting. <expN2> is the

number of elements to sort.

DEFAULT:
If you do not specify <expN1>, ASORT() begins with element 1. If you do not specify <expN2>,

it sorts from <expN1> through the end of the array.

RECOMMENDED USE:
Use ASORT() to present arrays in sorted order. This is useful when displaying lists, menu items,

or reports.

Example—A file maintenance program displays sorted directory lists. The program first uses

ADIR() to load directory information into array MDIR. ASORT() then sorts MDIR.

DECLARE mdir[ADIR("*.DBF")]

ADIR("*.DBF",mdir)

ASORT(mdir)

This sorts the entire MDIR array.

To sort MDIR from element 10 on, enter:

ASORT(mdir,10)

To sort from element 10 through element 14, enter

ASORT(mdir,10,5)

The sort includes the first element specified.

ASORT() SECTION 3

The dBASE® Language Handbook 634 Back to CONTENTS

ASORT() is in EXTEND.LIB on the system disk.

SEE ALSO:
Commands DECLARE and FOR...NEXT; functions ACHOICE(), ACOPY(), ADEL(), AFILL(),

AINS(), and ASCAN().

AT() SECTION 3

The dBASE® Language Handbook 635 Back to CONTENTS

AT()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:

AT(<expC1>,<expC2>)

RETURNS:
Numeric

DEFINITION:
Searches for an occurrence of one character string within another and returns the position at which

it starts. If <expC2> does not contain <expC1>, AT() returns 0.

<expC1> is called a substring of <expC2>.

RECOMMENDED USE:
AT() searches for substrings.

Example 1—A bookkeeper searches a payroll file for information on employee Paula Weiss. He

LOCATEs the record, then executes AT() to find the word "commission" in field PAYTYPE.

The bookkeeper specifies "commission" as AT's first parameter and the field name as the second:

 . USE sales

 . LOCATE FOR lname = "Weiss"

 . ? AT("commission",PAYTYPE)

7

The word "commission" begins at the seventh position in the PAYTYPE field. Displaying the

entire field shows that Paula Weiss also earns a salary.

 . ? PAYTYPE

 Earns commissions, plus salary

In more complex applications, other functions can use information provided by AT().

Programmers commonly use it in applications requiring substring replacement via the STUFF

function.

Example 2—A reporting program lets users define printer attributes within blocks of text. Using

predefined delimiters, the user can specify where boldface blocks begin and end. To begin

AT() SECTION 3

The dBASE® Language Handbook 636 Back to CONTENTS

boldface, the user inserts a left arrow (<). To end it, he or she inserts a right arrow (>). The user

may turn boldface on and off only once in a line.

The memory variables BOLDON and BOLDOFF contain printer control codes. FRM1 contains

the first line of a report. (You could increment FRM<n> using macro substitution (&) within a DO

WHILE loop to pass an entire report, a line at a time).

First, the AT() function searches FRM1 for a left delimiter (<). If it finds one (AT() greater than

0), STUFF inserts BOLDON at the AT() position and stores the resulting string in ILINE

("intermediate line").

The next line searches ILINE for a right delimiter (>). If it finds one, STUFF inserts BOLDOFF

at the AT() position and stores the resulting string in PLINE ("print line").

If AT() does not find either delimiter, FRM1 is simply stored in PLINE and printed.

boldon = CHR(27)+CHR(69) && Epson LX/FX setup codes.

boldoff = CHR(27)+CHR(70)

frm1 = "This year's sales were <more than 25% higher> than last year's."

iline=IIF(AT("<",frm1)>0,STUFF(frm1,AT("<",frm1),1,[&boldon]),frm1)

pline=IIF(AT(">",iline)>0,STUFF(iline,AT(">",iline),1,[&boldoff]),iline)

SET PRINT on

? pline

?

SET PRINT off

When run, this program produces the following output:

This year's sales were more than 25% higher than last year's.

SEE ALSO:
Functions IIF() and STUFF().

ATAN() SECTION 3

The dBASE® Language Handbook 637 Back to CONTENTS

ATAN()

DIALECTS:
dBASE IV only.

SYNTAX:
ATAN(<expN>)

RETURNS:
Floating point

DEFINITION:
Computes the arctangent (inverse tangent) of <expN>, where <expN> is a floating point number.

ATAN() returns a floating point number (an angle in radians) in the range -1.57079 to 1.57079 (-

pi/2 to pi/2) radians.

The SET DECIMALS and SET PRECISION commands determine the numeric accuracy

displayed.

Use DTOR() and RTOD() to convert degrees to radians and vice versa. A radian is approximately

57.3 degrees.

RECOMMENDED USE:
ATAN() is a trigonometric function used in engineering and scientific applications.

Example—An aircraft design program expresses angles in radians. The tangent of angle A is

2.5722. By taking its ATAN(), the program determines A in radians to be 1.2000.

m_atan = ATAN(2.5722)

 1.2000

SEE ALSO:
Functions ACOS(), ASIN(), ATN2(), COS(), SIN(), and TAN().

ATN2() SECTION 3

The dBASE® Language Handbook 638 Back to CONTENTS

ATN2()

DIALECTS:
dBASE IV only.

SYNTAX:
ATN2(<expN1>,<expN2>)

RETURNS:
Floating point

DEFINITION:
Computes the arctangent value from a known cosine and sine. ATN2() is equivalent to

ATAN(sine/cosine).

ATN2() returns a floating point number in radians, in the range -3.14159 to +3.14159.

<expN1> is the cosine and <expN2> is the sine of an angle.

The SET DECIMALS command determines numeric accuracy displayed.

Use DTOR() and RTOD() to convert degrees to radians and vice versa. A radian is approximately

57.3 degrees.

RECOMMENDED USE:
ATN2() is used in engineering and scientific applications. Use it instead of ATAN() to prevent

divide by zero errors when using SIN() and COS() values directly.

Example—A scientist plotting a spacecraft's trajectory uses the arctangent in several

computations. As the scientist plots a return trip, a trigonometric function causes an execution

error:

SET DECIMALS TO 4

x = 2

y = PI()

? ATAN(COS(x)/SIN(y))

Execution error on ATAN()

Realizing that SIN(y) was 0, causing a "divide by zero" condition, the scientist replaces ATAN()

with ATN2().

? ATN2(COS(x),SIN(y))

 -1.5708

ATN2() SECTION 3

The dBASE® Language Handbook 639 Back to CONTENTS

SEE ALSO:
Functions ACOS(), ASIN(), ATAN(), COS(), SIN(), and TAN().

BAR() SECTION 3

The dBASE® Language Handbook 640 Back to CONTENTS

BAR()

DIALECTS:
dBASE IV only.

SYNTAX:
BAR()

RETURNS:
Numeric

DEFINITION:
Returns the number of the BAR or line selected from an active BAR or POPUP menu.

BAR() returns 0 if no menu is active.

RECOMMENDED USE:
Use BAR() to get the user's menu selection. You can then execute a CASE or use the result in

another function.

Example—A sales management program uses popup bar menus. When the user selects an item,

the program uses the BAR() number to decide which CASE to execute. Each CASE executes a

subroutine matching the menu selection.

DEFINE POPUP acct FROM 01,01 TO 15,50

DEFINE BAR 1 OF acct PROMPT "Browse Accounts"

DEFINE BAR 2 OF acct PROMPT "Edit Accounts"

DEFINE BAR 3 OF acct PROMPT "Delete Accounts"

ON SELECTION POPUP acct DO mcase && Execute PROCEDURE mcase.

ACTIVATE POPUP acct

PROCEDURE mcase

mbar = BAR() && Store BAR() in a variable, instead

DO CASE && of using it in every

CASE. This

 CASE mbar = 1 && improves execution speed since

 * <do browse program> && it evaluates BAR() only once

 CASE mbar = 2

 * <do edit program>

 CASE mbar = 3

 * <delete accounts program>

ENDCASE

This usage is comparable to the Clipper/FoxBASE+ @...PROMPT...MENU TO structure.

BAR() SECTION 3

The dBASE® Language Handbook 641 Back to CONTENTS

LIMITS/WARNINGS:
BAR() is not valid from the dot prompt since no BAR or POPUP can be active.

SEE ALSO:
Commands ACTIVATE POPUP, DEFINE BAR, and DEFINE POPUP; functions MENU(),

PAD(), and PROMPT().

BITSET() SECTION 3

The dBASE® Language Handbook 642 Back to CONTENTS

BITSET()

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
BITSET(<expN1>,<expN2>)

RETURNS:
Logical

DEFINITION:
Determines whether the specified bit <expN2> in a number's (<expN1>) binary form is on. If so,

BITSET() returns true.

BITSET() accepts a numeric argument and returns true (.T.) or false (.F.). The binary form of a

number consists of eight 0's and 1's (bits), where 0 means off and 1 means on.

<expN2> is a decimal integer between 0 and 7 inclusive. Bit 0 is the rightmost bit, bit 7 the

leftmost.

RECOMMENDED USE:
Use BITSET() to evaluate binary values returned by the IN() function when getting data from

external devices (through a system port). Example devices are mouse interface cards,

manufacturing control systems, or environmental monitors.

Example—Aaron Alarm Company installs alarms in warehouses. The company connects the

alarms, through a system port, to PCs that monitor activity and bill customers accordingly. When

an alarm sounds, a 2 (binary 00000010) is sent through input port 4. IN() reads the port. BITSET()

checks the binary value and determines that bit 1 (second from the right) is on. After the alarm

sounds and the log is updated, the OUT command clears the port.

DO WHILE .t.

 IF BITSET(IN(4),1)

 * ALARM SOUNDS

 DO alarmlog

 OUT 4,0

 ENDIF

ENDDO

SEE ALSO:
Commands DOSINT and OUT; function IN().

BOF() SECTION 3

The dBASE® Language Handbook 643 Back to CONTENTS

BOF()

DIALECTS:

Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
BOF()

RETURNS:
Logical

DEFINITION:
Returns logical .T. when the record pointer of the active database is at the beginning-of-file.

Beginning-of-file occurs when: 1) you try to move the pointer ahead of the first logical record in

a file or 2) the file contains no records.

Even when BOF() is .T., you can access the first logical record in the file.

BOF() returns .F. when no database is in use. This can be misleading when debugging a program,

since you might think that a database is open. To check, use DBF() to test the filename's length. If

there is no open file, DBF() returns a null string (length 0).

IIF(LEN(DBF()) = 0,"NO FILE IN USE",DBF())

Note: Clipper's USED() function indicates whether a file is open. It returns true (.T.) if a file is in

use.

RECOMMENDED USE:
File handling routines that move through records in reverse order use BOF() to locate the lower

boundary.

Example—A display program lets users move backward through records by pressing "B". The

BOF() function monitors the lower boundary of the file.

* <Display, edit records, GET user response, F, B, or E>

DO CASE && Begin CASE structure

 CASE maction = "B" .AND. .NOT. BOF()

 SKIP -1

 * <more cases>

BOF() SECTION 3

The dBASE® Language Handbook 644 Back to CONTENTS

VARIATIONS:
Clipper: You can check an open file in another work area by using BOF() as the argument of the

alias operator, as follows:

? <alias>->(BOF())

dBASE IV: You can check an open file in another work area by adding an alias name to BOF(),

in the form BOF([<expC>]).

FoxBASE+: You can check an open file in another work area by adding a numeric parameter to

BOF(), in the form BOF([<expN>]).

<expN> is the work area number.

SEE ALSO:
Function EOF().

CALL() SECTION 3

The dBASE® Language Handbook 645 Back to CONTENTS

CALL()

DIALECTS:
dBASE IV only.

SYNTAX:
CALL("<module name>",<exp1>[,<exp2>,<exp3>,<exp4>,<exp5>,

 <exp6>,<exp7>])

Note: The quotation marks around the module name are literals.

RETURNS:
<exp1>'s type determines the return value's type.

DEFINITION:
Executes a binary routine (extension.bin, and returns the first parameter's value. <module name>

is a .bin routine already loaded into dBASE IV's bin table.

The CALL() function lets you execute BIN routines in places where you cannot use the CALL

command. Typical examples are within the report generator, during data entry, and in commands

such as SET FILTER and COUNT FOR.

You must first LOAD the routines into dBASE IV's BIN table.

OPTIONS:
You may pass the routine up to seven parameters (<exp1>-<exp7>). One is mandatory for a return

value. The BIN routine may modify the parameters.

RECOMMENDED USE:
CALL() lets you use a BIN routine almost like a user defined function. A single line can replace a

short program in dBASE III PLUS.

Example 1—A routine PROPER.BIN capitalizes the first letter of each word in field LNAME. In

dBASE III PLUS, you must use the CALL command in a short program. The CALL() function

does the same operation in one line.

* dBASE III PLUS example

GO TOP

DO WHILE .NOT. EOF()

 mlname=lname

 CALL proper WITH mlname

 REPLACE lname WITH mlname

 SKIP 1

ENDDO

CALL() SECTION 3

The dBASE® Language Handbook 646 Back to CONTENTS

* dBASE IV example

REPLACE ALL lname WITH CALL("proper",lname)

To REPLACE field LNAME2 while not altering LNAME, put parentheses around LNAME,

thereby passing the value of the field instead of the field itself:

REPLACE ALL lname2 WITH CALL("proper",(lname))

LIMITS/WARNINGS:
If you do not want the first parameter passed to be changed, enclose it in parentheses. This passes

it by value, creating a temporary area for the return value as well.

dBASE IV can evaluate only seven expressions at one time. As the module's name is treated as an

expression, CALL() can pass it only six literal expressions. Seven parameters (besides the name)

may be passed, but at least one must be a field or memory variable.

SEE ALSO:
Commands LOAD and CALL.

CDOW() SECTION 3

The dBASE® Language Handbook 647 Back to CONTENTS

CDOW()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CDOW(<expD>)

RETURNS:
Character string.

DEFINITION:
Accepts the name of the day of the week (e.g., "Monday"). Accepts any date expression (memory

variable, field, or function that returns a date). Sorry, despite the name, it does not display stock

market averages.

RECOMMENDED USE:
Use CDOW() to include days of the week in letters and reports.

Example—An accounting program produces a balance sheet with the day of the week printed at

the top. CDOW() converts the date memory variable RDATE to the correct day.

rdate=CTOD('04/05/88') && CTOD() converts characters to dates

? "Report Day: " + CDOW(rdate)

* <report statements>

This part of the report would print as follows:

 Report Day: Tuesday

In dBASE IV, you can replace CTOD() with curly braces as follows:

rdate={04/05/88}

SEE ALSO:
Functions DAY() and DOW().

CEIL() SECTION 3

The dBASE® Language Handbook 648 Back to CONTENTS

CEIL()

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
CEIL(<expN>)

CEILING(<expN>) - dBASE IV only

RETURNS:
Number

DEFINITION:
Returns the smallest integer greater than or equal to its argument.

RECOMMENDED USE:
CEIL() converts a number to the next higher integer. For example, it converts 1.01 to 2.00 as

shown:

? CEIL(1.01)

2.00

CEIL() converts a negative number by truncating the fractional part:

? CEIL(-2.05)

-2.00

Example—A parking lot concession charges $3.00 for the first hour and $2 for each additional

hour, or portion thereof. A program uses CEIL() to compute charges. A customer parks for 3.25

hours. He pays $3.00 for the first hour, plus $6.00 for the additional 2.25 hours.

parkhours = 3.25

IF parkhours > 1

 pay = 3.00 + (CEIL(parkhours-1) * 2.00)

ELSE

 pay = 3.00

ENDIF

? "Please pay: $" + STR(pay,5,2)

SEE ALSO:
Functions FLOOR(), INT(), and ROUND().

CENTER() SECTION 3

The dBASE® Language Handbook 649 Back to CONTENTS

CENTER()

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
CENTER(<expC>,<expN>)

RETURNS:
Character string.

DEFINITION:
Centers <expC> within a line <expN> characters long by adding spaces at the beginning and end.

If the expression is longer than a line, CENTER() truncates it.

RECOMMENDED USE:
CENTER() eliminates the need to count spaces to center text.

Example—The CENTER() function simplifies report formatting. A company annual report is

printed with centered headings.

CENTER() centers "SenTech Corp. 1988 Annual Report" on a 65-character line:

@ ROW(),0 SAY CENTER("SenTech Corp. 1988 Annual Report",65)

@ ROW(),05 SAY "It was the best of times, it was the worst of times"

The heading prints as follows:

 SenTech Corp. 1988 Annual Report

 It was the best of times, it was the worst of times

VARIATIONS:
Clipper, dBASE IV: You can simulate CENTER() with a brief user defined function that pads a

string with spaces.

Note: The function is unnecessary with dBASE IV's @...SAY command, since it has PICTUREs,

FUNCTIONs, and templates for aligning and centering text. See @...SAY for details.

The calling syntax is the same as the dBXL/Quicksilver CENTER(). The function accepts two

parameters, the string to center (STNG) and the length in which to center it (MLEN). Subtracting

the length of STNG from MLEN and dividing by two produces the starting position of the centered

string. STUFF() then inserts STNG into a blank string with length MLEN at the computed starting

position.

CENTER() SECTION 3

The dBASE® Language Handbook 650 Back to CONTENTS

If the string is too long, SUBSTR() truncates it. This differs slightly from the the

dBXL/Quicksilver implementation which drops characters at the beginning and end. However,

both implementations produce equally useless results if the input is invalid.

FUNCTION center

* Syntax: CENTER(<expC>,<expN>)

* Return <expC> centered in a line with a length <expN>

PARAMETERS stng,mlen

RETURN SUBSTR(STUFF(SPACE(mlen),(mlen-(LEN(stng)))/2,len(stng),stng),1,mlen)

Note: STUFF() is in EXTEND.LIB on the Clipper system disk.

dBASE III PLUS: The lack of user defined functions means that you must center text by

manipulating print coordinates. To center a string MSTRING on an 80-character line, subtract its

length from the line length and divide by 2. Use the quotient as the column coordinate:

@ ROW(),(80-LEN(MSTRING))/2 SAY mstring

FoxBASE+: Because you cannot put a user defined function in an @...SAY statement, you must

modify CENTER() to

include the @...SAY.

* FCENTER.PRG

* Syntax: CENTER(<expN1>,<expN2>,<expC>,<expN3>). Prints <expC> centered

* in a line with length <expN3>, starting at coordinates <expN1,expN1>

PARAMETERS c1,c2,stng,mlen

*

@ c1,c2 SAY SUBSTR(STUFF(SPACE(mlen),(mlen-

(LEN(stng)))/2,len(stng),stng),1,mlen)

RETURN ""

The following command centers text within 70 columns at line 5:

? FCENTER(5,0,"SenTech Corp. 1988 Annual Report",70)

SEE ALSO:
Command @...SAY.

CHANGE() SECTION 3

The dBASE® Language Handbook 651 Back to CONTENTS

CHANGE()

DIALECTS:
dBASE IV only.

SYNTAX:
CHANGE()

RETURNS:
Logical

DEFINITION:
Checks the current record to determine whether it has been changed since it was opened.

CHANGE() returns true (.T.) if the record has changed.

In preparing a multiuser application, you must first issue the CONVERT command to add a hidden

field _DBASELOCK to the database structures. dBASE IV uses it to hold information about record

and file locks. CHANGE() checks the first two bytes of _DBASELOCK to determine whether a

record was CHANGEd. You can use the LKSYS() function to determine who has applied a lock,

and the date and time it was applied.

RECOMMENDED USE:
Use CHANGE() in multiuser applications that employ explicit locks. When you copy a record into

memory variables for editing or viewing, another user may change the record before you copy the

variables back. Since your changes are based on an old image of the record, they are probably

invalid.

You can solve this problem by locking the record with RLOCK(); however, it makes your record

unavailable during editing. Alternatively, you can copy the record into memory variables and leave

it unlocked during editing. In this way, the database file remains current. Before you copy the

memory variables back into the record, use CHANGE() to determine whether it has changed. If it

has, you can view the changes and determine whether yours are valid.

Example—An inventory program in an automobile parts store shows one muffler remaining in

stock. The display is static, that is, it doesn't update automatically to reflect changes in quantity.

When the clerk is ready to order, the program uses CHANGE() to check whether the record has

changed. If the record changes, the program LOOPs, rereads the record, and redisplays it. If it

hasn't changed, the program tries to lock it with RLOCK(). If the lock fails, the program terminates.

If the lock succeeds, the program checks QUANTITY to see if it can fill the order (this example

assumes the quantity ordered is always 1). If the QUANTITY is sufficient, the program fills the

order and subtracts 1 from QUANTITY. This process prevents two clerks from selling the same

muffler at the same time.

CHANGE() SECTION 3

The dBASE® Language Handbook 652 Back to CONTENTS

Structure for database: D:\DBASE\PARTS.DBF

Number of data records: 2

Date of last update : 08/14/88

Field Field Name Type Width Dec Index

 1 PARTNO Character 4 Y

 2 DESCRIP Character 20 N

 3 QUANTITY Numeric 3 N

** Total ** 28

(_DBASELOCK is hidden).

CLEAR

SET TALK OFF

SET REPROCESS TO 100 && Retry RLOCK() 100 times if necessary.

USE parts ORDER partdex

DO WHILE .t.

 CLEAR

 mpartno = SPACE(4)

 @ 10,10 SAY "Part number: " GET mpartno PICTURE "!!!!"

 READ

 SEEK mpartno

 mdescrip = descrip

 mqty = quantity

 @ 12,10 SAY "Description: " + mdescrip

 @ 14,10 SAY "Quantity: " + STR(mqty,3,0)

 morder = .f.

 @ 16,10 SAY "Do you want to order? " GET morder PICTURE "Y"

 READ

 IF .NOT. morder

 RETURN

 ENDIF

 IF CHANGE() && If record has changed, display message and LOOP.

 WAIT "Item information has changed. Press a key to reenter."

 LOOP

 ENDIF

IF .NOT. RLOCK()

 WAIT "Unable to lock record. Press a key to cancel this attempt. "

 ELSE

 IF quantity > 0

 REPLACE quantity WITH quantity - 1

 WAIT "Transaction complete. Press a key to continue."

 * <DO subroutines to print order, invoices, etc.>

 ELSE

 WAIT "Insufficient quantity for order. Press a key to continue"

 ENDIF

 ENDIF

ENDDO

CHANGE() SECTION 3

The dBASE® Language Handbook 653 Back to CONTENTS

LIMITS/WARNINGS:
You cannot view _DBASELOCK directly. Instead, you must use CHANGE() and LKSYS() to

return its value.

SEE ALSO:
Functions CHANGE(), LKSYS(), LOCK(), and RLOCK().

CHR() SECTION 3

The dBASE® Language Handbook 654 Back to CONTENTS

CHR()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CHR(<expN>)

RETURNS:
Character

DEFINITION:
Converts a number to a character in the IBM Extended Character Set. <expN> is an integer

between 1 and 255, inclusive.

CHR() is the inverse of ASC().

RECOMMENDED USE:
CHR() lets you display and print non-keyboard characters. Examples of non-keyboard characters

include:

* Ring the system bell

? CHR(7)

* Eject a page. This has the same effect as EJECT

SET PRINT on

? CHR(12)

Many printers use CHR() combinations to set attributes. For example, to put an Epson FX-85 in

the elite mode, you would issue the commands:

SET PRINT on

? CHR(27) + CHR(77)

You can also use CHR() to simply display non-keyboard ASCII characters above decimal 127.

They include foreign and graphics characters.

LIMITS/WARNINGS:
You cannot send a null character CHR(0) to any device; however, some printers can interpret

CHR(128) as CHR(0) by clearing bit 7.

VARIATIONS:
CHR(0) has a length of 1 in Clipper and dBASE IV. It has a length of 0 in dBASE III PLUS,

dBXL, FoxBASE+, and Quicksilver.

CHR() SECTION 3

The dBASE® Language Handbook 655 Back to CONTENTS

SEE ALSO:
Function ASC().

CMONTH() SECTION 3

The dBASE® Language Handbook 656 Back to CONTENTS

CMONTH()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CMONTH(<expD>)

RETURNS:
Character string

DEFINITION:
Accepts a date expression (memory variable, field, or function that returns a date) and returns the

name of the month (e.g., "July").

For example, to return the name of the current month, use the system date function DATE() as a

parameter:

? CMONTH(DATE())

 November

RECOMMENDED USE:
Use CMONTH() to include the name of the month in letters and reports.

Example—A correspondence application prints business letters that require the date written out.

CMONTH() prints the month, DAY() prints the day of the month. YEAR() prints the year. The

STR() function converts the numeric DAY and YEAR values to character strings for concatenation

with the CMONTH() string. Because the STR() function must accommodate a 2-digit number, a

single-digit day of the month leaves a leading blank when converted to a string. LTRIM() strips

the blank.

rd=CTOD('05/14/88') && CTOD() converts characters to dates.

* rd = {05/14/88} && dBASE IV syntax with date delimiters

?

? CMONTH(rd) + " " + LTRIM(STR(DAY(rd),2,0)) + ", " + STR(YEAR(rd),4,0)

* <more letter>

This code fragment prints the date for 05/14/88 as:

 May 14, 1988

SEE ALSO:
Functions CDOW(), CTOD(), DATE(), DOW(), MONTH(), and YEAR().

COL() SECTION 3

The dBASE® Language Handbook 657 Back to CONTENTS

COL()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
COL()

RETURNS:
Numeric

DEFINITION:
Returns the column coordinate of the cursor's position. Coordinates range from 0 to 79 (left to

right) on a standard screen.

For example, you can determine the cursor's position after displaying a string (in a program) as

follows:

*
? "COL() returns the cursor's position"

?? COL()

35

RECOMMENDED USE:
COL() lets you place screen output relative to the current cursor position. This is useful for

designing screens with multiple @...SAY...GETs on a single line.

Example—A screen report generator displays several columns of data. It uses the COL() function

to put space between them.

CLEAR

@ 5,COL() SAY "SSN: " GET ssn

@ 5,COL()+2 SAY "Employer: " GET employer

@ 5,COL()+2 SAY "No. of Dependents: " GET depends PICTURE "#"

This screen would appear as follows:

SSN: Employer: No. of Dependents:

SEE ALSO:
Functions FCOL(), FROW(), PCOL(), PROW(), and ROW().

COMPLETED() SECTION 3

The dBASE® Language Handbook 658 Back to CONTENTS

COMPLETED()

DIALECTS:
dBASE IV only.

SYNTAX:
COMPLETED()

RETURNS:
Logical

DEFINITION:
Indicates whether a transaction ended.

After you issue BEGIN TRANSACTION, COMPLETED() returns false (.F.) until you issue END

TRANSACTION.

DEFAULT:
False

RECOMMENDED USE:
Use COMPLETED() to detect the end of a successful transaction.

Example—An accounting system updates a main ledger file and an invoice file. When the

transaction is completed, COMPLETED() returns true.

ON error DO recvy

BEGIN TRANSACTION

 USE transact INDEX transdex

 REPLACE ALL commis WITH sales - (draw*pct)

END TRANSACTION

IF COMPLETED()

 @ 24,03 SAY "Transaction successfully completed"

ELSE

 @ 24,03 SAY "Transaction unsuccessful"

 ROLLBACK

ENDIF

SEE ALSO:
Commands BEGIN TRANSACTION, END TRANSACTION, RESET, and ROLLBACK;

functions ISMARKED() and ROLLBACK().

COS() SECTION 3

The dBASE® Language Handbook 659 Back to CONTENTS

COS()

DIALECTS:
dBASE IV only.

SYNTAX:
COS(<expN>)

RETURNS:
Floating point

DEFINITION:
Computes the cosine of angle <expN> in radians.

The SET DECIMALS and SET PRECISION commands determine numeric accuracy.

Use DTOR() and RTOD() to convert degrees to radians and vice versa. A radian is approximately

57.3 degrees.

RECOMMENDED USE:
COS() is a trigonometric function used in engineering and scientific applications.

Example—An architectural application expresses angles in radians. For example, if angle A is

.3750 radians, its COS() is 0.9305.

mcos = COS(.3750)

.9305

SEE ALSO:
Functions ACOS(), ASIN(), ATAN(), ATN2(), SIN(), and TAN().

CTOD() SECTION 3

The dBASE® Language Handbook 660 Back to CONTENTS

CTOD()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
CTOD(<expC>)

RETURNS:
Date

DEFINITION:
Converts a character expression to a date expression. <expC> is a literal character string or

variable, by default in the form MM/DD/YY. (You can change forms with the SET DATE and

SET CENTURY commands). CTOD() converts a blank character string into a blank date variable.

CTOD() is the inverse of DTOC() which converts date expressions to character.

RECOMMENDED USE:
Clipper, dBASE III PLUS, dBXL, FoxBASE+, and Quicksilver do not let you create a date type

string or variable by simply typing one. They derive all dates from date functions or date fields.

dBASE IV, on the other hand, lets you use curly braces to indicate date type strings.

CTOD() creates date expressions from character string input. An example is

STORE CTOD("09/10/88") TO nextraise

Without CTOD(), dBASE treats "09/10/88" as a character string.

Example—A furniture store invoicing program requires the user to enter both invoice and ship

dates. The program then stores the dates in date fields in the database. To GET the invoice and

ship dates in date type variables (to allow validation), initialize them with the CTOD() function.

 * INV_GET.PRG

minv_date = CTOD("01/12/87")

 mshp_date = CTOD("01/19/87")

 * <initialize more variables>

 @ 03,01 SAY "Enter invoice date: " GET minv_date

 @ 04,01 SAY "Enter ship date: " GET mshp_date

 * <more gets>

READ

Note that MSHP_DATE is initialized to be seven days later than MINV_DATE. This is the default

time between invoicing and shipping.

CTOD() SECTION 3

The dBASE® Language Handbook 661 Back to CONTENTS

VARIATIONS:
dBASE IV: Curly braces act as date delimiters, letting you create date type variables and strings

without CTOD(). For example,

mshp_date = CTOD("01/19/87")

becomes

mshp_date = {01/19/87}

SEE ALSO:
Commands SET DATE and SET CENTURY; functions DTOC() and DTOS().

CURDIR() SECTION 3

The dBASE® Language Handbook 662 Back to CONTENTS

CURDIR()

DIALECTS:
Clipper only.

SYNTAX:
CURDIR([<expC>])

RETURNS:
Character

DEFINITION:
Returns the name of the current DOS directory on a specified disk drive. CURDIR() returns a null

string if the directory is the root.

CURDIR() also returns a null string if you specify an invalid drive or a drive that is not ready.

<expC> is the drive's letter. If you do not specify it, CURDIR() defaults to the current drive. As

CURDIR() only looks at the first character of <expC>, you can put a colon or other text after the

drive letter.

CURDIR() ignores the current DEFAULT and PATH settings.

RECOMMENDED USE:
Use CURDIR() to verify the setup of disk drives and paths in application installation programs.

Example—A programmer develops financial programs for use in his company. He includes an

installation procedure to verify that the user has created the necessary work directory.

*
IF .NOT. CURDIR() = "\STATS" && Check the current directory

 ? "Invalid directory. "

 ? "You must first make a directory (MD) on D: called \STATS"

 QUIT

ENDIF

The program also APPENDs data from network drives I and H. It first checks the names of the

current directories on those drives.

? "Current directory on I: is " + CURDIR("I")

* Note that CURDIR() ignores characters after the drive letter.

? "Current directory on H: is " + CURDIR("H:")

 \S87

\M\DEPT\STATS

CURDIR() SECTION 3

The dBASE® Language Handbook 663 Back to CONTENTS

SEE ALSO:
Commands SET DEFAULT and SET PATH.

CURWIN() SECTION 3

The dBASE® Language Handbook 664 Back to CONTENTS

CURWIN()

DIALECTS:
Quicksilver only.

SYNTAX:
CURWIN()

RETURNS:
Numeric

DEFINITION:
Returns a value from 0 to 99 representing the currently selected window area.

To make windowing functions and commands consistent (all starting with W), Quicksilver version

1.1 replaced CURWIN() with WSELECT().

SEE ALSO:
Commands WSELECT, WSET WINDOW, and WUSE; function WSELECT().

DATE() SECTION 3

The dBASE® Language Handbook 665 Back to CONTENTS

DATE()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DATE()

RETURNS:
Date

DEFINITION:
Returns the system date. Unless you change formats with the SET CENTURY or SET DATE

commands, DATE() uses the MM/DD/YY format.

The operating system controls the system date. No dBASE command can change it. You can

change it from the MS-DOS prompt by typing DATE <enter>.

RECOMMENDED USE:
In data entry, date input fields often default to the system date (i.e., "today's date"). This keeps

operators from having to constantly reenter the same value. To get the default, initialize fields with

the system date:

mdate = DATE()

@ 10,10 SAY "Enter today's date, or <enter> to accept: " GET mdate

Use DATE() to log transactions or updates to a database. For example, when a program generates

invoices, REPLACE DATE() into a field reserved for the transaction date.

LIMITS/WARNINGS:
Note that the SET DATE command changes only how the date is displayed. It does not change the

system date itself.

SEE ALSO:
Commands SET CENTURY and SET DATE; function TIME().

DAY() SECTION 3

The dBASE® Language Handbook 666 Back to CONTENTS

DAY()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DAY(<expD>)

RETURNS:
Numeric

DEFINITION:
Accepts a date expression and returns the day of the month as a number.

<expD> can be a memory variable, a field, or a function that returns a date.

For example, to return the DAY() of January 20, 1988, enter

. ? DAY(CTOD("01/20/88")

20

CTOD() converts "01/20/88" from character to date type.

RECOMMENDED USE:
Use DAY() to display dates such as "September 15, 1987."

For a detailed example, see function CMONTH(). Because DAY() returns a numeric value, it is

also useful for computing days elapsed.

SPECIAL NOTE:
dBASE IV lets you create a date literal without the CTOD() function. To do this, use braces around

a date string, as follows:

{01/20/88}

To return the DAY() of January 20, 1988, enter

? DAY({01/20/88})

SEE ALSO:
Functions CDOW(), CMONTH(), CTOD(), DATE(), DOW(), and DTOC().

DBEDIT() SECTION 3

The dBASE® Language Handbook 667 Back to CONTENTS

DBEDIT()

DIALECTS:
Clipper only.

SYNTAX:
DBEDIT([<expN1>[,<expN2>[,<expN3>[,<expN4>]]]][<array1>][,<expC>][,<array2>][,<array

3>]

 [,<array4>][,<array5>][,<array6>][,<array7>])

RETURNS:
Nothing

DEFINITION:
Allows full-screen, tabular editing of database records.

DBEDIT() supports all Clipper cursor movement keys. It accepts parameters for the size and

position of the editing window. A parameter specifies a user defined function that controls the

effects of keystrokes and cursor movements. A series of arrays holds PICTURE strings, column

headings, line drawing characters, and column footers. Elements in the arrays correspond by

number.

OPTIONS:
<expN1>...<expN4>

<expN1> is the top row of the editing window, <expN2> the leftmost column, <expN3> the

bottom row, and <expN4> the rightmost column. The window must be at least three columns wide

and four rows high. Fields wider than it are truncated.

<array1>

An array of character elements containing field names or expressions. It may contain field names

from multiple files. Specify ones from files in other work areas in the form "alias->field_name".

All specified fields must exist (no error checking occurs). Fields specified without an alias

designator are assumed to be in the current work area. Omitting <array1> defaults to all fields in

the current work area.

<expC>

A user defined function that controls the effects of keystrokes and cursor movements. Specify the

name inside quotation marks.

DBEDIT() SECTION 3

The dBASE® Language Handbook 668 Back to CONTENTS

DBEDIT() passes two parameters to the user defined function: MODE and COUNTER. The

function examines MODE and the value of LASTKEY(), then returns a value to DBEDIT()

indicating the action to take.

COUNTER indicates DBEDIT()'s position in the array.

The MODEs sent from DBEDIT() to the user defined function are:

0. DBEDIT() is idle, no keystrokes pending.

1. The user tried to move the cursor past the beginning of file.

2. The user tried to move the cursor past the end of file.

3. The database file is empty.

4. Value passed by LASTKEY().

The user defined function <expC> returns these values to DBEDIT():

0. Quit DBEDIT().

1. Continue DBEDIT (normal return).

2. Refresh the screen and continue DBEDIT().

Use KEYBOARD in the user defined function to return keystrokes to DBEDIT(). For example, to

advance the cursor after editing or adding a field, use KEYBOARD CHR(4). To move the cursor

back a space, use KEYBOARD CHR(13). (CHR(4) is Ctrl-E, CHR(13) is Ctrl-S).

<array2>

An array containing picture strings for formatting columns. Picture strings are templates or

functions (see the @ command for descriptions). You can also specify a character expression

instead of the array, displaying all columns with the same picture.

<array3>

An array containing column headings.

<array4>

An array of character elements for drawing the lines that separate headings from the field display

area. You can specify a character expression instead for use in all heading lines.

<array5>

An array of character elements for drawing the lines that separate columns. You can specify a

character expression instead for use in all column separators.

<array6>

DBEDIT() SECTION 3

The dBASE® Language Handbook 669 Back to CONTENTS

An array of character elements for drawing the lines that separate footings from the field display

area. You can specify a character expression instead for use in all footing separators.

<array7>

An array of character elements containing column footings. You can specify a character expression

instead for use in all column footings.

Note: You may omit any DBEDIT() option (opting for the default) by substituting a dummy

variable with a null value ("").

If you omit all options, DBEDIT() defaults to all fields in the current work area.

RECOMMENDED USE:
Use DBEDIT() in programs to provide a simple way to edit records in tabular form.

Example 1—A programmer chooses the simplest form of DBEDIT(). With no parameters, it

defaults to all fields in the current work area.

USE mail

DBEDIT()

Example 2—As a convenience, the programmer of a mailing list system lets users edit records in

a full-screen mode. Because the data is not sensitive, validation is not a major concern.

In this example, the calling program USEs the mail database. The programmer stores the field

names in the FNAME array. The programmer then uses DBEDIT() with a complete array list to

specify the window coordinates, pictures, headers, separator characters, and footers. The user

defined function KEYCTRL controls cursor movement, based on the MODE and COUNTER

parameters passed by DBEDIT().

CLEAR

USE mail

DECLARE fname[5],fpict[5],fheader[5],hedsep[5],;

 colsep[5],footsep[5], footer[5]

fname[1] = "NAME" && Fields from MAIL.DBF

fname[2] = "ADDRESS"

fname[3] = "CITY"

fname[4] = "STATE"

fname[5] = "AMOUNT"

*

fpict[1] = "@!" && Get valid pictures and functions

fpict[2] = "@A"

fpict[3] = "@A"

fpict[4] = "!!"

fpict[5] = "999,999,999.99"

*

fheader[1] = "Cust. Name" && Establish column headers

DBEDIT() SECTION 3

The dBASE® Language Handbook 670 Back to CONTENTS

fheader[2] = "Cust. Address"

fheader[3] = "City"

fheader[4] = "ST"

fheader[5] = "Amt"

*

hedsep[1] = CHR(205) && Horizontal double line character

hedsep[2] = CHR(205) && to separate header from column

hedsep[3] = CHR(205)

hedsep[4] = CHR(196) && Change to horizontal single line

hedsep[5] = CHR(196)

colsep[1] = CHR(179) && Vertical single line to separate columns

colsep[2] = CHR(179)

colsep[3] = CHR(179)

colsep[4] = CHR(179)

colsep[5] = CHR(179)

*

footsep[1] = CHR(196) && Horizontal single line to separate

footsep[2] = CHR(196) && column from footer

footsep[3] = CHR(196)

footsep[4] = CHR(196)

footsep[5] = "="

*

footer[1] = "Cust.Name" && Establish column footers

footer[2] = "Cust.Address"

footer[3] = "City"

footer[4] = "ST"

footer[5] = "Amt"

*

DBEDIT(2,0,23,60,fname,"keyctrl",fpict,fheader,hedsep,colsep,footsep,footer)

CLEAR

QUIT

FUNCTION keyctrl

PARAMETERS mode,counter

PRIVATE mfield

mfield = fname[counter] && STORE current field in a memory variable

DO CASE

 CASE mode = 0

 * User is not changing data. Display message and current record number

 @ 1,50 SAY "Not editing RECORD: " + LTRIM(STR(RECNO()))

 RETURN(1)

 CASE mode = 1

 @ 1,50 SAY "Beginning of File "

 RETURN(1)

 CASE mode = 2

 @ 1,50 SAY "End of File "

 RETURN(1)

 CASE mode = 3

 @ 1,50 SAY "No data in file. Add data? "

 * <routine to add data>

DBEDIT() SECTION 3

The dBASE® Language Handbook 671 Back to CONTENTS

 RETURN(2)

 CASE LASTKEY() = 13

 mrow = ROW()

 mcol = COL()

 @ 01,50 SAY " EDITING RECORD: " + LTRIM(STR(RECNO()))

 @ mrow, mcol GET &mfield && Edit current record.

 READ

 KEYBOARD CHR(4) && Move cursor by KEYBOARDing a character

 RETURN(1) && Continue DBEDIT()

 CASE LASTKEY() = 27

 RETURN(0) && User pressed ESC key, quit

 OTHERWISE

 RETURN(1)

ENDCASE

LIMITS/WARNINGS:
Be sure to specify valid parameters, as DBEDIT does not check them.

DBEDIT() is in EXTEND.LIB on the system disk.

SEE ALSO:
Commands @ (pictures and templates), BROWSE, and DECLARE; function MEMOEDIT().

DBF() SECTION 3

The dBASE® Language Handbook 672 Back to CONTENTS

DBF()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and

Quicksilver.

SYNTAX:
DBF()

RETURNS:
Numeric

DEFINITION:
Returns the full filename of an open database file in the current work area. For example, to

determine the name of the open database in work area 2, enter the following:

 . SELECT 2

 . ? DBF()

C:sales.dbf

DEFAULT:
Returns a null string if no database file is open in the selected work area.

RECOMMENDED USE:
Use DBF() in the interactive mode to recall the open database file name. You could also use LIST

or DISPLAY STATUS to list all open files.

VARIATIONS:
Clipper: DBF() is in EXTEND.LIB on the system disk. Note: Clipper's DBF() returns the ALIAS

of the active database file.

dBASE IV: An optional form returns the filename of an open database file in an unselected work

area. The alias name is a parameter as in

DBF(<expC>)

FoxBASE+: An optional form returns the filename of an open database file in an unselected work

area. The area number is a parameter as in DBF(<expN>).

SEE ALSO:
Command DISPLAY STATUS; functions FIELD(), NDX(), RECCOUNT(), and RECSIZE().

DBFILTER() SECTION 3

The dBASE® Language Handbook 673 Back to CONTENTS

DBFILTER()

DIALECTS:
Clipper only.

SYNTAX:
DBFILTER()

RETURNS:
Character

DEFINITION:
Returns the active filter expression as a character string. Returns a null value if no filter is active.

DEFAULT:
Returns the expression from the current work area unless you specify an alias in the form

ALIAS->(DBFILTER())

RECOMMENDED USE:
Use DBFILTER() during debugging to test filter activity or to provide users with filter status

information. Also use it to save and restore filter settings.

Example 1—A personnel system lets users choose "views" of the data based on filters selected

from a menu. To remind users of the selected filter, the program displays DBFILTER() in a status

line at the bottom of the screen.

 SELECT 1

 USE employs

 SET FILTER TO grade = "1B" .AND. salary > 20000

 SELECT 2

 USE managers

 SET FILTER TO grade = "2C"

 * <program code>

 *

 @ 22,03 SAY "FILTER SETTINGS:"

 @ 23,03SAY "Managers.dbf: " + DBFILTER() && Current work area

@ 24,03SAY "Employs.dbf : " + employs->(DBFILTER()) && Other work area

The status line appears as follows:

FILTER SETTINGS:

 Managers.dbf: grade="2C"

 Employs.dbf : grade="1B".AND.salary>20000

DBFILTER() SECTION 3

The dBASE® Language Handbook 674 Back to CONTENTS

Example 2—The personnel system from Example 1 lets users SET filters from a menu, then saves

the setting in a database file for later restoration. The user need not redefine the filter at the start

of the next session.

STORE ALIAS() to m_alias

STORE DBFILTER() to m_filter

SELECT 0 && Select first unopened work area

USE viewfile

REPLACE f_alias with m_alias, f_filter with m_filter

USE viewfile

m_alias = f_alias

m_filter = f_filter

SELECT 1

USE (m_alias) && The parentheses around M_ALIAS act like

SET FILTER TO &m_filter && a macro, passing the variable by reference

SEE ALSO:
Commands CREATE VIEW, SET FILTER, and SET VIEW; functions DBRELATION() and

DBRSELECT().

DBRELATION() SECTION 3

The dBASE® Language Handbook 675 Back to CONTENTS

DBRELATION()

DIALECTS:
Clipper only.

SYNTAX:
DBRELATION(<expN>)

RETURNS:
Character

DEFINITION:
Returns the relation expression from the current work area as a character string.

<expN> is the relative position of an expression in a list. (Because Clipper allows multiple

relations from a file, you must specify which expression you want to return).

DBRELATION() returns a null string if no RELATION is SET.

RECOMMENDED USE:
DBRELATION() lets you save and restore RELATION settings. Used with DBRSELECT() and

ALIAS(), it lets you store the current settings in memory variables, REPLACE them in a field, or

SAVE them in a MEM file. Upon returning to a program, you can restore them.

Example—A sales tracking system lets users define complex relationships and filters from a

menu. Users can save the settings in a database and restore them for the next session.

SELECT 1

USE sales INDEX sales

SELECT 2

USE inventry INDEX inventry

SELECT 3

USE history INDEX history

SELECT 1

SET RELATION TO code INTO inventry, TO code INTO history

m_alias=ALIAS() && Returns SALES

m_relate=DBRELATION(2) && Returns CODE

m_select=ALIAS(DBRSELECT(2)) && Returns HISTORY

DBRELATION() SECTION 3

The dBASE® Language Handbook 676 Back to CONTENTS

To later restore the second relation, the program uses the sequence:

USE (m_alias)

SET RELATION TO &m_relate INTO &m_select

SEE ALSO:
Functions DBFILTER() and DBRSELECT().

DBRSELECT() SECTION 3

The dBASE® Language Handbook 677 Back to CONTENTS

DBRSELECT()

DIALECTS:
Clipper only.

SYNTAX:
DBRSELECT(<expN>)

RETURNS:
Numeric

DEFINITION:
Returns the work area number of the target database (the INTO database) specified in a SET

RELATION command. If no relation is active, DBRSELECT() returns 0.

<expN> is the relative position of a relation statement in a list. (Because Clipper allows multiple

relations from a file, you must specify which one you want).

RECOMMENDED USE:
Use DBRSELECT() with DBRELATION() and ALIAS() to store relation settings in memory

variables. You can thus save them in a database or MEM file and restore them later.

Example—An inventory program saves complex relationships and filters in a database, simulating

a dBASE III PLUS VUE file.

* Note: Using the same name for indexes and database files makes it easier to

* specify index names without having to derive them from the environment

SELECT 1

USE invent INDEX invent

SELECT 2

USE source INDEX source

SELECT 3

USE sales INDEX sales

SELECT 1

SET RELATION TO code INTO source, TO code INTO sales

m_relate=DBRELATION(2) && Returns CODE

m_alias=ALIAS() && Returns INVENT

* DBRSELECT() returns the work area number of the target database

* specified in RELATION 2. Determine the database name from the number

* by using it as the argument in the ALIAS() function

m_area=DBRSELECT(2) && Returns 3 (work area 3)

m_select=ALIAS(m_area) && ALIAS(3) returns SALES

To later restore the second relation, the program uses the statements:

DBRSELECT() SECTION 3

The dBASE® Language Handbook 678 Back to CONTENTS

* USE invent INDEX invent

USE (m_alias) INDEX (m_alias)

* SET RELATION TO code INTO sales

SET RELATION TO &m_relate INTO &m_select

SEE ALSO:
Commands SET RELATION; functions DBFILTER() and DBRELATION().

DELETED() SECTION 3

The dBASE® Language Handbook 679 Back to CONTENTS

DELETED()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DELETED()

RETURNS:
Logical

DEFINITION:
Indicates whether the current record is marked for deletion. If so, DELETED() returns true (.T.).

DELETED() returns false (.F.) if the record is not deleted or if no database is active.

RECOMMENDED USE:
Use DELETED() in file maintenance programs that DELETE and RECALL records.

Example—A roofing company uses a program to track work assignments. Each assignment has

its own record. If the customer cancels the work order, the operator DELETEs the record.

For auditing purposes, all work orders stay in the database. When printing reports at the end of the

month, the program includes only records that are NOT deleted.

SUM subtotal FOR .NOT. DELETED() TO sub1

Note that you can hide DELETED() records with the SET DELETED ON command.

At the end of each month before PACKing the work assignment file, the system supervisor copies

all deleted records to an archive. She issues the commands:

. COPY TO cancels FOR DELETED()

10 records copied

 . PACK

 88 records

VARIATIONS:
Clipper: You can check for a DELETED() record in an unselected work area by specifying the

DELETED() expression as the argument of the alias operator, as follows:

? <alias>->(DELETED())

dBASE IV: You can check for a DELETED() record in an unselected

DELETED() SECTION 3

The dBASE® Language Handbook 680 Back to CONTENTS

work area by specifying the alias name as an argument of the DELETED()

function, as in:

? DELETED(<expC>)

FoxBASE+: An optional form applies to an unselected work area. The area number is a parameter

as in:

? DELETED(<expN>)

SEE ALSO:
Commands DELETE, PACK, RECALL, SET DELETED, and ZAP.

DESCEND SECTION 3

The dBASE® Language Handbook 681 Back to CONTENTS

DESCEND

DIALECTS:
Clipper, dBXL, and Quicksilver.

SYNTAX:

DESCEND (Clipper)

DESCEND(<expC>) (dBXL/Quicksilver)

RETURNS:
Character

DEFINITION:
Subtracts the ASCII value of each character in <expC> from 255, the highest ASCII value. This

lets you create indexes in descending order.

RECOMMENDED USE:
Use DESCEND() to create indexes in descending alphabetical order, reverse chronological order,

or reverse numeric order.

To use DESCEND() on numeric or date fields, first convert them to character strings using the

DTOC() and STR() functions.

Example—A magazine subscription system produces reports that list subscribers by expiration

date and by last name. The program uses DESCEND() to index the file appropriately (earliest

expiration date first).

Note that the DTOS() function converts a date variable to a character variable in the

YYYYMMDD format.

USE sublist

. LIST

Record# SUBSCRIBER MAGSLEFT EXPIRES

 1 Wiegands 25 04/10/88

 2 Davidson 9 04/10/88

 3 Girard 10 10/10/89

. INDEX ON DESCEND(DTOS(expires)) TO exp_dex

. LIST

Record# SUBSCRIBER MAGSLEFT EXPIRES

 3 Girard 10 10/10/89

 1 Wiegands 25 04/10/88

 2 Davidson 9 04/10/88

. INDEX ON DESCEND(subscriber) TO sub_dex

. LIST

Record# SUBSCRIBER MAGSLEFT EXPIRES

DESCEND SECTION 3

The dBASE® Language Handbook 682 Back to CONTENTS

 1 Wiegands 25 04/10/88

 3 Girard 10 10/10/89

 2 Davidson 9 04/10/88

To SEEK a value indexed with DESCEND(), use it in the expression as in the following example:

SEEK DESCEND(DTOS(expires))

VARIATIONS:
Clipper: DESCEND() does not require an expression of character type. It returns the data type of

its argument. For example, to INDEX on a date field in descending order, use it as follows:

INDEX ON DESCEND(date_fld) TO dat_fld

To SEEK a date indexed in descending order, issue the command

SEEK DESCEND(date_fld)

dBASE III PLUS, dBASE IV, and FoxBASE+: You can create reverse numeric indexes by

indexing on the negated key field as in:

INDEX ON -scount TO countdex

SEE ALSO:
Commands INDEX; functions ASC(), DTOS(), and STR().

DIFFERENCE() SECTION 3

The dBASE® Language Handbook 683 Back to CONTENTS

DIFFERENCE()

DIALECTS:
dBASE IV only.

SYNTAX:
DIFFERENCE(<expC1>, <expC2>)

RETURNS:
Numeric

DEFINITION:
Indicates the difference between the SOUNDEX() values of two character

expressions.

The returned value ranges from 0 to 4. Matching expressions return 4. Expressions with no

matching characters return 0.

RECOMMENDED USE:
Use DIFFERENCE() to do searches with varying degrees of exactness.

Example—A contact database contains 10,000 names. When looking up names, the operator can

indicate the degree of certainty in the spelling. Obviously, it is high for "Jones" and low for

"Kistiakowsky." For example, when looking up "Jamison," the operator indicates that only three

characters must match in the SOUNDEX() value of the name.

LIST contact FOR DIFFERENCE(contact,"Jamison") > 3

Jameson, Jaymison, and Jamieson will also do.

LIMITS/WARNINGS:
DIFFERENCE is not very reliable in practice. For example, two completely different expressions

return a value of 2 because their lengths are the same:

? DIFFERENCE("xyz","abc")

 2

SEE ALSO:
Function SOUNDEX().

DISKSPACE() SECTION 3

The dBASE® Language Handbook 684 Back to CONTENTS

DISKSPACE()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DISKSPACE()

RETURNS:
Numeric

DEFINITION:
Returns the number of available bytes on the current disk drive.

RECOMMENDED USE:
Use DISKSPACE() to determine whether a disk has enough room for operations such as SORT,

INDEX, or COPY. A command that creates an output file will fail if there is not enough disk space.

Note that all systems handle Disk Full errors poorly, creating the potential for damaged or lost

data.

Example—A department store program sorts databases and copies them. Every time it executes

SORT or COPY, a subroutine compares the file size with the disk space available. It computes file

size as the number of records times the record size, plus the size of the database file header. If the

file size exceeds one half the disk space, an error subroutine prompts the user to select an alternate

course of action.

You can determine the size of the header with the formula

32 * <field count> + 35

where the asterisk is the multiplication operator. To determine the field count, use FIELD() in a

DO WHILE loop to test each field name. FCOUNT counts each field, until FIELD() returns a null

string.

fcount = 1 && Start with FIELD 1

DO WHILE LEN(FIELD(fcount)) > 0 && Continue until length is null

 fcount = fcount + 1 && Increment counter

ENDDO

fcount = fcount - 1 && FCOUNT cannot start at 0, so

 && adjust final total

header = (32 * fcount) + 35 && Compute header size.

totsize = recsize() * reccount() + header && Compute total file size

DISKSPACE() SECTION 3

The dBASE® Language Handbook 685 Back to CONTENTS

IF totsize > DISKSPACE()/2

 * <error routine>

ENDIF

Note that Clipper has a field count function FCOUNT() that can replace the DO WHILE

LEN(FIELD(fcount)) structure. Clipper also has a HEADER() function that returns the header

size.

VARIATIONS:
Clipper: You can specify a numeric argument in DISKSPACE() for checking another disk drive.

DISKSPACE(1) checks the space on drive A, DISKSPACE(2) checks drive B, and

DISKSPACE(3) checks drive C. Warning: If you specify an invalid drive, DISKSPACE()

produces erroneous results.

DISKSPACE() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions HEADER(), RECCOUNT(), and RECSIZE().

DMY() SECTION 3

The dBASE® Language Handbook 686 Back to CONTENTS

DMY()

DIALECTS:
dBASE IV only.

SYNTAX:
DMY(<expD>)

RETURNS:
Character

DEFINITION:
Converts a date expression to a DD Month YY format. If you SET CENTURY ON, the result is

DD Month YYYY.

DD appears without a leading zero if it is only one digit. The month is spelled out.

RECOMMENDED USE:
Use DMY() to report dates in the European conventional format.

Example—A daily report displays the date at the top in DMY format.

mdate = DATE()

@ 04,01 SAY DMY(mdate)

It prints as:

18 June 88

With SET CENTURY ON, the date prints as:

18 June 1988

SEE ALSO:
Commands SET CENTURY and SET DATE; functions CDOW(), CMONTH(), DATE(), DOW(),

MDY(), and MONTH().

DOSERROR() SECTION 3

The dBASE® Language Handbook 687 Back to CONTENTS

DOSERROR()

DIALECTS:
Clipper only.

SYNTAX:
DOSERROR()

RETURNS:
Numeric

DEFINITION:
Returns the number of the latest DOS error when a file open command or RUN command fails.

The numbers have the following meanings:

1 Invalid function number

2 File not found

3 Path not found

4 Too many files open

5 Access denied (file already open)

6 Invalid handle

7 Memory control blocks corrupted

8 Insufficient memory

9 Invalid memory block address

10 Invalid environment

11 Invalid format

12 Invalid access code

13 Invalid data

14 Undefined

15 Invalid drive specified

16 Tried to remove current directory

17 Not same device

18 No more files

19 Disk write-protected, cannot write

20 Unknown unit

21 Drive not ready

22 Unknown command

23 Data error (CRC failure)

24 Bad request structure length

25 Seek error

26 Unknown media type

27 Sector not found

28 No more paper in printer

29 Write fault

30 Read fault

31 General failure

32 File sharing violation

33 Lock violation

34 Invalid disk change

35 File Control Block unavailable

36 Sharing buffer overlow

37-49 Undefined

50 Network request not supported

51 Remote computer not listening

52 Duplicate name on network

53 Network name not found

54 Network busy

55 Network device no longer exists

56 Network BIOS command limit exceeded

57 Network adapter hardware error

58 Incorrect response from network

59 Unexpected network error

60 Incompatible remote adapter

61 Print queue full

62 Not enough space for print file

63 Print file deleted

64 Network name deleted

65 Network access denied

66 Network device type incorrect

67 Network name not found

68 Network name limit exceeded

69 Network BIOS session limit exceeded

70 Temporarily paused

DOSERROR() SECTION 3

The dBASE® Language Handbook 688 Back to CONTENTS

71 Network request not accepted

72 Print or disk redirection paused

73-79 Undefined

80 File already exists

81 Reserved

82 Cannot make directory entry

83 Fail on INT 24H

84 Too many redirections

85 Duplicate redirection

86 Invalid password

87 Invalid parameter

88 Network device fault

RECOMMENDED USE:
When a file open error or a RUN error occurs, Clipper automatically calls the user defined

functions OPEN_ERROR() or MISC_ERROR(), respectively. Use DOSERROR() in the functions

to report and recover from errors.

Example—A programmer specifies a file that doesn't exist. When the error occurs, Clipper calls

the OPEN_ERROR() user defined function with five parameters: NAME, LINE, INFO, MODEL,

and _1. NAME is the procedures name, LINE is the line number, and INFO is a description of the

error. _1 is additional information passed to the function, in this case the offending filename. The

actual error number comes from DOSERROR(). When the error occurs, Clipper calls

OPEN_ERROR(). It displays the error information in a double-line box. The user can press 'R' to

retry the operation that caused the error, or any other key to terminate the program.

* MAIN.PRG

USE msalez && File does not exist

* <More statements>

*

FUNCTION open_error

 PARAMETERS name, line, info, model, _1 && Params passed automatically

 SET DEVICE TO SCREEN && Make sure output goes to screen

 SAVE SCREEN

 @ 08,07 CLEAR TO 15,55

 @ 09,08 TO 15,54 DOUBLE

 @ 10,10 SAY "Procedure " + M->name + " line number "+LTRIM(STR(M->line))

 @ 11,10 SAY "Description " + M->info + " " + M->_1

 @ 12,10 SAY "DOS error number " + " (" + LTRIM(STR(DOSERROR())) + ")"

 @ 14,10 SAY "Press 'R' to retry, any other key to quit"

 INKEY(0)

 IF .NOT. CHR(LASTKEY()) $ "rR"

 @ 14,10 SAY "EXITING PROGRAM DUE TO OPEN ERROR"

 QUIT

 ENDIF

 RESTORE SCREEN

RETURN .T.

SEE ALSO:
Command RUN; functions FERROR() and FOPEN().

DOW() SECTION 3

The dBASE® Language Handbook 689 Back to CONTENTS

DOW()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DOW(<expD>)

RETURNS:
Numeric

DEFINITION:
Returns the number of the day of the week, ranging from 1 to 7. Sunday is day 1.

RECOMMENDED USE:
Use DOW() for day-related computations.

Example—A restaurant system maintains a traffic log to project the amount of food to prepare

each day. The traffic projection is a relative numeric factor. Every morning, the manager reads the

projection and plans the menu accordingly.

The weekly projection consists of 7 records with two fields each, F_FACTOR and MDAY.

F_FACTOR is the food factor. MDAY is the day of the week. The program LOCATEs the record

for the current day of the week. It first stores DOW() in variable SDAY. This makes it easier to

use the current day of the week in several subsequent computations.

sday = DOW(DATE())

 ? sday

 2

LOCATE FOR mday = sday

? f_factor

 2.7

 * <More computations>

VARIATIONS:
In dBASE IV you can create a date literal without CTOD(). To do this, use braces to delimit a date

string, as follows:

{01/20/88}

To return the DOW() of January 20, 1988, enter

? DOW({01/20/88})

DOW() SECTION 3

The dBASE® Language Handbook 690 Back to CONTENTS

SEE ALSO:
Functions CDOW, CMONTH(), CTOD(), DATE(), DAY(), DTOC(), and MONTH().

DTOC() SECTION 3

The dBASE® Language Handbook 691 Back to CONTENTS

DTOC()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
DTOC(<expD>)

RETURNS:
Character

DEFINITION:
Converts a date expression to a character expression. <expD> can be a date memory variable or a

function that returns a date.

DTOC() is the inverse of the CTOD() function that converts character expressions to date.

RECOMMENDED USE:
You must convert expressions of different data types to a common type before concatenating them.

Use DTOC() to convert dates to character strings.

Example—The installment loan department of Banco Nacional issues late payment reminders.

The program that generates them prints the system date as a character string:

@ 04,10 SAY "**BANCO NACIONAL Friendly Reminder**"

@ 05,10 SAY "Reminder date: " + DTOC(DATE())

* <more @...SAY statements>

The next line displays a response date stored in a date field RDATE:

@ 06,10 SAY "Please respond by: " + DTOC(rdate)

The actual reminder looks like:

 BANCO NACIONAL Friendly Reminder

 Reminder date: 02/24/88

 Please respond by: 03/01/88

Later versions refer to friendly collection agencies and to the sad fates of friends who didn't pay

their bills.

SEE ALSO:
Functions CDOW(), CTOD(), and DATE().

DTOR() SECTION 3

The dBASE® Language Handbook 692 Back to CONTENTS

DTOR()

DIALECTS:
dBASE IV only.

SYNTAX:
DTOR(<expN>)

RETURNS:
Numeric

DEFINITION:
Converts degrees to radians.

<expN> is the angle in degrees.

The conversion formula is

N * 1.745329 x 10^2

where N is the angle in degrees and the asterisk is the multiplication operator.

RECOMMENDED USE:
DTOR() is used in engineering and scientific applications.

Example—In determining the sine of an angle, a scientist converts degrees to radians.

msin = SIN(DTOR(40))

 0.64

SEE ALSO:
Command SET DECIMALS; functions ACOS(), ATAN(), ATN2(), COS(), RTOD(), and SIN().

DTOS() SECTION 3

The dBASE® Language Handbook 693 Back to CONTENTS

DTOS()

DIALECTS:
Clipper, dBASE IV, dBXL, and Quicksilver.

SYNTAX:
DTOS(<expD>)

RETURNS:
Character

DEFINITION:
Accepts a date expression and returns a character string in the format YYYYMMDD, for example,

DTOS of "02/17/89" is "19890217."

RECOMMENDED USE:
The format of DTOS() is independent of the system date format determined by the SET DATE TO

or SET CENTURY commands. Normally, files indexed on date field keys depend on the system

date format. If that format changes (e.g., because of SET DATE AMERICAN or SET DATE

ANSI), the index updates do not work the same way. DTOS() provides a consistent index key.

Examples—Fastmail Software, Inc. takes telephone orders for software products and fulfills them

in the order received. The order program indexes sales by date.

USE orders

INDEX ON DTOS(orderdate) TO ordqueue

Indexing TO C:\TEXT\ORDQUEUE.NDX...

 100% indexed. 5 Records indexed.

 LIST orderdate

Record# ORDERDATE

 4 03/09/77

 2 02/24/78

 1 02/20/79

 5 03/19/86

 3 05/01/88

Of course, the person who phoned in an order in March 1977 may be getting a bit anxious. He may

not even want dBASE I for his Altair anymore.

SEE ALSO:
Command INDEX, SET CENTURY, and SET DATE; functions CTOD() and DESCEND().

EMPTY() SECTION 3

The dBASE® Language Handbook 694 Back to CONTENTS

EMPTY()

DIALECTS:
Clipper, dBXL, and Quicksilver.

SYNTAX:
EMPTY(<exp>)

RETURNS:
Logical

DEFINITION:
Returns true (.T.) if the specified expression contains no data. EMPTY() accepts data of all types.

<exp> may be a field, memory variable, or literal expression.

EMPTY()'s operation depends on the expression's data type. EMPTY() returns .T. when:

• a character expression contains all spaces

• a numeric expression evaluates to 0

• a logical expression evaluates to false

• a date expression evaluates to " / / "

• a memo field is blank

RECOMMENDED USE:
Use EMPTY() to validate input during data entry, or to limit global operations to records

containing valid data.

Example 1—A common design technique lets users exit a menu by leaving an input area blank.

In this example, when the user presses the space bar, program control returns to the previous level.

 response = "?"

 @ 10,10 SAY "Enter your selection A-M"

 @ 11,10 SAY "or press SPACE BAR to exit" GET response PICTURE "!"

 READ

 IF EMPTY(response)

 RETURN

 ENDIF

Example 2—Fashion Year magazine has a program to analyze the cost of articles. The managing

editor requests a report on the average (miniscule) payment to authors. Because the database

contains names of authors who receive no pay (they may be staff writers for public relations

agencies), the zero values will distort the AVERAGE. EMPTY() limits the average to non-zero

fields. MONTHPAY is a numeric field containing the payment amount.

EMPTY() SECTION 3

The dBASE® Language Handbook 695 Back to CONTENTS

. AVERAGE monthpay FOR .NOT. EMPTY(monthpay)

4 Records averaged.

MONTHPAY

 531.80

VARIATIONS:
You can simulate EMPTY() with a dBASE IV or FoxBASE+ user defined function as follows:

PARAMETERS x

mtype = TYPE("x")

IF mtype="U" && If undefined, return false

 RETURN .F.

ENDIF

DO CASE

 CASE mtype="C" && If character type,

 RETURN IIF(LEN(TRIM(x))=0,.T.,.F.) && check length of string

 CASE mtype="N" .OR. mtype="F" && If numeric or floating point,

 RETURN IIF(x=0,.T.,.F.) && check for zero value

 CASE mtype="L" && If logical, return X itself

 RETURN x && since X is already logical

 CASE mtype="D" && If date, check if it contains

 RETURN IIF(" "$DTOC(x),.T.,.F.) && a blank. Dates are either

ENDCASE && full or all blanks

LIMITS/WARNINGS

Use EMPTY() carefully, since zero-valued and blank fields often represent legitimate data. (Some

relational DBMS's have a null data type that lets you specify a field as null, or "not applicable").

If you need to treat zero-valued and blank fields as legitimate data, but also have records you want

to exclude from certain operations, add a logical field to your database called EXCLUDE. Set it

to .T. in records you want to ignore. In the Fashion magazine example, you would use the syntax

. AVERAGE monthpay FOR .NOT. exclude

4 Records averaged.

MONTHPAY

 531.80

The logical field can be set by the user or by the program, depending on a condition.

SEE ALSO:
Command AVERAGE; functions IIF() and LEN().

EOF() SECTION 3

The dBASE® Language Handbook 696 Back to CONTENTS

EOF()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
EOF()

RETURNS:
Logical

DEFINITION:
Returns true (.T.) when the record pointer in the active database is at the end-of-file.

End-of-file occurs when: 1) you try to move the record pointer beyond the last logical record in a

database file, or 2) a file contains no records.

EOF() returns false if no database is in use. This can be misleading when debugging a program,

since you might think that a database is open. To determine whether one is, use DBF() to test the

filename's length. If there is no open file, DBF() returns a null string (length 0).

IIF (LEN(DBF()) = 0,"NO FILE IN USE",DBF())

RECOMMENDED USE:
File handling routines that move through records use EOF() to locate the upper boundary.

Example—An editing program lets users view records by pressing "F" to move forward a record

at a time. The EOF() function detects the end-of-file. CASE MACTION executes the SKIP

command as long as EOF() is false.

 * <Display, edit records, GET user response>

 *

 * Move forward if user enters "F" and NOT end-of-file

 CASE maction = "F" .AND. .NOT. EOF()

 SKIP

VARIATIONS:
Clipper: You can check an open file in another work area by using EOF() as the alias operator's

argument, as follows:

? <alias>->(EOF())

dBASE IV: You can check an open file in another work area by adding a character parameter, in

the form EOF(<expC>). <expC> is the alias name of the unselected database.

EOF() SECTION 3

The dBASE® Language Handbook 697 Back to CONTENTS

FoxBASE+: You can check an open file in another work area by making the area number a

parameter, in the form EOF(<expN>).

SEE ALSO:
Functions ALIAS() and BOF().

ERROR() SECTION 3

The dBASE® Language Handbook 698 Back to CONTENTS

ERROR()

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ERROR()

RETURNS:
Numeric

DEFINITION:
Returns the number of the last error condition when the ON ERROR command is active. The

ERROR() number has a corresponding description you can return with the MESSAGE() function.

Note: The RETURN and RETRY commands reset the ERROR() number and the MESSAGE().

Error numbers are specific to each dBASE implementation.

DEFAULT:
Returns 0 if no error condition exists.

RECOMMENDED USE:
Use ERROR() to identify error conditions and describe or initiate corrective action.

Example—A program in a government office tracks materials requisitions. An error-trapping

procedure identifies system errors and takes action.

It tests for such common errors as FILE ALREADY OPEN and FILE NOT FOUND. If the

program tries to open an already opened file, it SUSPENDs operation to let the supervisor close

the file and perform repairs. If a file cannot be found, the program CANCELs.

DO CASE

CASE ERROR() = 1 && dBASE III PLUS error code (file not found)

 CANCEL

CASE ERROR() = 3 && File already open

 SUSPEND

 * <more cases>

ENDCASE

? message() && Message function describes error condition

VARIATIONS:
Clipper: Use FERROR() to return file errors and DOSERROR() for DOS errors.

ERROR() SECTION 3

The dBASE® Language Handbook 699 Back to CONTENTS

SEE ALSO:
Commands ON ERROR, RETRY, RETURN, and SUSPEND; functions DOSERROR(),

FERROR(), MESSAGE(), and PROGRAM().

ERRORLEVEL() SECTION 3

The dBASE® Language Handbook 700 Back to CONTENTS

ERRORLEVEL()

DIALECTS:
Clipper only.

SYNTAX:
ERRORLEVEL([<expN>])

RETURNS:
Numeric

DEFINITION:
Both returns and sets the DOS error level.

ERRORLEVEL() with no argument returns the current DOS error level setting. The optional

<expN> sets the level to a number between 0 and 255, inclusive.

RECOMMENDED USE:
Use ERRORLEVEL() with the SWITCH.EXE utility to control the execution of chained

application programs. In such programs, one application exits to the operating system before the

next one begins, as if they were being executed from a batch file. By examining the DOS error

level, the SWITCH utility can execute a designated program.

Example—A retail management system tracks sales and inventory. The system includes modules

for point of sale, file maintenance, and telecommunications (to send data back to the main office).

Before exiting from point of sale, the system sets the error level according to the user's choice.

 * Get user response:

 * 1 for point of sale, 2 for file maintenance, 3 for telecommunications

 @ 05,01 PROMPT "Point of Sale"

 @ 06,01 PROMPT "File Maintenance"

 @ 07,01 PROMPT "Telecommunications"

 MENU TO action

 ERRORLEVEL(action)

 QUIT

You then run SWITCH with the syntax

 SWITCH <main> <p1> <p2> ... <p9>

where <main> is the caller and <p1> through <p9> are subprograms corresponding to error levels.

If you set error level to 2, program p2 executes.

ERRORLEVEL() SECTION 3

The dBASE® Language Handbook 701 Back to CONTENTS

LIMITS/WARNINGS:
You may not use the RUN command to SET other DOS environment variables. Because RUN

loads a second copy of COMMAND.COM (MS/PC-DOS), variables SET with RUN are released

when the RUN is complete.

SEE ALSO:
Command QUIT; function GETENV().

EXP() SECTION 3

The dBASE® Language Handbook 702 Back to CONTENTS

EXP()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
EXP(<expN>)

RETURNS:
Numeric

DEFINITION:
Returns the value of e raised to the power <expN>.

e, the base of natural logarithms, is approximately 2.71828.

DEFAULT:
EXP()'s result has a minimum of two decimal places. You may increase precision with the SET

DECIMALS command.

RECOMMENDED USE:
Mathematicians, scientists, and engineers often use EXP() in formulas.

Example—To store the value of e to the fifth power in a variable MEXP, use the statement

mexp = EXP(5)

A test of MEXP's value shows:

? mexp

 148.41

SEE ALSO:
Functions LOG() and LOG10().

FCLOSE() SECTION 3

The dBASE® Language Handbook 703 Back to CONTENTS

FCLOSE()

DIALECTS:
Clipper only.

SYNTAX:
FCLOSE(<expN>)

RETURNS:
Logical

DEFINITION:
Closes a DOS file and saves it on disk. <expN> is the numeric file handle returned by FCREATE()

or FOPEN().

If the closure fails, FCLOSE() returns false (.F.).

RECOMMENDED USE:
Use FCLOSE() to save a file and release its handle. Failure to FCLOSE() a file could lead to lost

data if Clipper exits improperly.

Example—After editing a text file in a real estate system, the programmer FCLOSEs it before

proceeding to the next operation. FCLOSE is the last step.

tempvar = space(250) && Initialize buffer variable

mhandle = FOPEN("TOWNHS.4SL",2) && Open TOWNHS.4SL file

FREAD(mhandle,@tempvar,250) && Read text into memory variable

FSEEK(mhandle,0) && Set pointer to beginning of file

mbuf = HARDCR(MEMOEDIT(tempvar)) && Edit memory variable with MEMOEDIT()

FWRITE(mhandle,mbuf) && Write result back to file

FCLOSE(mhandle) && Close file, release handle, save data

LIMITS/WARNINGS:
FCLOSE() is for advanced programmers who understand how DOS handles files.

FCLOSE() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions FCREATE(), FERROR(), FOPEN(), FREAD(), FREADSTR(), FSEEK(), and

FWRITE().

FCOL() SECTION 3

The dBASE® Language Handbook 704 Back to CONTENTS

FCOL()

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
FCOL()

RETURNS:
Numeric

DEFINITION:
Returns the column coordinate in an open output file. You must first select the output file with

SET ALTERNATE TO.

DEFAULT:
Returns 0 if no ALTERNATE file is open.

RECOMMENDED USE:
FCOL() lets you send output to an ALTERNATE file at a position relative to the current column

position. This is useful for formatting disk file output.

Example—A report generator prints several columns of data. It uses the FCOL() function to put

space between the columns.

CLEAR

@ 5,FCOL() SAY "SSN: " "

@ 5,FCOL()+2 SAY "Employer: "

@ 5,FCOL()+2 SAY "No. of Dependents: "

The screen would appear as follows:

SSN: Employer: No. of Dependents:

SEE ALSO:
Functions COL(), POW(), PCOL(), PROW(), and ROW().

FCOUNT()

FCOUNT() SECTION 3

The dBASE® Language Handbook 705 Back to CONTENTS

DIALECTS:
Clipper and FoxBASE+.

SYNTAX:
FCOUNT()

RETURNS:
Numeric

DEFINITION:
Returns the number of fields in the active database file.

DEFAULT:
Returns 0 if no database file is open in the current directory.

RECOMMENDED USE:
Clipper lacks DISPLAY STRUCTURE. So you must use functions such as AFIELDS(),

FCOUNT(), FIELDNAME(), LEN(), and TYPE() to display file structure information.

FCOUNT() also lets you access database fields without knowing their names in advance. You can

thus write general purpose programs that analyze structures and adapt to them.

Example—A general purpose Clipper application lets you view and edit database files without

knowing their structures in advance. The program stores a single record in an array with

FCOUNT() elements. FIELD() gets the field name based on its relative number in the file.

PARAMETER filename

* Filename entered by user or passed from a program as a PARAMETER

USE (filename)

* FCOUNT() is the number of fields/array elements to initialize

DECLARE showfile[FCOUNT()]

* CTR increases until it reaches FCOUNT()

FOR ctr = 1 TO FCOUNT()

 * Variable CONTENTS holds the name of each field as CTR increases

 contents = FIELD(ctr)

 * Store each field in an element in array SHOWFILE

 showfile[ctr] = &contents

NEXT ctr && Increment CTR

The program produces an array SHOWFILE with FCOUNT() elements. You can display or edit it

with similar routines. For example, you could use the program below to EDIT it for the current

field.

FOR ctr = 1 to FCOUNT()

 @ ctr,1 GET showfile[ctr]

NEXT ctr

FCOUNT() SECTION 3

The dBASE® Language Handbook 706 Back to CONTENTS

READ

Note: To use these routines with FoxBASE+, replace FOR...NEXT with DO WHILE and

increment CTR inside the loop. Use DIMENSION instead of DECLARE. Change USE(filename)

to USE &filenames.

VARIATIONS:
dBASE III PLUS, dBASE IV, dBXL, Quicksilver: You can simulate FCOUNT() with a short

routine that evaluates field lengths. When the field length is 0, the counter stops.

ctr = 1

DO WHILE LEN(FIELD(ctr))>0

 ctr = ctr + 1

ENDDO

? ctr - 1

FoxBASE+: You can check the field count of an open file in another work area by using its number

as a parameter in the form FCOUNT([<expN>]).

SEE ALSO:
Commands DECLARE, DIMENSION, and FOR...NEXT; functions AFIELDS() and FIELD().

FCREATE() SECTION 3

The dBASE® Language Handbook 707 Back to CONTENTS

FCREATE()

DIALECTS:
Clipper only.

SYNTAX:
FCREATE(<expC>[,<expN>])

RETURNS:
Numeric

DEFINITION:
Creates a new DOS file or overwrites an existing file and returns a numeric file handle. File handles

are between 0 and 65,535, inclusive. If FCREATE() cannot create a file, it returns -1.

The file remains open until you either close it with FCLOSE() or exit the application normally.

<expC> is the filename and path. <expN> is one of the following DOS file attributes:

• 0—Normal (read/write)

• 1—Read only

• 2—Hidden (not visible in directory searches)

• 4—System (not visible in directory searches)

FCREATE() gives the new file a DOS open mode of 2 (read/write). This differs from a file

attribute; see FOPEN() for a list of DOS open modes.

Because all DOS file operations require a handle, be sure to store it in a memory variable when

you open the file.

DEFAULT:
If you omit the path, FCREATE() defaults to the current directory. If you omit the <expN> option,

FCREATE() defaults to an attribute of 0 (normal).

RECOMMENDED USE:
FCREATE() is for advanced programmers who understand DOS files. Use it with FCLOSE(),

FERROR(), FOPEN(), FREAD(), FREADSTR(), and FSEEK() to read and write foreign (non-

dBASE) data structures and text file formats. Applications include exchanging data with remote

systems and importing data from gathering devices.

Example—Because FCREATE() does not conflict with open database files and work areas,

programmers may opt for direct DOS file manipulation.

FCREATE() SECTION 3

The dBASE® Language Handbook 708 Back to CONTENTS

For example, a statistical program could analyze a database file and write the results in a format

recognizable by a plotting device.

fhandle = FCREATE("stat.out",0)

IF fhandle = -1

 @ 23,01 SAY "Unable to create file"

ENDIF

LIMITS/WARNINGS:
If you do not specify a path in the filename argument, FCREATE() writes to the current directory,

ignoring the DEFAULT and PATH settings.

FCREATE() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions FCLOSE(), FERROR(), FOPEN(), FREAD(), FREADSTR(), FSEEK(), and

FWRITE().

FERROR() SECTION 3

The dBASE® Language Handbook 709 Back to CONTENTS

FERROR()

DIALECTS:
Clipper only.

SYNTAX:
FERROR()

RETURNS:
Numeric

DEFINITION:
Returns the last DOS error after you use a DOS file function. If no error occurred, FERROR()

returns 0.

RECOMMENDED USE:
FERROR() is for advanced programmers who understand how DOS handles files.

Use FERROR() after low level file operations such as FCLOSE(), FCREATE(), FOPEN(),

FREAD()), FREADSTR(), FSEEK(), and FWRITE(). FERROR() traps errors such as those

caused by trying to write to a read-only file, or by closing a nonexistent file. If FERROR() returns

a non-zero value, you may elect to retry the operation or abandon it.

Example 1—After executing the DOS file handling commands FOPEN() and FREAD(), a

program issues FCLOSE() to close the file. Unfortunately, the file handle has been overwritten by

another command using the same memory variable name. Trying to close the file with an invalid

file handle causes an error.

* FHANDLE is invalid file handle

IF .NOT. FCLOSE(fhandle)

 ? "Unable to close file. Error #: ", FERROR()

ENDIF

In this case, FERROR() returns 6.

Example 2—A subroutine tries to open a nonexistent text

file. FERROR() returns 2 and the subroutine RETURNs to the calling

program.

@PROGRAM KWN = fname = "medical.txt"

fhandle = FOPEN("&fname",2)

IF FERROR() # 0

 @ 23,01 SAY "Unable to open" + &name

 RETURN

FERROR() SECTION 3

The dBASE® Language Handbook 710 Back to CONTENTS

ENDIF

FERROR() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions DOSERROR(), FCLOSE(), FCREATE(), FOPEN(), FREAD(), FREADSTR(),

FSEEK(), and FWRITE().

FIELD() SECTION 3

The dBASE® Language Handbook 711 Back to CONTENTS

FIELD()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
FIELD(<expN>)

RETURNS:
Character

DEFINITION:
Returns the name of the specified field in the active database. <expN> is the field's relative number.

FIELD() returns fieldnames in uppercase letters.

DEFAULT:
Returns a null string if no database is open in the selected work area or if the field number is

invalid.

RECOMMENDED USE:
Use FIELD() to access field contents by number. This is useful in general purpose programs that

do not know the database structures in advance.

Example—A general purpose dBASE III PLUS program processes files without knowing their

structures in advance. The program stores a single record in a number of memory variables equal

to the number of fields.

First, the program counts the fields by searching through them until it finds one with a zero length.

The field count is stored in variable FCOUNT.

Then the program stores the fields in the memory variables MFIELDn, where n is the field number.

Once initialized, these variables can be displayed and edited.

* A database must be in use

fctr = 1

DO WHILE LEN(FIELD(fctr)) > 0 && Increment FIELD()

 fctr = fctr+1

ENDDO

fcount = fctr-1

ctr = 1 && CTR increases until it reaches FCOUNT

DO WHILE ctr <= fcount

 contents = FIELD(ctr) && CONTENTS holds name of each field

 sctr = LTRIM(STR(ctr,3,0)) && Store field contents in variables

FIELD() SECTION 3

The dBASE® Language Handbook 712 Back to CONTENTS

 mfield&sctr = &contents && MFIELD1-MFIELD(fcount)

 ctr = ctr + 1 && Increment CTR

ENDDO

You can REPLACE fields similarly.

VARIATIONS:
Clipper: FIELDNAME() is a synonym for FIELD().

dBASE IV: You may designate a field from an open file in any work area by adding a character

parameter, in the form FIELD(<expN>,<expC>). <expN> is the field number; <expC> is the

ALIAS of the specified database.

FoxBASE+: FIELD() will work on open files in other work areas if you use the area number as a

second parameter, in the form FIELD(<expN1>)[,<expN2>].

SPECIAL USE:
FIELD() lets you treat database files much like arrays, since you need only an "element" number

rather than a name.

SEE ALSO:
Functions DBF(), FCOUNT(), NDX(), RECCOUNT(), and RECSIZE().

FIELDNAME() SECTION 3

The dBASE® Language Handbook 713 Back to CONTENTS

FIELDNAME()

DIALECTS:
Clipper only.

SYNTAX:
FIELDNAME(<expN>)

RETURNS:

Character

DEFINITION:
Same as FIELD().

FILE() SECTION 3

The dBASE® Language Handbook 714 Back to CONTENTS

FILE()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
FILE(<expC>)

RETURNS:
Logical

DEFINITION:
Determines whether a file exists. If so, FILE() returns true (.T.).

<expC> must be a valid filename, including the extension. To specify a file not in the default

directory, you must either SET PATH TO the drive and directory, or include a drive and path name

in FILE().

FILE() ignores case.

RECOMMENDED USE:
Use FILE() to check the existence of database and index files before opening them. This prevents

program errors when a file has inadvertently been erased.

Example—A file maintenance module of a loan tracking program checks initially whether index

files exist. If not, it recreates them automatically.

* CHEKFILE.PRG

IF .NOT. FILE("amain.ndx")

 INDEX ON loancode TO amain

ENDIF

IF .NOT. FILE("namedex.ndx")

 INDEX ON reg_lname TO namedex

ENDIF

IF .NOT. FILE("acctdex.ndx")

 INDEX ON acct TO acctdex

ENDIF

LIMITS/WARNINGS:
dBASE III PLUS: Reports the existence of a file in the current directory if it exists anywhere in

the operating system's search path. FILE() reports true regardless of the SET PATH TO command.

To avoid this problem, always Specify the full drive and path. Clipper, dBASE IV, dBXL,

FoxBASE+, and Quicksilver do not exhibit this problem.

FILE() SECTION 3

The dBASE® Language Handbook 715 Back to CONTENTS

dBASE III PLUS and dBASE IV: FILE() uses a DOS file handle. If the maximum number of

files are open (including databases, programs, and dBASE III PLUS itself), FILE() returns false

even when the file exists.

SEE ALSO:
Commands SET DEFAULT and SET PATH.

FIXED() SECTION 3

The dBASE® Language Handbook 716 Back to CONTENTS

FIXED()

DIALECTS:
dBASE IV only.

SYNTAX:
Converts F type data (IEEE 754 long real floating point) to N type (fixed point, binary coded

decimal).

For greater precision in numeric comparisons, dBASE IV allows both floating point (type F) and

fixed point (type N) numeric data.

RECOMMENDED USE:
Mixing types N and F in an equation always produces a result of type F.

Use FIXED() when the result must be type N.

Example—The results of trignometric functions are always of type F. To produce fixed point

results, an application uses FIXED().

mresult = FIXED(ACOS(1))+ 3.55

? mresult

 3.55

A check of MRESULT shows that it is type N.

? TYPE("mresult")

N

SEE ALSO:
Function FLOAT().

FKLABEL() SECTION 3

The dBASE® Language Handbook 717 Back to CONTENTS

FKLABEL()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
FKLABEL(<expN>)

RETURNS:
Character

DEFINITION:
Returns the name of the first valid programmable function key. <expN> is the key's relative

number. Note: Do not pronounce this function's name in mixed company!

On keyboards with no HELP key, FKLABEL(1) refers to function key 2. Such keyboards reserve

function key 1 for HELP, making it non-programmable.

RECOMMENDED USE:
The markings on programmable function keys vary among computer makes and models. To make

programs run on a variety of computers, use FKLABEL() to program function keys. It assures that

your programs do not try to assign values to invalid keys.

Example—A programmer developing point-of-sale applications simplifies the user interface by

programming function keys to execute menu selections. Because the programs run on a variety of

computers, she defines function keys using FKLABEL().

SET FUNCTION FKLABEL(1) TO "DO endofyear;"

SET FUNCTION FKLABEL(2) TO "DO closqrtr;"

SET FUNCTION FKLABEL(3) TO "DO backup;"

VARIATIONS:
Clipper: FKLABEL() is in EXTEND.LIB on the system disk.

dBASE IV: You may assign values to up to 28 keys (9 function keys, 10 Ctrl-<function> keys,

and 9 Shift-<function> keys). SHIFT-F10 is reserved for the macro menu.

SEE ALSO:
Command SET FUNCTION; function FKMAX().

FKMAX() SECTION 3

The dBASE® Language Handbook 718 Back to CONTENTS

FKMAX()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
FKMAX()

RETURNS:
Numeric

DEFINITION:
Returns the number of programmable function keys on the keyboard.

RECOMMENDED USE:
The markings on programmable function keys varies among computer makes and models. To

make programs run on a variety of computers, use FKMAX() and FKLABEL() to adapt to different

keyboards. FKLABEL() returns the names of programmable function keys.

Example—A commercial medical office program uses function keys to simplify menu selections.

To take advantage of all available keys, the program must first count them with FKMAX().

The next program stores function key assignments in a database SETKEYS containing a field

KEYDEF. A DO WHILE repeats the SET FUNCTION command until it reaches the maximum

number of function keys FKMAX() or the end of the SETKEYS file.

USE setkeys

ctr = 1

DO WHILE ctr <= FKMAX() .AND. .NOT. EOF()

 SET FUNCTION FKLABEL(ctr) TO keydef

 SKIP

 ctr = ctr + 1

ENDDO

USE

VARIATIONS:
Clipper: FKMAX() is in EXTEND.LIB on the system disk. It works correctly only on IBM

PC/XT/AT and compatible computers.

SEE ALSO:
Command SET FUNCTION; function FKLABEL().

FLOAT() SECTION 3

The dBASE® Language Handbook 719 Back to CONTENTS

FLOAT()

DIALECTS:
dBASE IV only.

SYNTAX:
FLOAT(<expN>)

RETURNS:
Floating point numeric

DEFINITION:
Converts N type data (fixed point, binary coded decimal) to F type (real, long IEEE 754 floating

point).

For greater precision in numeric comparisons, dBASE IV allows both floating point (type F) and

fixed point (type N) numeric data types.

RECOMMENDED USE:
Floating point numbers have greater precision than fixed point numbers and are independent of

dBASE IV's SET PRECISION statement. SET DECIMALS affects how the numbers are

displayed, but not their internal precision. Use floating point numbers in scientific applications

requiring high numeric precision.

Example—All constants default to type N. Use FLOAT() to change them to type F before storing

them in variables.

SET DECIMALS TO 4

mradian = FLOAT(1.533E+02)

? mradian

 153.3000

A check of MRADIAN shows that it is type F.

? TYPE("mradian")

F

SEE ALSO:
Function FIXED().

FLOCK() SECTION 3

The dBASE® Language Handbook 720 Back to CONTENTS

FLOCK()
DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, FoxBASE+, and Quicksilver.

SYNTAX:
FLOCK()

RETURNS:
Logical

DEFINITION:
Tries to lock a database file, returning true (.T.) if successful.

If FLOCK() succeeds, the file stays locked until the user who locked it either issues the UNLOCK

command or closes it (with CLEAR ALL, CLOSE DATABASES, QUIT, or USE.

FLOCK() prevents multiple users on local area networks or multiuser computers from

simultaneously changing data in a file.

RECOMMENDED USE:
In the multiuser environment, updates that affect multiple records generally require the file to be

locked or opened with the USE EXCLUSIVE option. This prevents such operations from altering

records being accessed by other users.

Example—Jack in accounting must run a closing report that totals monthly sales. To prevent Jill

in sales from updating the file during the report process, Jack locks it. This is the real reason why

Jill was not sad when "Jack fell down and broke his crown."

Because FLOCK() only tries to lock a file once, the programmer puts it in a loop so it repeats if

unsuccessful. FLOCK() can only succeed if no other user has already locked the file or a record in

it. The programmer hopes the file will become available within the time it takes to execute the DO

WHILE 300 times. If not, he abandons the attempt. (If Jack suffers his famous head injury with

the file locked, the programmer certainly does not want to keep poor Jill waiting forever.)

USE acctmain

 DO WHILE .NOT. FLOCK() .AND. ctr < 300

 ctr = ctr + 1

 ENDDO

VARIATIONS:
Clipper: FLOCK() releases a locked file. You may issue it on any open file, regardless of work

area, by specifying an alias, as follows:

ALIAS->(FLOCK())

FLOCK() SECTION 3

The dBASE® Language Handbook 721 Back to CONTENTS

Clipper, dBASE IV, FoxBASE+: FLOCK() lets others read, but not update the locked file.

USE...EXCLUSIVE is the only command that stops others from reading a file.

dBASE III PLUS, Quicksilver: FLOCK() prevents others from either reading or updating a locked

file.

dBASE IV: You may issue an FLOCK() on any open file, regardless of work area, by specifying

an ALIAS as an argument in the form:

FLOCK(<expC>)

Quicksilver: With SET AUTOLOCK ON, certain commands lock files automatically.

SEE ALSO:
Commands SET AUTOCLOCK ON, SET EXCLUSIVE, SET REPROCESS, SET RETRY, and

USE...EXCLUSIVE; functions LOCK() and RLOCK().

FLOOR() SECTION 3

The dBASE® Language Handbook 722 Back to CONTENTS

FLOOR()

DIALECTS:
dBASE IV, dBXL, and Quicksilver.

SYNTAX:
FLOOR(<expN>)

RETURNS:
Numeric

DEFINITION:
Returns the largest integer less than or equal to its argument. FLOOR() leaves decimal zeroes to

the number of places specified by SET DECIMALS.

If its argument is negative, FLOOR() returns the next smaller integer.

FLOOR() with a positive argument works like INT(), except that INT() discards the decimals.

RECOMMENDED USE:
FLOOR() is often used in engineering, financial, and scientific applications. For example, to

evaluate the FLOOR() of 126.33, enter:

? FLOOR(126.33)

126.00

To evaluate the FLOOR() of -88.88, enter:

? FLOOR(-88.88)

-89.00

SEE ALSO:
Functions CEIL(), INT(), and ROUND().

FOPEN() SECTION 3

The dBASE® Language Handbook 723 Back to CONTENTS

FOPEN()

DIALECTS:
Clipper only.

SYNTAX:
FOPEN(<expC>[,<expN>])

RETURNS:
Numeric

DEFINITION:
Opens a DOS file and returns its handle. File handles are numbers between zero and 65,535

inclusive. FOPEN() returns -1 if an error occurs while opening the file.

The file remains open until you either close it with FCLOSE() or exit the application normally.

<expC> is the filename and path. <expN> is one of the following DOS open modes:

• 0—Read only

• 1—Write only

• 2—Read/write

Because all DOS file operations require a handle, be sure to store it in a memory variable when

you open the file.

DEFAULT:
If you do not specify a path, FOPEN() defaults to the current directory. If you do not specify a

DOS file mode, 0 is the default.

RECOMMENDED USE:
FOPEN() is for advanced programmers who understand DOS files. Use it with FCLOSE(),

FCREATE(), FERROR(), FREAD(), FREADSTR(), and FSEEK() to read and write foreign (non-

dBASE) data structures and text file formats. Applications include exchanging data with remote

systems and importing data from gathering devices.

Example—A law office system manages formatted client data and free form text (contracts and

correspondence). Documents are created with word processors and manipulated by Clipper's DOS

file functions. FOPEN() opens the file and returns the name of the file handle. If it succeeds,

FERROR() returns 0.

 fname = "johnson.ltr"

 fhandle = fopen("&fname",2)

FOPEN() SECTION 3

The dBASE® Language Handbook 724 Back to CONTENTS

 IF ferror() # 0

 @ 23,01 SAY "Unable to open" + fname

 RETURN

 ENDIF

LIMITS/WARNINGS:
If you do not specify a path in the filename argument, FOPEN() searches the current directory,

ignoring the DEFAULT and PATH settings. Also, remember to close open files.

FCREATE() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions FCLOSE(), FCREATE(), FERROR(), FREAD(), FREADSTR(), FSEEK(), and

FWRITE().

FOUND() SECTION 3

The dBASE® Language Handbook 725 Back to CONTENTS

FOUND()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
FOUND()

RETURNS:
Logical

DEFINITION:
Returns true (.T.) in the currently selected work area when CONTINUE, FIND, LOCATE, or

SEEK finds a matching record.

If true, FOUND() remains true until you move the record pointer with something other than another

successful CONTINUE, FIND, LOCATE, or SEEK.

FOUND() also returns a meaningful value in the work area of a file related by SET RELATION.

When the record pointer moves in the parent file, and a matching record is found in the related

file, FOUND() returns true (.T.).

DEFAULT:
FOUND() always returns false (.F.) unless you issue a successful CONTINUE, FIND, LOCATE,

or SEEK command.

RECOMMENDED USE:
Example—A theater membership program maintains a member file. A member can call to renew

an annual subscription, requiring the program to find the record. Because the file is indexed on last

names, the program issues a SEEK. FOUND() indicates whether the name is in the database. If

SEEK finds the name, the program displays the record. If SEEK fails, the program displays a

warning message.

mlname = SPACE()

SEEK TRIM(mlname)

IF FOUND()

 @ 10,10 SAY " Name: " + TRIM(forename) + " " + surname

 @ 11,10 SAY "Address: " + address

 * <more @..SAYs>

ELSE

 alte = .f.

 @ 10,10 SAY "Member not found"

 @ 11,10 SAY "Try alternate spelling? (Y/N)" GET alte PICTURE "Y"

 READ

FOUND() SECTION 3

The dBASE® Language Handbook 726 Back to CONTENTS

ENDIF

VARIATIONS:
dBASE IV: An optional form operates on work areas other than the current one. To use it, add an

alias name to FOUND(), in the form FOUND(<expC>).

FoxBASE+: An optional form operates on work areas other than the current one. To use it, add

the area number in the form FOUND(<expN>).

LIMITS/WARNINGS:
FOUND() is unreliable in dBASE III PLUS and FoxBASE+ (but not in dBASE IV). It sometimes

returns incorrect values. Instead, use EOF() to check the success of FIND and SEEK. Use an IF

statement to check the success of a LOCATE. For example, assuming condition = "lname =

'Smith'":

LOCATE FOR &condition

 IF &condition

 * <match found>

 ELSE

 * <match not found>

 ENDIF

SEE ALSO:
Commands CONTINUE, FIND, LOCATE, and SEEK.

FREAD() SECTION 3

The dBASE® Language Handbook 727 Back to CONTENTS

FREAD()

DIALECTS:
Clipper only.

SYNTAX:
FREAD(<expN1>,@<memvarC>,<expN2>)

RETURNS:
Numeric

DEFINITION:
Reads characters in an open file into a character memory variable and returns the number of bytes

read. It returns 0 if the operation fails. FREAD() begins reading at the current file pointer position.

<expN1> refers to the numeric file handle returned by FOPEN()

or FCREATE().

<memvarC> is the existing character memory variable in which to store data read from the file.

(The required @ symbol indicates that the variable is passed by reference).

<expN2> specifies how many bytes to read into the memory variable. In a successful read,

FREAD() returns <expN2>.

RECOMMENDED USE:
Use FREAD() to gather data from text files.

Example—A medical office application stores notes in text files labeled with unique filenames.

FREAD() saves the notes in a memory variable which can then be edited with MEMOEDIT().

* Text editing routine

block = space(500) && Initialize buffer variable

mhandle = FOPEN("sam911.med",2) && Open SAM911.MED

FREAD(mhandle,@block,500) && Read text into memory variable

FSEEK(mhandle,0) && Set pointer to beginning of file

mbuf = HARDCR(MEMOEDIT(block)) && Edit memory variable with MEMOEDIT()

FWRITE(mhandle,mbuf) && Write result back into file

LIMITS/WARNINGS:
FREAD() is for advanced programmers who understand DOS files.

FREAD() is in EXTEND.LIB on the system disk.

FREAD() SECTION 3

The dBASE® Language Handbook 728 Back to CONTENTS

SEE ALSO:
Command PARAMETERS; functions FCLOSE(), FERROR(), FOPEN(), FREADSTR(),

FSEEK(), and FWRITE().

FREADSTR() SECTION 3

The dBASE® Language Handbook 729 Back to CONTENTS

FREADSTR()

DIALECTS:
Clipper only.

SYNTAX:
FREADSTR(<expN1>,<expN2>)

RETURNS:
Character string

DEFINITION:
Reads/returns characters in an open file. You can store the result in a memory variable.

<expN1> is the numeric file handle returned by FOPEN() or FCREATE().

<expN2> specifies how many bytes to read from the current DOS file pointer position. The

argument can be positive or negative. FREADSTR() ends if it encounters a null character (ASCII

0), indicating an error or the end of file.

READSTR() can accommodate strings up to 64K bytes long.

RECOMMENDED USE:
Use FREADSTR() to gather data from text files. Use FERROR() to determine whether the read

succeeded.

Example—An educational program stores student observations in text files. FREADSTR()

captures the information in a memory variable that you can store in a database file.

observe = space(150) && Initialize buffer variable

mhandle = FOPEN("labwork.txt",2) && Open LABWORK.TXT

mbuf = FREADSTR(mhandle,150) && Read text into memory variable

IF FERROR() # 0

 @ 23,01 SAY "Reading text file, press a key to return"

 WAIT ""

ENDIF

mbuf1 = SUBSTR(mhandle,1,75) && Manipulate string with standard

mbuf2 = SUBSTR(mhandle,75,75) && SUBSTR() function

REPLACE lab1 WITH mbuf1,lab2 with mbuf2

LIMITS/WARNINGS:
FREADSTR() is for advanced programmers who understand DOS files.

Do not abbreviate this function as Clipper will confuse it with FREAD().

FREADSTR() SECTION 3

The dBASE® Language Handbook 730 Back to CONTENTS

FREADSTR() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions FCLOSE(), FERROR(), FOPEN(), FREAD(), FSEEK(), and FWRITE().

FROW() SECTION 3

The dBASE® Language Handbook 731 Back to CONTENTS

FROW()

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
FROW()

RETURNS:
Numeric

DEFINITION:
Returns the row coordinate in an open output file.

You must first select the output file with SET ALTERNATE TO and SET DEVICE TO

ALTERNATE.

DEFAULT:
0 if no ALTERNATE file is open.

RECOMMENDED USE:
FROW() lets you send output to an ALTERNATE file at a position relative to the current row.

This is useful for building documents from data with varying numbers of items. You can also use

FROW() in generalized routines. By using relative row coordinates, you can design a single report

for several applications.

Example—A financial analysis program creates a document containing the results of several

computations. The user selects which computations to do, and the program presents the results in

a disk file as a single report. Because the number of elements in the report varies, each module

uses relative positioning. For example, a growth projection report first skips a line, then prints its

results:

* ANALYSIS.PRG

SET ALTERNATE TO ratechrt

SET DEVICE TO alternate

SET ALTERNATE on

* <report selection menu>

DO ratesys && One selection is RATESYS

* RATESYS.PRG

USE rates

@ FROW()+1,01 SAY "MONTH------GROWTH RATE----ACCELERATION OF GROWTH"

@ FROW()+1,01 SAY "--"

monthctr=1

DO WHILE monthctr <= 12 .and. .not. EOF()

FROW() SECTION 3

The dBASE® Language Handbook 732 Back to CONTENTS

 @ FROW()+1,01 SAY pmonth+SPACE(8)+STR(rate,5,2)+SPACE(8)+STR(acc,5,2)

 SKIP

 monthctr = monthctr + 1

ENDDO

SEE ALSO:
Commands SET ALTERNATE and SET DEVICE; functions COL(), FCOL(), and PCOL().

FSEEK() SECTION 3

The dBASE® Language Handbook 733 Back to CONTENTS

FSEEK()

DIALECTS:
Clipper only.

SYNTAX:
FSEEK(<expN1>,<expN2>[,<expN3>])

RETURNS:
Numeric

DEFINITION:
Moves the DOS file pointer.

<expN1> is the numeric file handle returned by FCREATE() or FOPEN().

<expN2> is the number of characters away from the beginning of file, end of file, or current

position as selected by <expN3>. <expN2> may be positive or negative. <expN3> selects the

origin in an open file using the following codes:

• 0—Beginning of file

• 1—Current pointer position

• 2—End of file

Note that FREAD() and FWRITE() also move the file pointer.

DEFAULT:
0, beginning of file, if you do not specify a file position.

RECOMMENDED USE:
FSEEK() gives you byte-level control over file writes and reads since FREAD() and FWRITE()

begin at the current file pointer position.

Example—A real estate application stores property information in text files. FREAD() captures

data in a memory variable that you can edit with MEMOEDIT(). FSEEK() moves the pointer back

to the beginning of file so the next FWRITE overwrites the data, instead of appending it.

tempvar=space(250) && Initialize buffer variable

mhandle=FOPEN("CONDO1.4SL",2) && Open CONDO1.4SL file

FREAD(mhandle,@tempvar,250) && Read text into memory variable

FSEEK(mhandle,0) && Set pointer to beginning of file

mbuf=HARDCR(MEMOEDIT(tempvar))&& Edit memory variable with MEMOEDIT()

FWRITE(mhandle,mbuf) && Write result back to file

FV() SECTION 3

The dBASE® Language Handbook 734 Back to CONTENTS

LIMITS/WARNINGS:
FSEEK() is for advanced programmers who understand how DOS handles files. FSEEK() is in

EXTEND.LIB on the system disk.

SEE ALSO:
Functions FCLOSE(), FCREATE(), FERROR(), FOPEN(), FREAD(), FREADSTR(), and

FWRITE().

FV()

DIALECTS:
dBASE IV only.

SYNTAX:
FV(<expN1>,<expN2>,<expN3>)

RETURNS:
Numeric

DEFINITION:
Computes the future value of regular deposits yielding a fixed interest

rate for a number of periods.

Future value is the total deposit plus the generated interest.

<expN1> is the payment amount. It can be positive or negative.

<expN2> is the decimal interest rate compounded once per period. It must be positive. Note that

while interest rates are usually expressed as annual figures, most fixed rate accounts compound

monthly, so divide your rate by 12.

<expN3> is the number of periods.

RECOMMENDED USE:
Use FV() to project earnings from fixed rate investments.

Example—A savings plan calls for monthly $100 deposits that earn 7.5 percent compounded

monthly. After one year, the account is worth $1242.12.

payment = 100

rate = .075/12

periods = 12

mworth = FV(payment,rate,periods)

FV() SECTION 3

The dBASE® Language Handbook 735 Back to CONTENTS

 1242.12

SEE ALSO:
Command CALCULATE.

FWRITE() SECTION 3

The dBASE® Language Handbook 736 Back to CONTENTS

FWRITE()

DIALECTS:
Clipper only.

SYNTAX:
FWRITE(<expN1>,<memvarC>[,<expN2>])

RETURNS:
Numeric

DEFINITION:
Writes a memory variable to an open DOS file and returns the number of bytes written. Writing

begins at the current file pointer position (see FSEEK()).

If the write does not succeed, FWRITE() returns 0.

<expN1> is the numeric file handle returned by FOPEN() or FCREATE().

<expC> is an existing character memory variable containing the string to write.

<expN2> is the number of bytes to write from the memory variable. If you omit it, FWRITE()

writes the entire variable. FWRITE() returns the value <expN2> after a successful write.

RECOMMENDED USE:
Use FWRITE() to store data in text files.

Example—A statistical analysis program puts data in text files for an external graphics package.

The program scans a database file in a loop, writing data into the open file.

USE stats

fhandle = FCREATE("temp.txt",0)

DO WHILE .not. EOF()

 mstat = stat

 FWRITE(fhandle,mstat)

 SKIP

ENDDO

Printing TEMP.TXT shows the STAT fields from each record concatenated in a string without

line breaks. In each execution of the loop, the file pointer moves to the end of a written string.

LIMITS/WARNINGS:
FWRITE() is for advanced programmers who understand how DOS handles files.

FWRITE() SECTION 3

The dBASE® Language Handbook 737 Back to CONTENTS

FWRITE() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions FCLOSE(), FCREATE(), FERROR(), FOPEN(), FREAD(), FREADSTR(), and

FSEEK().

GETE() SECTION 3

The dBASE® Language Handbook 738 Back to CONTENTS

GETE()

DIALECTS:
Clipper only.

SYNTAX:
GETE(<expC>)

RETURNS:
Character

DEFINITION:
Returns the contents of a DOS environmental variable. <expC> is a variable such as COMSPEC,

PATH and USER. GETE is the same as GETENV in other dialects. GETE is in EXTEND.LIB on

the system disk.

SEE ALSO:
Function GETENV().

GETENV() SECTION 3

The dBASE® Language Handbook 739 Back to CONTENTS

GETENV()

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
GETENV(<expC>)

RETURNS:
Character

DEFINITION:
Returns the contents of a DOS environmental variable. <expC> is a variable such as COMSPEC,

PATH, or USER.

DOS environmental variables are like dBASE memory variables. They are defined at the operating

system level with the DOS SET command. See your DOS manual for more information.

GETENV() returns a null string if it does not find <expC>.

RECOMMENDED USE:
Use GETENV() to incorporate operating system information into your applications.

Example—A publishing conglomerate uses several multiuser database applications on a local area

network. To identify users, the system supervisor includes a SET statement in the batch file of

each workstation. The DOS statement

SET USER="PAULA"

creates a DOS environmental variable USER containing the value "PAULA." Now, when Paula

begins working with a database application on the network, GETENV() takes her name from

USER and stores it in the user log.

m_user = GETENV("USER")

USE userlog EXCLUSIVE

APPEND BLANK

REPLACE username WITH m_user

REPLACE timein WITH TIME()

USE

LIMITS/WARNINGS:
When assigning environmental variables, do not put spaces between the variable name and the

equal sign, or between the equal sign and the assigned value. Doing so will cause GETENV() to

return a null value.

GETENV() SECTION 3

The dBASE® Language Handbook 740 Back to CONTENTS

You cannot SET DOS environment variables with the RUN command.

VARIATIONS:
Clipper: Use GETE() instead of GETENV().

SEE ALSO:
Command SET ERRORLEVEL; functions DISKSPACE(), GETE, and OS().

HARDCR() SECTION 3

The dBASE® Language Handbook 741 Back to CONTENTS

HARDCR()

DIALECTS:
Clipper only.

SYNTAX:
HARDCR(<expC>)

RETURNS:
Character

DEFINITION:
Replaces all soft carriage returns [CHR(141)] in <expC> with hard carriage returns [CHR(13)].

HARDCR() is in EXTEND.LIB on the system disk.

RECOMMENDED USE:
Clipper's MEMOEDIT() function has automatic word wrap that stores memo field text with soft

carriage returns. This causes a problem when displaying memo fields without MEMOEDIT(). The

text appears scrambled. HARDCR() corrects the problem.

Example—A library application stores magazine abstracts in Clipper memo fields. During data

entry, MEMOEDIT() controls text input, leaving soft carriage returns at the end of every line.

To generate reports that include the memo field ABSTRACT, the programmer uses HARDCR()

with the memo field name as the parameter.

* <@...SAYs>

? HARDCR(abstract)

TITLE: ELEMENTARY MATHEMATICAL ANALYSIS

A full-year course for secondary school juniors or seniors,

 or for college freshmen

To actually change the carriage returns in the memo field from soft to hard, the programmer later

REPLACEs the field with its own HARDCR() version.

REPLACE abstract WITH HARDCR(abstract)

SEE ALSO:
Functions MEMOEDIT(), MEMOTRAN(), and MEMOWRITE().

HEADER() SECTION 3

The dBASE® Language Handbook 742 Back to CONTENTS

HEADER()

DIALECTS:
Clipper only.

SYNTAX:
HEADER()

RETURNS:
Numeric

DEFINITION:
Returns the size (in bytes) of the active database file's header. Returns 0 if no database is active.

RECOMMENDED USE:
Use HEADER() with DISKSPACE() and RECSIZE() to determine whether a disk has enough

room for operations such as SORT, INDEX, or COPY.

Example—A subroutine makes floppy disk backups of database files. Before doing so, it

compares the file size with the available disk space. The subroutine computes file size as the

number of records times the record size, plus the size of the database file header.

totsize = RECSIZE()*RECCOUNT() + HEADER() && Compute total file size

IF totsize > DISKSPACE(1) && The 1 means A: in Clipper

 * <error routine>

ELSE

 * <copy routine>

ENDIF

VARIATIONS:
You can also determine the header size with the formula

32 * <field count> + 35

For example, to find the header size in FoxBASE+, issue the command

header = 32 * FCOUNT() + 35

In this context, the asterisk is the multiply operator.

Because dBASE III PLUS, dBASE IV, dBXL, and Quicksilver lack a FCOUNT() (field count)

function, issue the commands

HEADER() SECTION 3

The dBASE® Language Handbook 743 Back to CONTENTS

IF LEN(TRIM(FIELD(1))) = 0

 RETURN

ENDIF

fcount = 1

DO WHILE LEN(TRIM(FIELD(fcount))) > 0

 fcount = fcount + 1

ENDDO

header = 32 * fcount + 35

HEADER() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions DISKSPACE(), RECCOUNT(), and RECSIZE().

HTOI() SECTION 3

The dBASE® Language Handbook 744 Back to CONTENTS

HTOI()

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
HTOI(<expC>)

RETURNS:
Numeric

DEFINITION:
Returns the decimal value of its hexadecimal argument.

Specify the argument as a character string of numbers.

RECOMMENDED USE:
Use HTOI() to convert hexadecimal numbers to decimal.

Programmers traditionally refer to DOS function calls by hexadecimal value. Because dBXL and

Quicksilver do not recognize literal hexademical numbers, use HTOI() to specify them as

arguments. Affected commands and functions include DOSINT, IN(), and OUT.

Example—A program uses DOSINT to determine the valid disk drives. DOSINT uses DOS

functions 19h and 0Eh, specified in hexadecimal and converted to decimal in the HTOI() function.

* <More statements>

*

doscall = HTOI("21")

cur_disk = HTOI("1900") && AX=1900h = current disk DOS call

sel_drive = HTOI("0E00") && AX=0e00h = select drive DOS call

axreg = cur_disk

DOSINT doscall,axreg && call DOS (get current drive)

init_drive = MOD(axreg,abyte) && MOD() masks off AH value,

* && saves current drive from AL

* <More statements>

See command DOSINT for the complete valid drive program. (VALDRIVE.PRG).

SEE ALSO:
Commands DOSINT and OUT; functions ITOH() and IN().

IF() SECTION 3

The dBASE® Language Handbook 745 Back to CONTENTS

IF()

DIALECTS:
Clipper only.

SYNTAX:
IF(<expL>,<exp1>,<exp2>)

RETURNS:
Character, date, logical, or numeric

DEFINITION:
Synonym for IIF().

SEE ALSO

Function IIF()

IIF() SECTION 3

The dBASE® Language Handbook 746 Back to CONTENTS

IIF()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
IIF(<expL>,<exp1>,<exp2>)

RETURNS:
Character, date, logical, or numeric

DEFINITION:
Evaluates the logical expression <expL>. If it is true, IIF() returns <exp1>. Otherwise, it returns

<exp2>.

<exp1> and <exp2> may be character, date, logical, or numeric expressions, as long as they are

both the same type. The returned expression also has that type.

IIF() simulates IF...ELSE...ENDIF on a single line.

RECOMMENDED USE:
For faster execution, use IIF() instead of IF..ELSE..ENDIF statements with just two alternatives.

You can also use IIF() in most expressions, such as index expressions, @...SAYs, REPORT

FORMs, and label formats.

Example 1—A data editing routine in a medical office program displays a message for DELETED

records. Initially, the programmer used IF...ELSE...ENDIF to display the message as follows:

IF DELETED()

 @ 01,50 SAY "DELETED"

ELSE

 @ 01,50 SAY " "

ENDIF

If the record is deleted, the program displays "DELETED" in the top right-hand corner of the

screen. Otherwise, the program prints spaces there to overwrite previous "DELETED" messages.

To speed execution, the programmer converts the IF...ELSE...ENDIF to IIF() as follows:

@ 01,50 SAY IIF(DELETED(),"DELETED"," ")

Example 2—The president of Rapid Corp. asks for a telephone directory from his data processing

department. He wants it printed in alphabetical order, keyed on LASTNAME for easy reference.

IIF() SECTION 3

The dBASE® Language Handbook 747 Back to CONTENTS

Because some LASTNAME fields are empty, the programmer uses IIF() to include COMPANY

in the alphabetic order. A LIST of the file shows eight records, including three without

LASTNAMEs:

USE clients

LIST lastname,company

Record# LASTNAME COMPANY

 1 Johnson

 2 Adams

 3 Briggs

 4 Zarzuela

 5 Simone

 6 Harrison Products

 7 Marseilles Communications

 8 Zanfir Products

When LASTNAME is empty, IIF() designates COMPANY as the key field.

IIF() first determines whether LASTNAME is empty. If so, it returns COMPANY. If not, it returns

LASTNAME.

INDEX on IIF(lastname = " ",company,lastname) TO subdex

The resulting index shows LASTNAME and COMPANY in the same alphabetical order:

Record# LASTNAME COMPANY

 2 Adams

 3 Briggs

 6 Harrison Products

 1 Johnson

 7 Marseilles Communications

 5 Simone

 8 Zanfir Products

 4 Zarzuela

SPECIAL USES:
You can use IIF() to index on logical keys by substituting 1's and 0's for true and false values, as

follows:

INDEX ON IIF(<expL>,"1","0")

This produces an index based on the logical field, yet the actual key is of character type. See

INDEX for an example.

IIF() SECTION 3

The dBASE® Language Handbook 748 Back to CONTENTS

VARIATIONS:
Clipper: <exp1> and <exp2> can be different data types. Also, the expression that does not

execute may contain an error without causing a runtime problem. IF() is a synonym for IIF().

SEE ALSO:
Commands CASE, DO CASE, ELSEIF, IF, and INDEX.

IN() SECTION 3

The dBASE® Language Handbook 749 Back to CONTENTS

IN()

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
IN(<expN>)

RETURNS:
Numeric

DEFINITION:
Returns a number from a system input port, used to get data from a device other than the keyboard.

<expN> is the port number. Port numbers vary with computer model.

RECOMMENDED USE:
Use IN() to connect dBXL to external devices such as mouse interface cards, cash registers, and

custom devices. Use BITSET() to test the binary value IN() returns.

Example—A monitoring device controls an automated assembly line. When a malfunction occurs,

the device sends a 3 (binary 00000011) through the PC's input port 5. IN() reads port 5. BITSET()

checks the binary value and determines that bit 0 (the rightmost bit) is on. A telecommunications

program then calls the supervisor via modem

to report the malfunction.

DO WHILE .t.

 IF BITSET(IN(5),0)

 DO call_super

 OUT 5,0

 ENDIF

ENDDO

SEE ALSO:
Command OUT; function BITSET().

INDEXEXT SECTION 3

The dBASE® Language Handbook 750 Back to CONTENTS

INDEXEXT

DIALECTS:
Clipper only.

SYNTAX:
INDEXEXT()

RETURNS:
Character

DEFINITION:
Returns "NTX" for Clipper's default index structure, or "NDX" if you link your application with

NDX.OBJ.

RECOMMENDED USE:
Clipper (Summer '87) supports two index structures. By linking NDX.OBJ with an application,

programmers can override Clipper's default (NTX) indexes, substituting dBASE III PLUS- and

dBASE IV-compatible (NDX) indexes.

To maintain source code portability, independent of the index structure, use INDEXEXT() when

specifying index filenames in a program.

Example—A finance company stores account information on a computer. When the program

starts in the morning, it uses the FILE() function to ensure that the necessary indexes exist. The

programmer uses INDEXEXT() to specify the index extension.

CLEAR

IF .NOT. FILE("ACCT." + INDEXEXT())

 resp = " "

 @ 23,03 SAY "ACCT." + INDEXEXT() + " NOT FOUND. "

 @ 24,03 SAY "Rebuild it now? " GET resp PICT "!" VALID "YN"$resp

 READ

 IF resp = "Y"

 * <rebuild index file>

 ELSE

 * <alternate program>

 ENDIF

ENDIF

SEE ALSO:
Command INDEX; functions FILE(), INDEXKEY(), and INDEXORD().

INDEXKEY() SECTION 3

The dBASE® Language Handbook 751 Back to CONTENTS

INDEXKEY()

DIALECTS:
Clipper only.

SYNTAX:
INDEXKEY(<expN>)

RETURNS:
Character

DEFINITION:
Returns the key expression of an active index. <expN> is the position of the index in the commands

USE <database> [INDEX [<index1>] [,<index2>] [,<index3>]... [,<index7>]]

and

SET INDEX TO [<index1>] [,<index2>] [,<index3>]...[,<index7>]

If the specified index does not exist, INDEXKEY() returns a null string.

In addition to its relative position in the list, you can refer to the master index (the controlling

index) as number 0. (For example, you can change the master index using the SET ORDER

command without affecting the original index numbers).

RECOMMENDED USE:
Use INDEXKEY() in user applications to display index expressions, or in system utility programs

to maintain index files. INDEXKEY() is also helpful in debugging.

Example 1—A program opens a database file with two indexes. If the index files become

corrupted or are not updated, the user can choose to rebuild them using the key returned by

INDEXKEY().

USE master INDEX acctdex, maindex

* <More statements>

yesindex = .f.

@ 11,01 SAY "Do you want to reindex?" GET yesindex PICTURE "Y"

READ

IF yesindex

 key1 = INDEXKEY(1) && Returns UPPER(ACCT).

 key2 = INDEXKEY(2) && Returns MAIN.

 USE master

 INDEX ON &key1 TO acctdex && INDEX ON UPPER(ACCT) TO acctdex

INDEXKEY() SECTION 3

The dBASE® Language Handbook 752 Back to CONTENTS

 INDEX ON &key2 TO maindex && INDEX ON MAIN TO MAINDEX

ENDIF

Example 2—To debug a complex banking application, a programmer displays INDEXKEY()

when opening an index. If a search fails, or an index becomes corrupted, INDEXKEY() helps trace

the problem.

USE assets INDEX massets,liabilities

? " PRIMARY KEY: " + INDEXKEY(0)

? "SECONDARY KEY: " + INDEXKEY(1)

 PRIMARY KEY: mtotal

SECONDARY KEY: expense

VARIATIONS:
dBASE IV: See function KEY() for equivalent.

FoxBASE+: See function SYS(14) for equivalent.

SEE ALSO:
Commands SET INDEX TO, SET ORDER TO, and USE; functions INDEXEXT(),

INDEXORD(), KEY(), and SYS().

INDEXORD() SECTION 3

The dBASE® Language Handbook 753 Back to CONTENTS

INDEXORD()

DIALECTS:
Clipper only.

SYNTAX:
INDEXORD()

RETURNS:
Numeric

DEFINITION:
Returns the relative position in the index list of the master index. If there is no controlling index

(ORDER is SET to 0), or if no index is open, INDEXORD() returns 0.

RECOMMENDED USE:
Use INDEXORD() to save and restore index settings.

Example—An auto parts inventory database has three open indexes. When a user wants to search

the database, the main program module calls a subroutine that changes the index order depending

on the user's request. To maintain a modular design, the subroutine restores the original master

index before returning to the main program.

* MAIN.PRG

*

USE parts INDEX partno,descrip,vehicle

SET ORDER TO 3 && VEHICLE is the master index

* <user selects search>

DO searcher

* SEARCHER.PRG

*

morder = INDEXORD() && MORDER is 3 on entry to SEARCHER.PRG

* <user selects new order—by part number (PARTNO)>

SET ORDER TO 1

* <search code>

* <before returning to MAIN.PRG, restore original order>

SET ORDER TO morder

RETURN

SEE ALSO:
Commands INDEX, SET INDEX, SET ORDER; functions INDEXEXT(), INDEXKEY(), nd

ORDER().

INKEY() SECTION 3

The dBASE® Language Handbook 754 Back to CONTENTS

INKEY()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
INKEY()

RETURNS:
Numeric

DEFINITION:
Returns an integer, between 1 and 255, that represents the ASCII value of the last key the user

pressed. If there is more than one character in the typeahead buffer, INKEY() returns the first one.

SET TYPEAHEAD TO 0 disables INKEY().

Note that many INKEY() values for Ctrl-key and Alt-key combinations are system specific. The

following list summarizes the values:

Clipper

F1 28

F2 to F10 -1 to -9

Ctrl-F1 to Ctrl-F10 -20 to -29

Ctrl-A to Ctrl-Z 1 to 26 (Ctrl-S has no effect)

Alt-F1 to Alt-F10 -30 to -39

Alt-1 to Alt-0 376 to 385

Alt- - 386 Alt-Y 277 Alt-D 288 Alt-Z 300

Alt-+ 387 Alt-U 278 Alt-F 289 Alt-X 301

Alt-Q 272 Alt-I 279 Alt-G 290 Alt-C 302

Alt-W 273 Alt-O 280 Alt-H 291 Alt-V 303

Alt-E 274 Alt-P 281 Alt-J 292 Alt-B 304

Alt-R 275 Alt-A 286 Alt-K 293 Alt-N 305

Alt-T 276 Alt-S 287 Alt-L 294 Alt-M 306

INKEY() SECTION 3

The dBASE® Language Handbook 755 Back to CONTENTS

dBASE III PLUS

F1 28

F2 to F10 -1 to -9 (return -64 with TYPEAHEAD SET TO 1)

Ctrl-F1 to Ctrl-F10 94 to 103

Ctrl-A to Ctrl-Z 1 to 26 (Ctrl-S should return 19, but does not work reliably)

Alt-F1 to Alt-F10 104 to 113

Alt-0 to Alt-F9 31

Alt-Q 16 Alt-I 23 Alt-G 34 Alt-C 46

Alt-W 17 Alt-O 24 Alt-H 35 Alt-V 47

Alt-E 18 Alt-P 25 Alt-J 36 Alt-B 48

Alt-R 19 Alt-A 30 Alt-K 37 Alt-N 49

Alt-T 20 Alt-S 31 Alt-L 38 Alt-M 50

Alt-Y 21 Alt-D 32 Alt-Z 44

Alt-U 22 Alt-F 33 Alt-X 45

dBASE IV

F1 28

F2 to F10 -1 to -9

Ctrl-F1 to Ctrl-F10 -10 to -19

Ctrl-A to Ctrl-Z 1 to 26

Shift-A to Shift-Z 65 to 90

Shift-F1 to Shift F9 -20 to -28 Shift-F10 reserved for macro menu

Alt-F1 to Alt-F10 0 Alt-keys reserved for macro execution

Alt-0 -452

Alt-1 to Alt-9 -451 to -443

Alt-A to Alt-Z -435 to -410

0 to 9 48 to 57

dBXL

F1 28

F2 to F10 -1 to -9

Ctrl-A to Ctrl-Z 1 to 26 (Ctrl-S has no effect)

Ctrl-F1 to Ctrl-F10 94 to 103

Alt-F1 to Alt-F10 104 to 113

Alt-0 to Alt-9 31

Alt-- and Alt-_ 31 (Alt-hyphen and Alt-underscore)

Alt-+ and Alt-= 156

Alt-A 30 Alt-N 49

Alt-B 48 Alt-O 24

Alt-C 46 Alt-P 25

Alt-D 32 Alt-Q 16

Alt-E 18 Alt-R 19

Alt-F 33 Alt-S 31

Alt-G 34 Alt-T 20

Alt-H 35 Alt-U 22

Alt-I 23 Alt-V 47

INKEY() SECTION 3

The dBASE® Language Handbook 756 Back to CONTENTS

Alt-J 36 Alt-W 17

Alt-K 37 Alt-X 45

Alt-L 38 Alt-Y 21

Alt-M 50 Alt-Z 44

FoxBASE+

F1 28

F2 to F10 -1 to -9

Ctrl-F1 to Ctrl-F10 94 to 103

Ctrl-A to Ctrl-Z 1 to 26 (Ctrl-H is 127)

Alt-F1 to Alt-F10 104 to 113

Alt-0 19

Alt-1 to Alt-9 120 to 128

Alt-Q 16 Alt-I 23 Alt-G 34 Alt-C 46

Alt-W 17 Alt-O 24 Alt-H 35 Alt-V 47

Alt-E 18 Alt-P 25 Alt-J 36 Alt-B 48

Alt-R 19 Alt-A 30 Alt-K 37 Alt-N 49

Alt-T 20 Alt-S 31 Alt-L 38 Alt-M 50

Alt-Y 21 Alt-D 32 Alt-Z 44

Alt-U 22 Alt-F 33 Alt-X 45

Quicksilver

F1 28

F2 to F10 -1 to -9

Ctrl-F1 to Ctrl-F10 94 to 103

Ctrl-A to Ctrl-Z 1 to 26 (Ctrl-H is 127, Ctrl-S has no effect)

Alt-F1 to Alt-F10 104 to 113

Alt-0 to Alt-9 31

Alt-Q 16 Alt-I 23 Alt-G 34 Alt-C 46

Alt-W 17 Alt-O 24 Alt-H 35 Alt-V 47

Alt-E 18 Alt-P 25 Alt-J 36 Alt-B 48

Alt-R 19 Alt-A 30 Alt-K 37 Alt-N 49

Alt-T 20 Alt-S 31 Alt-L 38 Alt-M 50

Alt-Y 21 Alt-D 32 Alt-Z 44

Alt-U 22 Alt-F 33 Alt-X 45

Because INKEY() returns a value for almost any key pressed, it lets you use non-printing keys

such as the arrows, PgUp, and PgDn. These keys have the following equivalents:

SPECIAL KEYS ASCII VALUES EQUIVALENT KEYS

Home 1 Ctrl-A

Ctrl-Right arrow 2 Ctrl-B

PgDn 3 Ctrl-C

Right arrow 4 Ctrl-D

Up arrow 5 Ctrl-E

End 6 Ctrl-F

INKEY() SECTION 3

The dBASE® Language Handbook 757 Back to CONTENTS

Del 7 Ctrl-G

PgUp 18 Ctrl-R

Left arrow 19 Ctrl-S

Ins 22 Ctrl-V

Ctrl-End 23 Ctrl-W

Down arrow 24 Ctrl-X

Ctrl-Left arrow 26 Ctrl-Z

Ctrl-Home 29 Ctrl-]

Ctrl-PgDn 30 Ctrl-^

Ctrl-PgUp 31 Ctrl-_

DEFAULT:
If no key is pressed, INKEY() returns 0.

RECOMMENDED USE:
INKEY() can get user responses without pausing program execution as with a READ, ACCEPT,

or WAIT.

Example 1—In the midst of printing, a mailing label jams the platen. Names and addresses

continue to print; however, they overwrite since the labels are not advancing.

The print program allows the user to press "C" to force a stop. To do this, it uses INKEY() within

a DO WHILE loop to check for a key press. Because it does not pause execution, INKEY() does

not interfere with label printing.

SET PRINT ON

DO WHILE .NOT. EOF() .AND. INKEY() # 67

 ?

 ? NAME

 ? COMPANY

 ? ADDRESS

 ? TRIM(CITY) + ", " + STATE + " " + ZIP

 ?

 SKIP && Move to next record

ENDDO

SET PRINT OFF && Upon exiting DO WHILE, SET PRINT OFF

Example 2—A record editing program in a project management system uses INKEY() to get

single character responses to prompts. This lets the programmer get user responses without

conflicting with pending GETs (a READ statement would activate them).

* <@...SAY...GETs> && Display GETs

@ 23,01 SAY "Edit this record? (Y/N)" && Issue prompt

act = 0 && Initialize ACT

DO WHILE act # 89 .AND. act # 78 && Continue DO WHILE until

 act = INKEY() && user presses Y or N

ENDDO

INKEY() SECTION 3

The dBASE® Language Handbook 758 Back to CONTENTS

IF CHR(act) = "Y" && Convert ASCII value

 READ && back to original character

ELSE && If user enters Y, READ pending

 CLEAR GETS && GETs; otherwise, CLEAR them

ENDIF

Example 3—A menu system in a stock market analysis program uses arrow keys to move a

highlighted cursor. INKEY() gets the user's response.

* <cursor movement routine>

action = 0

DO WHILE action = 0

 action = INKEY()

ENDDO

DO CASE

 CASE action = 4

 * pressed right arrow

 CASE action = 19

 * pressed left arrow

 CASE action = 5

 * pressed up arrow

 CASE action = 24

 * pressed down arrow

ENDCASE

Example 4—A car rental agency uses a program to track vehicle maintenance. For convenience,

each menu displays a clock based on the system time. The clock ticks until the user presses a key.

* <@...SAY...GETs>

keypress = 0

DO WHILE keypress = 0

 @ 24,70 SAY TIME() && Display time.

 interval = TIME() && Store time in variable

 keypress = INKEY() && Check for KEYPRESS with INKEY()

 * Stay in DO WHILE until TIME() changes, updating screen once per second

 DO WHILE keypress=0 .AND. interval=TIME()

 keypress = INKEY() && Check for KEYPRESS again

 ENDDO

ENDDO

* <CASE structure to process user selections>

LIMITS/WARNINGS:
dBASE III PLUS: When you SET TYPEAHEAD TO 1, INKEY() may erroneously return -64

when you press a function key from F2 through F10.

VARIATIONS:
Clipper, dBASE IV, FoxBASE+: An optional argument in the form

INKEY() SECTION 3

The dBASE® Language Handbook 759 Back to CONTENTS

INKEY(<expN>)

pauses program execution for the number of seconds given by <expN>. The pause is in "real-time"

seconds, independent of the computer's processing speed. If the user presses a key during a pause,

INKEY() returns its value.

INKEY(0) pauses program execution until the user presses a key.

The dBXL/Quicksilver SLEEP() function also pauses program execution in "real" seconds.

SEE ALSO:
Commands ON KEY and SET TYPEAHEAD; functions CHR(), LASTKEY(), READKEY(),

SINKEY(), and SLEEP().

INT() SECTION 3

The dBASE® Language Handbook 760 Back to CONTENTS

INT()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
INT(<expN>)

RETURNS:
Numeric

DEFINITION:
Returns the largest integer that does not exceed its argument. (INT() discards the decimal point

and all digits to its right).

INT() is like FLOOR(), except that its result is an integer rather than a decimal number.

RECOMMENDED USE:
The primary use of INT() is to select every "Nth" record from a database.

Example—The manager of a list rental agency receives an order for a list consisting of every

eighth name. Nth record selections are a common way to sample names without using the entire

list. The list manager uses INT() to select the names using the equation

RECNO()/8 = INT(RECNO()/8)

The equation is true when record number is divisible by 8. You can use it in any command that

accepts a FOR condition.

The selection commands create a temporary file as follows:

USE dblists

COPY TO TEMP FOR (RECNO()/8 = INT(RECNO()/8))

DBLISTS contains 10,000 records. A listing of TEMP shows 1250 records—one of every eight in

DBLISTS.

SEE ALSO:
Functions CEIL(), FLOOR(), and ROUND().

ISALPHA() SECTION 3

The dBASE® Language Handbook 761 Back to CONTENTS

ISALPHA()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ISALPHA(<expC>)

RETURNS:
Logical

DEFINITION:
Returns true if the first character in its argument is a letter.

RECOMMENDED USE:
Use ISALPHA() to validate filenames, since they may not start with a number. Also use it in

routines that manipulate character strings, doing tasks such as mid-string character replacements.

Such routines include password encryption and name capitalization.

Example 1—A sales program prompts the user to enter a filename in which to save summary data.

After the user responds, ISALPHA() tests the first character to make sure it is not a number.

mname = SPACE(8)

DO WHILE .NOT. ISALPHA(mname)

 @ 10,10 SAY "Enter filename: " GET mname

 READ

ENDDO

SAVE ALL LIKE res* TO &mname

Using a VALID clause, you can reduce the number of lines (not available in dBASE III PLUS).

mname = SPACE(8)

@ 10,10 SAY "Enter filename: " GET mname VALID ISALPHA(mname)

READ

Example 2—To conserve fields in very large applications, some programmers use single fields

for multiple data items. For example, a character field PART with a length of 30 may contain both

a part description and a part number as follows:

PART

Screwdriver9383754

Wrench8384777

You can find the part number by checking ISALPHA() of each character in the field as follows:

ISALPHA() SECTION 3

The dBASE® Language Handbook 762 Back to CONTENTS

ctr = 1

DO WHILE ISALPHA(SUBSTR(part,ctr,1))

 ctr = ctr + 1

ENDDO

When ISALPHA returns false to indicate the first digit, the DO WHILE terminates with CTR

pointing to the digit. The part number is the rest of the field, which we can obtain with

partnum = TRIM(SUBSTR(part,ctr,30-ctr))

VARIATIONS:
Clipper: ISALPHA() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions ISLOWER() and ISUPPER().

ISCOLOR() SECTION 3

The dBASE® Language Handbook 763 Back to CONTENTS

ISCOLOR()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ISCOLOR()

RETURNS:
Logical

DEFINITION:
Returns true on computers with a color graphics card.

RECOMMENDED USE:
ISCOLOR() lets you write programs for both color and monochrome displays. Use it to specify

video attributes or colors depending on the type of display.

Example—The Real Time Real Estate program can use a color display. To differentiate between

color and monochrome displays, the programmer includes ISCOLOR() at the beginning of the

program when setting colors.

* REALT.PRG

* <set up environment>

IF ISCOLOR() && If ISCOLOR() is true,

 SET COLOR TO BG+/N,R/W && set colors to CYAN on BLACK

ENDIF && with RED on WHITE input fields and no border

In this example, if ISCOLOR() is false, the default video settings apply.

LIMITS/WARNINGS:
Some graphics cards emulate color on a monochrome screen by displaying shades to represent

different colors. (These cards, sometimes called composite cards, are found in many portable

computers, and in Compaq and AT&T monochrome computers.) Although ISCOLOR() returns

true for composite cards, some color combinations may be unreadable due to a lack of contrast.

VARIATIONS:
Clipper: ISCOLOUR() is an alternate spelling.

SEE ALSO:
Command SET COLOR; function SETCOLOR().

ISLOWER() SECTION 3

The dBASE® Language Handbook 764 Back to CONTENTS

ISLOWER()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ISLOWER(<expC>)

RETURNS:
Logical

DEFINITION:
Returns true if the first character in its argument is a lowercase letter. Any other character returns

false.

RECOMMENDED USE:
Use ISLOWER() when manipulating strings in reports or in routines that convert data from upper

to lowercase.

Example—A telemarketing company rents lists from several sources. One such list (in a database)

contains the fields CONTACT, ADDRESS, CITY, STATE, and ZIPCODE. CONTACT may hold

a proper name, a title, or a comment. The program must differentiate among these items to print

them correctly.

The program uses ISLOWER() to distinguish the items by capitalization. Titles are in all

uppercase, and proper names are in upper and lower case. Comments begin with lowercase.

ISLOWER() checks the first and second characters of the CONTACT field. If the first character

is uppercase and the second lower, the program assumes it has found a proper name. If the first

character is lowercase, the program assumes a comment. If the first and second characters are

uppercase, the program assumes a title.

IF ISLOWER(contact) && Check first character of CONTACT. If lower,

 comment = contact && assume the field contains a comment

ELSE

 IF ISLOWER(SUBSTR(contact,2,1)) && Check second character. If lower,

 proper = contact && assume proper name

 ELSE

 title = contact && If upper, assume title

 ENDIF

ENDIF

VARIATIONS:
Clipper: ISLOWER() is in EXTEND.LIB on the system disk.

ISLOWER() SECTION 3

The dBASE® Language Handbook 765 Back to CONTENTS

SEE ALSO:
Functions ISALPHA(), ISUPPER(), LOWER(), and UPPER().

ISMARKED() SECTION 3

The dBASE® Language Handbook 766 Back to CONTENTS

ISMARKED()

DIALECTS:
dBASE IV only.

SYNTAX:
ISMARKED([<expC>])

RETURNS:
Logical

DEFINITION:
Indicates whether a database is in a state of change.

After BEGIN TRANSACTION, dBASE IV puts a marker, called the integrity flag, in the file

header when the file is in a state of change. If ISMARKED() detects the marker, it returns (.T.).

DEFAULTS:
Unless you specify an optional alias, ISMARKED() checks the database in the current work area.

ISMARKED() returns false (.F.) if issued with no file in use.

RECOMMENDED USE:
Use it after restarting a program that was interrupted by an error or power failure to determine

whether a database is in a state of change. If ISMARKED() is true, a transaction has begun. Also,

use ISMARKED() in a multiuser environment to determine whether another user has begun a

transaction.

Example—A power loss during a transaction leaves ISMARKED() set true. Upon reentry into the

program, it will return .T., warning that the file may be corrupted. The program can then recover

by RETURNing or by resetting the marker with the RESET command. Resetting the marker

accepts possibly bad data.

USE accounts EXCLUSIVE

IF ISMARKED()

 mreset = .f.

 @ 24,03 SAY "Database file " + DBF() + " is in a state of change. "+;

 "Do you wish to RESET it?" GET mreset PICTURE "Y"

 IF mreset

 RESET && Requires EXCLUSIVE use of the file

 ELSE

 RETURN

 ENDIF

ENDIF

ISMARKED() SECTION 3

The dBASE® Language Handbook 767 Back to CONTENTS

SEE ALSO:
Commands BEGIN TRANSACTION, END TRANSACTION, RESET, and ROLLBACK;

functions COMPLETED() and ROLLBACK().

ISPRINTER() SECTION 3

The dBASE® Language Handbook 768 Back to CONTENTS

ISPRINTER()

DIALECTS:
Clipper only.

SYNTAX:
ISPRINTER()

RETURNS:
Logical

DEFINITION:
Indicates whether the current parallel printer port is ready. It returns true (.T.) if the port is ready

and the printer is online, or false (.F.) if the port is not ready or the printer is off-line.

Similar to dBASE IV's PRINTSTATUS(), FoxBASE+'s SYS(13), and dBXL's and Quicksilver's

PRINTER().

RECOMMENDED USE:
Use ISPRINTER() before printing to check the printer's status.

Example—Before printing a balance sheet, ISPRINTER() checks the printer's status. The

programmer puts ISPRINTER() in a user defined function called CHKPRINT() that returns true

(.T.) if the printer is online, and false if not.

* CHKPRINT

FUNCTION chkprint

*

PRIVATE pkey,success

pkey = 0

SET DEVICE TO SCREEN && Make sure printer is not already on.

DO WHILE pkey # 27 .AND. .NOT. ISPRINTER()

 @ 01,01 SAY "Printer not ready. Press ESC to cancel, or any other key to retry"

 pkey = INKEY(0)

ENDDO

IF pkey # 27

 SET DEVICE TO PRINT

ENDIF

RETURN (pkey # 27)

The caller uses CHKPRINT() to determine whether to print as follows:

ISPRINTER() SECTION 3

The dBASE® Language Handbook 769 Back to CONTENTS

IF CHKPRINT() DO acct_rpt

ELSE

 * DO <recovery procedure>

ENDIF

SEE ALSO:
Functions PRINTSTATUS(), PRINTER(), and SYS(13).

ISUPPER() SECTION 3

The dBASE® Language Handbook 770 Back to CONTENTS

ISUPPER()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ISUPPER(<expC>)

RETURNS:
Logical

DEFINITION:
Returns true if the first character in its argument is an uppercase letter. Any other character returns

false.

RECOMMENDED USE:
Use ISUPPER() in routines that manipulate strings, such as capitalization or encoding programs.

It is similar to ISLOWER().

VARIATIONS:
Clipper: ISUPPER() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions ISALPHA(), ISLOWER(), LOWER(), and UPPER().

ITOH() SECTION 3

The dBASE® Language Handbook 771 Back to CONTENTS

ITOH()

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
ITOH(<expN1>[,<expN2>])

RETURNS:
Character

DEFINITION:
Accepts a number <expN1> and returns its hexadecimal value as a character string.

OPTIONS:
<expN2> is the length of the string returned by ITOH(), padded with leading zeroes if necessary.

RECOMMENDED USE:
ITOH() converts decimal numbers to hexadecimal. Use it with functions and commands that use

hexadecimal arguments or return decimal values. Such functions and commands include HTOI()

(hexadecimal to decimal), DOSINT, IN(), and OUT.

See command DOSINT for detailed examples.

SEE ALSO:
Commands DOSINT and OUT; functions HTOI() and IN().

KEY() SECTION 3

The dBASE® Language Handbook 772 Back to CONTENTS

KEY()

DIALECTS:
dBASE IV only.

SYNTAX:
KEY([<mdx filename>,]<expN>[,<alias>])

RETURNS:
Character

DEFINITION:
Returns the key expression of an active index. <expN> is the position of the index in the

commands:

USE <database> [INDEX [<index1>] [,<index2>] [,<index3>]...[,<index7>]]

and

SET INDEX TO [<index1>] [,<index2>] [,<index3>]... [,<index7]

If the specified index does not exist, KEY() returns a null string.

OPTIONS:
<mdx filename>

You can use KEY() to determine the position of an index TAG within a multiple index.

The original order in which you add indexes (TAGs) to the MDX file determines their positions.

<expN> is the TAG number.

You can specify the MDX of an unselected database by supplying its ALIAS as a KEY() argument.

RECOMMENDED USE:
Use KEY() to display index expressions in applications, or to maintain index files in system utility

programs. It is also helpful in debugging.

Example 1—A utility program opens a database file, then prompts the programmer to specify

index filenames from the directory list. The user can then choose to rebuild the indexes using the

key returned by KEY().

SELECT 1

* <User selects ACCTDEX and MAINDEX>

USE master INDEX acctdex, maindex

KEY() SECTION 3

The dBASE® Language Handbook 773 Back to CONTENTS

* <use other files in different work areas>

SELECT 2

yesindex = .f.

@ 11,01 SAY "Do you want to reindex?" GET yesindex PICTURE "Y"

READ

IF yesindex

 * Use ALIAS since current work area is 2 and files are in 1

 key1 = KEY(1,"master") && Returns UPPER(ACCT)

 key2 = KEY(2,"master") && Returns MAIN

 ndx1 = NDX(1,"master") && Returns ACCTDEX

 ndx2 = NDX(2,"master") && Returns MAINDEX

 SELECT 1

 USE master

 INDEX ON &key1 TO &ndx1

 INDEX ON &key2 TO &ndx2

ENDIF

Example 2—To debug a complex banking application, a programmer displays index keys when

opening an MDX file. If a search fails, or an index becomes corrupted, KEY() helps trace the

problem. This is similar to DISPLAYing STATUS.

* Note that the MDX name goes before the tag number

USE assets ALIAS trans && Automatically opens ASSETS.MDX

ctr=1 && since it is a production MDX.

DO WHILE "" # KEY("ASSETS",ctr) && Do while result not null.

 * The TAG() function returns the TAG name

 ? STR(ctr,2,0) + ". Tag: " + TAG(ctr) + ", Key: " + KEY("ASSETS",ctr)

 ctr = ctr + 1

ENDDO

The report shows a list of TAG names and key expressions:

1. Tag: NAME, Key: substr(name,1,10)

2. Tag: STATE, Key: state

3. Tag: SALESTOT, Key: total

4. Tag: MATCH, Key: substr(state,1,2)+substr(zip,1,4)

5. Tag: CITY, Key: substr(city,1,4)

VARIATIONS:
Clipper: See function INDEXKEY() for equivalent.

FoxBASE+: See function SYS(14) for equivalent.

SEE ALSO:
Commands SET INDEX TO, SET ORDER TO, and USE; functions INDEXEXT(),

INDEXKEY(), INDEXORD(), SYS(), and TAG().

LASTKEY() SECTION 3

The dBASE® Language Handbook 774 Back to CONTENTS

LASTKEY()

DIALECTS:
Clipper and dBASE IV.

SYNTAX:
LASTKEY()

RETURNS:
Numeric

DEFINITION:
Returns the ASCII version of the last key pressed.

DEFAULT:
If no key was pressed, LASTKEY() returns 0.

RECOMMENDED USE:
Use LASTKEY() after a READ to determine how it was completed. With LASTKEY(), you can

designate different actions for different keys pressed.

Example—A data entry program lets users abandon changes to active GETs by pressing Ctrl-Q

or ESC. LASTKEY() checks which key terminated the read. If it is not Ctrl-Q or ESC, the program

REPLACEs the database fields with the GET variables.

ctrlq = 17

m_esc = 27

@ 02,01 SAY "Enter account number: " GET macct && initialize variables

@ 03,01 SAY "Enter invoice number: " GET minv

@ 04,01 SAY "Enter invoice total : " GET mtot

@ 05,01 SAY "Enter sales tax : " GET mtax

READ

IF LASTKEY() = ctrlq .OR. LASTKEY() = m_esc && Ctrl-Q or ESC

 @ 07,01 SAY "Are you sure you want to abandon changes? (Y/N) "

 WAIT "" TO sure

 IF sure $ "Yy"

 RETURN

 ENDIF

ENDIF

REPLACE acct with macct,inv with minv,tot with mtot,tax with mtax

SEE ALSO:
Function READKEY().

LASTREC() SECTION 3

The dBASE® Language Handbook 775 Back to CONTENTS

LASTREC()

DIALECTS:
Clipper only.

SYNTAX:
LASTREC()

RETURNS:
Numeric

DEFINITION:
Returns the number of records in the active database. Same as RECCOUNT().

SEE ALSO:
Function RECCOUNT().

LEFT() SECTION 3

The dBASE® Language Handbook 776 Back to CONTENTS

LEFT()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LEFT(<expC>,<expN>)

RETURNS:
Character

DEFINITION:
Returns a number of characters specified by <expN> from a string <expC>, starting with the

leftmost character.

If <expN> is 0 or negative, LEFT() returns a null string.

LEFT() is the same as SUBSTR(<expC>,1,<expN>).

RECOMMENDED USE:
Use LEFT() in string handling routines such as password encryption, upper/lower case conversion,

and match coding. Also use LEFT to truncate data to fit in reports.

Example 1—When creating columnar reports from a database file, it is not always possible to

include entire fields. When fields exceed the length of the paper, they wrap to the next line. To

avoid this, truncate them using LEFT().

In this example, LNAME and FNAME are both 25 characters long. To fit them on one line with

COMMENT, you must abbreviate them to ten characters each with LEFT().

SET PRINT on

DO WHILE .NOT. EOF()

 ? LEFT(lname,10) + " " + LEFT(fname,10) + LEFT(comment,40)

 SKIP

ENDDO

Example 2—A magazine subscription service uses match codes to identify subscribers. The first

five characters of the code are the subscriber's Zip Code. The next five are the first five characters

of the subscriber's last name. The next four are the first four letters or digits of the street address.

The last four characters indicate expiration date.

Using LEFT() and SUBSTR(), a program divides the code into its components.

match = "83222RONSO22340988"

LEFT() SECTION 3

The dBASE® Language Handbook 777 Back to CONTENTS

mzip = LEFT(match,5)

mlast = SUBSTR(match,6,5)

mstreet = SUBSTR(match,11,4)

mexpire = SUBSTR(match,14,4)

? "Zip: " + mzip + " Last: " + mlast + " Street: " + ;

 mstreet + " Expiration: " + mexpire

 Zip: 83222 Last: RONSO Street: 2234 Expiration: 0988

VARIATIONS:
Clipper: LEFT() is in EXTEND.LIB on the system disk.

dBASE IV: You can specify a memo field as the first argument in LEFT().

SEE ALSO:
Functions STUFF() and SUBSTR().

LEN() SECTION 3

The dBASE® Language Handbook 778 Back to CONTENTS

LEN()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LEN(<expC>)

RETURNS:
Numeric

DEFINITION:
Returns the number of characters in the string <expC>.

RECOMMENDED USE:
The versatile LEN() function has uses in many string handling routines. For example, you can use

it to determine if a character expression contains data or to center text on the screen.

Sophisticated string handling routines often use LEN() to control processing within a DO WHILE

loop. For an example, see function ASC().

Example 1—A mailing program uses dBXL's EMPTY() function to determine whether a string is

blank. EMPTY() returns true if the specified string contains no data. The program presents blank

input fields for each new record. The user can fill them in, or leave them blank to exit. If the user

leaves the first field blank, EMPTY() returns true and data entry ends.

To convert this program to dBASE III PLUS or FoxBASE+ (neither has an EMPTY() function),

the programmer uses LEN(). First, TRIM() removes all trailing blanks. Because empty fields are

all blanks, if the LEN() of the TRIM of the field is 0, the field is empty.

@ 01,01 SAY "Surname: " GET mlast && Memory variable MLAST holds last name

READ

IF LEN(TRIM(mlast))=0 && If LENgth of TRIM of

MLAST equals 0,

 EXIT && EXIT DO WHILE and proceed to next

ELSE && statement; if MLAST contains data,

 LOOP && go to top of DO WHILE and resume

ENDIF && data entry

Example 2—In FoxBASE+ and dBASE III PLUS, you can center text on the screen using LEN().

First subtract the length of the string from the screen length (80), then divide by 2.

mstring = "JPD Software Accounting"

@ ROW(),(80-LEN(mstring))/2 SAY mstring

LEN() SECTION 3

The dBASE® Language Handbook 779 Back to CONTENTS

The text, "JPD Software Accounting" appears centered on the screen in the current ROW().

Example 3—A dBASE III PLUS data entry program creates sets of memory variables for adding

and editing records. Like the dBXL and Quicksilver AUTOMEM option, this program creates

memory variables with the same names as their corresponding fields. It uses LEN() to initialize

the memory variables to the same lengths as the matching fields.

First, the program sets CTR to 1. The DO WHILE repeats as long as the LEN() of the field name

is not zero. The names of the fields change as CTR increases (INFIELD holds each field name

temporarily).

TYPE() determines whether the field is Character, Numeric, Logical, or Date. If character, the

program STOREs enough spaces in the variable to give it the field's length. If numeric, the memory

variable is given the value 0. If logical, the variable is made false. The system date is stored in a

date variable.

ctr = 1

DO WHILE LEN(FIELD(ctr)) > 0 && DO WHILE the FIELD is not null.

 infield = FIELD(ctr) && Put field name in INFIELD.

 DO CASE

 CASE TYPE(FIELD(ctr)) = "C" && If char type, store

 STORE SPACE(LEN(FIELD(ctr))) TO &infield && spaces in variable

 CASE TYPE(FIELD(ctr)) = "N" && If numeric, store

 STORE 0 TO &infield && 0 in variable.

 CASE TYPE(FIELD(ctr)) = "L" && If logical, store

 STORE .F. TO &infield && .F. in variable

 CASE TYPE(FIELD(ctr)) = "D" && If date, store system

 STORE DATE() to &infield && date in variable

 ENDCASE

 ctr = ctr + 1 && Increment field counter

ENDDO

SPECIAL USE:
Clipper: LEN() can also return the number of elements in an array. Use the array's name as an

argument as follows:

DECLARE tarray[10]

? LEN(tarray)

10

dBASE IV: LEN() applies to memo fields.

SEE ALSO:
Command DECLARE; functions ASC(), AT(), and TRIM().

LIKE() SECTION 3

The dBASE® Language Handbook 780 Back to CONTENTS

LIKE()

DIALECTS:
dBASE IV only.

SYNTAX:
LIKE(<expC1>,<expC2>)

RETURNS:
Logical

DEFINITION:
Compares a character string containing wildcard symbols with another character string. LIKE()

returns true (.T.) if the strings match.

<expC1> is a character string containing the wildcard symbols ? or *. The question mark represents

a single character, and the asterisk stands for multiple characters. You can put the wildcard

characters anywhere in the string, any number of times.

<expC2> can be a literal, a memory variable, or field.

The LIKE() function is case sensitive.

Pattern matching follows these conventions:

At the end of a string: ? LIKE("David *","David Kalman")

At the beginning of a string: ? LIKE("* Kalman","David Kalman")

Anywhere in a string: ? LIKE("*ris Jo*","Chris Johnson")

A single character: ? LIKE("David ?alman","David Kalman")

RECOMMENDED USE:
Use LIKE() to query the database when you don't know the exact spelling. In databases containing

ID numbers, you can use LIKE() to classify groups of records.

Example—An automobile mechanic keeps a database of clients. The clerk remembers that Robert

Aronsen's Volkswagen is due for an oil change, but can't remember how to spell "Aronsen."

USE clients

LIST ALL fname,lname FOR LIKE("Ar*",lname)

Record# fname lname

 5 Sally Arbol

 11 Randall Arnold

 22 Mitch Aronson

 38 Robert Aronsen

LIKE() SECTION 3

The dBASE® Language Handbook 781 Back to CONTENTS

 52 Randy Argent

A quick look shows that records 22 and 38 contain "Aronson" or "Aronsen."

Example—An inventory database contains construction materials for homes and for swimming

pools. The second two characters of the part number always indicate the type of material, "HO"

for "home" and "SP" for swimming pool. Using these codes, the LIKE() function provides a handy

way to request sets of records.

LIST ALL partno, descrip FOR LIKE("??HO*",partno)

 Record# partno descrip

 9 15HOA838 frame joint

 99 19HOB83 reinforcement girder

 122 45HO66AB dry wall

 333 12HO7 plaster

SEE ALSO:
Command LIST; functions DIFFERENCE() and SOUNDEX().

LINENO() SECTION 3

The dBASE® Language Handbook 782 Back to CONTENTS

LINENO()

DIALECTS:
dBASE IV only.

SYNTAX:
LINENO()

RETURNS:
Numeric

DEFINITION:
Returns the relative line number of the executing program. It counts from the top of the file,

including comments and continuation lines.

RECOMMENDED USE:
Use LINENO() in the interactive debugger to set execution breakpoints.

You can also use it to return the current line number after you SUSPEND program execution.

Example—When debugging a bibliography application, the programmer sets breakpoints in the

debugger's Breakpoint Window. Specifying LINENO() = 6 makes the program pause at line 6.

LINENO() SECTION 3

The dBASE® Language Handbook 783 Back to CONTENTS

LIMITS/WARNINGS:
LINENO() counts from the top of the program file instead of from the top of the executing

procedure as you might expect.

SEE ALSO:
Command DEBUG; function PROGRAM().

LKSYS() SECTION 3

The dBASE® Language Handbook 784 Back to CONTENTS

LKSYS()

DIALECTS:
dBASE IV only.

SYNTAX:
LKSYS(<expN>)

DEFINITION:
Returns information about a locked file or the current record.

LKSYS(3) returns the time the lock was applied.

LKSYS(4) returns the date the lock was applied.

LKSYS(5) returns the name of the user who applied the lock.

LKSYS() works only with databases prepared with the CONVERT command. CONVERT adds a

hidden field _DBASELOCK that holds the information returned by LKSYS() and the CHANGE()

function. When you are viewing your data, _DBASELOCK is invisible. It is visible when you

DISPLAY or MODIFY STRUCTURE.

RECOMMENDED USE:
Use LKSYS() in multiuser applications to display information about the holder of record and file

locks. If John in accounting locks a record or file, then goes for a three-martini lunch, everyone on

the network knows who to blame.

IF .NOT. FLOCK()

 @ 22,01 SAY "File not available."

 @ 23,01 SAY LKSYS(5)+" locked the file at "+LKSYS(3)+" on "+LKSYS(4)

ENDIF

LIMITS/WARNINGS:
LKSYS() checks only the current record.

The CONVERT command takes a numeric argument between 8 and 24 indicating the length of

the hidden _DBASELOCK field. If you want to return the full information using LKSYS(), be

sure to specify a length of 24 in CONVERT. Otherwise, the information will be truncated. Note

that _DBASELOCK occupies space in the database like any other field.

SEE ALSO:
Commands CONVERT, SET REFRESH, and UNLOCK; functions CHANGE(), FLOCK(),

LOCK(), and RLOCK().

LOCK() SECTION 3

The dBASE® Language Handbook 785 Back to CONTENTS

LOCK()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, FoxBASE+, and Quicksilver.

SYNTAX:
LOCK()

RETURNS:
Logical

DEFINITION:
Tries to lock the current record. If successful, it returns true (.T.). The record can then be changed

only by whoever locked it.

LOCK() is the same as RLOCK().

If LOCK() succeeds, the record stays locked until whoever locked it either issues the UNLOCK

command, or closes the file (with CLEAR ALL, CLOSE DATABASES, QUIT, or USE).

LOCK() prevents multiple users from accessing the same database record simultaneously.

RECOMMENDED USE:
LOCK() and RLOCK() protect the integrity of data, that is, they

allow changes only in a controlled way.

Example 1—A clerk in an automobile parts warehouse receives a telephone order for two

generators. She enters the part code into the computer. The display shows 14 in stock. She enters

a quantity of two. At the same time, another clerk is also viewing the generator record. He tries to

order all 14 generators. Because the first clerk has accessed and locked the record, the second clerk

must wait until the first transaction is finished before proceeding. Otherwise, they might have sold

more generators than were actually in stock.

USE carparts INDEX partdex

DO WHILE .t.

 * <SEEK part_num>

 ctr = 0

 DO WHILE .NOT. LOCK() .AND. ctr < 100

 ctr = ctr + 1

 ENDDO

 IF .NOT. LOCK()

 @ 24,02 SAY "Record unavailable. Press any key to reenter part num."

 WAIT ""

 LOOP

LOCK() SECTION 3

The dBASE® Language Handbook 786 Back to CONTENTS

 ELSE

 mpart = partnum

 mdesc = descrip

 mqty = qty

 @ 02,02 SAY "Part number: " GET mpart

 @ 03,02 SAY "Description: " GET mdesc

 @ 04,02 SAY "Quantity: " GET mqty

 READ

 ENDIF

ENDDO

VARIATIONS:
Clipper: Issuing another LOCK() or RLOCK() releases a previous LOCK() or RLOCK(). Clipper

only prevents other users from changing a locked record. All users may still read it.

Locking a record does not lock its child records in a relation.

dBASE III PLUS: LOCK() and RLOCK() prevent both read and write access by other users.

Locking a record does not lock its child records in a relation.

After you UNLOCK a record, it still remains locked to other users until you move the pointer. To

avoid problems, issue GOTO RECNO() immediately after UNLOCK. This will reset the

LOCK()/RLOCK() status.

dBASE IV: Locking the parent record in a relation automatically locks the child records.

LOCK() and RLOCK() only prevent other users from updating a locked record. All users may still

read it.

You can lock multiple records in a file with a single LOCK() function. The full syntax is

 LOCK([<expC list>] [,<alias>])

<expC> is a list of record numbers in a string. The <alias> is the alias name of a database file open

in any work area. Omitting the record number arguments locks only the current record. Omitting

the alias argument locks only records in the currently selected database file.

dBASE IV locks individual records automatically when you issue commands such as REPLACE

and EDIT. This makes LOCK() unnecessary in many instances. Therefore, LOCK() is best used

when REPLACEing data in multiple records as part of a transaction. For example, to lock records

7 and 8 in a real estate database, you would issue:

timeout = 0

 DO WHILE .NOT. LOCK("7,8","REAL") .AND. timeout < 100

 timeout = timeout + 1

 ENDDO

LOCK() SECTION 3

The dBASE® Language Handbook 787 Back to CONTENTS

dBASE IV permits a maximum of 50 simultaneous locks.

FoxBASE+: Locking a record does not lock its child records in a relation.

LOCK() and RLOCK() automatically re-read the current record to assure that you have the latest

version of the data.

LOCK() and RLOCK() only prevents other users from updating a locked record. All users may

still read it.

Certain FoxBASE+ commands automatically lock the current record. They include DELETE,

RECALL, and REPLACE with a scope of NEXT 1 or RECORD <n>. They also include DELETE

and RECALL with no scope, and GATHER. APPEND BLANK locks the record being appended

and the file header. To prevent errors when two users APPEND BLANK simultaneously, either

lock the file with FLOCK(), or trap the error and RETRY until the APPEND BLANK succeeds:

ON ERROR DO apptry

USE prospects

APPEND BLANK

ON ERROR

PROCEDURE apptry

IF ERROR() = 108 && FoxBASE+ "File in use" error

 RETRY

ENDIF

Quicksilver: LOCK() and RLOCK() prevent other users from updating a record. With SET

AUTOLOCK ON, the REPLACE command locks the record automatically.

Locking a record does not lock its child records in a relation.

SEE ALSO:
Command UNLOCK; functions ERROR() and FLOCK().

LOG() SECTION 3

The dBASE® Language Handbook 788 Back to CONTENTS

LOG()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LOG(<expN>)

RETURNS:
Numeric

DEFINITION:
Returns the natural logarithm of its argument. Natural logarithms have a base of e. LOG() returns

x in the equation

ex = <expN>

e is approximately 2.71828.

<expN> must be greater than 0.

RECOMMENDED USE:
LOG() is used in scientific formulas describing chemical, electrical, and physical properties.

Example—An equation determining electrical resistance uses the natural logarithm of the starting

voltage divided by the ending voltage.

volt = 112

voltend = 105

voltlog = LOG(volt/voltend)

.06

SEE ALSO:
Functions EXP() and LOG10().

LOG10() SECTION 3

The dBASE® Language Handbook 789 Back to CONTENTS

LOG10()

DIALECTS:
dBASE IV, dBXL, and Quicksilver.

SYNTAX:
LOG10(<expN>)

RETURNS:
Numeric (dBXL, Quicksilver)

Floating point numeric (dBASE IV)

DEFINITION:
Returns the logarithm to base 10 of its argument (the common logarithm). LOG10(<expN>)

returns y in the equation

 <expN> = 10Y

or

 LOG10(x) = y

The argument must be positive.

RECOMMENDED USE:
The common logarithm is used to solve exponential equations. To find LOG10() of 2.411, enter:

? log10(2.411)

 0.382

SEE ALSO:
Functions EXP() and LOG().

LOOKUP() SECTION 3

The dBASE® Language Handbook 790 Back to CONTENTS

LOOKUP()

DIALECTS:
dBASE IV only.

SYNTAX:
LOOKUP(<return exp>, <search exp>, <field>)

RETURNS:
Programmer defined

DEFINITION:
Searches for a record matching <search exp>. It looks for <search exp> in the specified <field>.

If it finds a match, LOOKUP() returns <return exp> from the matching record and moves the

pointer to it. Otherwise, LOOKUP() moves the pointer to the end- of-file. It also returns a blank

string, zero, a blank date, or false (.F.), depending on the type of <return exp>.

LOOKUP() is a "smart" function. If you have an open index file or mdx TAG, it will do an indexed

search (a SEEK). If there is no index available, LOOKUP() does a sequential search (a LOCATE).

<return exp>

The expression to return from a matching record. It typically is a field, or a calculation derived

from a field.

<search exp>

The expression you want to find.

<field>

The field in which to search.

DEFAULTS:
Searches the database in the current work area. You can search one in an unselected work area

using the ALIAS-> specifier with the return expression and the <field> name.

RECOMMENDED USE:
Use LOOKUP() to find data in an unselected database file (indexed or not) and return a single

value from it.

Example—A data entry operator enters a student registration number. LOOKUP() searches the

MASTER student list, and returns the student's last name for verification. Using the ALIAS, this

is done without disturbing the database files in the selected work area.

USE master ORDER st_id IN 5

LOOKUP() SECTION 3

The dBASE® Language Handbook 791 Back to CONTENTS

DO WHILE .t.

 student = SPACE(4)

 @ 10,10 SAY "Enter identification: " GET student PICTURE "@!"

 READ

 IF student = " "

 EXIT

 ENDIF

 choice = LOOKUP(MASTER->st_lname, student, MASTER->st_id)

 @ 11,00

 @ 11,10 SAY choice

ENDDO

To return multiple values, use the SEEK() function instead. SEEK() itself does not return data;

however, it indicates whether data was found (true or false), and moves the pointer to the found

record. For example, using LOOKUP() to return multiple data items creates inconsistent, repetitive

code. If LOOKUP() doesn't find the expression you specified, it stores empty fields in the target

variables.

mlname = LOOKUP(MASTER->lname,student,MASTER->id) && Return last name

mcity = MASTER->city && Return city

mstate = MASTER->city && Return state

IF EOF() && If LOOKUP() failed, retry search

 * <statements> && and set variables to defaults, or cancel

 *

 *

ENDIF

SEEK() is more logical, and gives you more control

IF SEEK(student,"MASTER") && If SEEK doesn't find the STUDENT, then

 mlname = MASTER->lname && the following statements never execute

 mcity = MASTER->city

 mstate = MASTER->state

ELSE

 * <statements> && If SEEK is false, do alternative statements

ENDIF

LIMITS/WARNINGS:
Searching for compound (multiple field) index key values does not work. Because <field> is a

single fieldname, use single field index keys for reliable searches.

LOOKUP() cannot return multiple values from the found record.

SEE ALSO:
Commands LOCATE and SEEK; functions EOF(), FOUND(), and SEEK().

LOWER() SECTION 3

The dBASE® Language Handbook 792 Back to CONTENTS

LOWER()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LOWER(<expC>)

RETURNS:
Character

DEFINITION:
Converts all uppercase letters in a character expression to lowercase.

LOWER() does not affect non-alphabetic characters.

RECOMMENDED USE:
Because dBASE is case-sensitive, convert character strings to either uppercase or lowercase when

evaluating them. This assures that the program evaluates them consistently.

Example—A user prompt in an accounting program requests a "Y" or "N" response. Because the

program uses WAIT TO to get the response, there is no way to force either upper or lower case

entry. Thus, the program must disregard case. To do this, it uses LOWER() when evaluating the

string.

WAIT "Continue with end of month posting? (Y/N)" TO action

IF LOWER(action) = "y"

 DO eompost

ENDIF

The UPPER() function will also do the job.

SEE ALSO:
Functions ISUPPER(), ISLOWER(), and UPPER().

LTRIM() SECTION 3

The dBASE® Language Handbook 793 Back to CONTENTS

LTRIM()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LTRIM(<expC>)

RETURNS:
Character

DEFINITION:
Removes leading blanks from <expC>.

RECOMMENDED USE:
When using the STR() function to convert a number to a string, you must specify the total number

of digits, including the decimal point and signs. If the number is shorter than the specified length,

STR() adds leading blanks. LTRIM() removes them.

Example—A report program prints the date on each page. The STR() function converts the

numeric DAY to a character string; however, when DAY() is a single digit, STR() leaves a leading

blank which LTRIM() removes.

rd=CTOD('05/01/88') && CTOD() converts characters to dates

?

? CMONTH(rd) + " " + LTRIM(STR(DAY(rd),2,0)) + ", " + STR(YEAR(rd),4,0)

?

* <more report>

This code fragment prints the date 05/01/88 as

 May 1, 1988

SEE ALSO:
Functions ALLTRIM(), STR(), and TRIM().

LUPDATE() SECTION 3

The dBASE® Language Handbook 794 Back to CONTENTS

LUPDATE()
DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
LUPDATE()

RETURNS:
Date

DEFINITION:
Returns the date on which the active database was last changed. LUPDATE()

uses the system date.

LUPDATE() returns a blank date if no file is in use.

RECOMMENDED USE:
Use LUPDATE() to verify database transactions and avoid repetitions. It is also useful for

identifying recently changed files that should be archived.

Example—Newton Corp. updates a master archive at the end of each day. Before appending new

records from the main transaction files, the program checks LUPDATE() for each file and

compares it to a value stored in a transaction log file. If the values are the same, the program skips

the file.

SELECT 1

USE log INDEX filename && Open transaction log indexed on filename

SELECT 2

USE archive && Open main archive file

SELECT 3

USE sales2 && Open transaction file SALES2

mlupdate = LUPDATE() && Store LUPDATE() to mlupdate

USE && Close transaction file SALES2

SELECT 1

SEEK "sales2" && SEEK filename in LOG

IF mlupdate # dupdate && If the dates are not the same,

 SELECT 2 && return to ARCHIVE and

 APPEND from sales2 && append records from SALES2

ELSE

 ? "Moving to next file"

ENDIF

* <Repeat process for each file, or make filenames variable and

* execute within a DO WHILE>.

LUPDATE() SECTION 3

The dBASE® Language Handbook 795 Back to CONTENTS

VARIATIONS:
Clipper: LUPDATE() is in EXTEND.LIB on the system disk.

dBASE IV: You can apply LUPDATE() to an unselected database by using an alias as the

argument, in the form

LUPDATE(<expC>)

SEE ALSO:
Functions DBF(), FIELD(), NDX(), RECCOUNT(), RECSIZE(), and TAG().

MAX() SECTION 3

The dBASE® Language Handbook 796 Back to CONTENTS

MAX()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
MAX(<expN1>,<expN2>)

RETURNS:
Numeric

DEFINITION:
Returns the larger of two numeric expressions.

RECOMMENDED USE:
MAX() compares any two valid numeric expressions, including numeric fields, and returns the

larger. However, it cannot return the maximum value of a field throughout a database.

Example—A job placement agency signs a service contract for maintaining its mainframe and

personal computers. The contract stipulates payment of an $850 per month retainer, or $85 per

hour, whichever is higher.

A billing program generates the monthly total using MAX() to determine the proper charge. When

HOURNUM exceeds 10, SERVICE equals HOURNUM times 85. Otherwise, SERVICE equals

850.

* <GET number of hours, parts, etc.>

service = MAX(850,HOURNUM*85)

VARIATIONS:
Clipper, FoxBASE+: MAX() also returns the later of two dates.

dBASE IV: MAX() also returns the later of two dates. It differs from the MAX() option of the

CALCULATE command which returns the maximum value from groups of records.

SEE ALSO:
Command CALCULATE; function MIN().

MDX() SECTION 3

The dBASE® Language Handbook 797 Back to CONTENTS

MDX()

DIALECTS:
dBASE IV only.

SYNTAX:
MDX(<expN>[,<alias>])

RETURNS:
Character

DEFINITION:
Returns the name of an open MDX (multiple index) file.

<expN> is the number indicating the position of the MDX file within the file list of USE and SET

INDEX TO.

SET ORDER TO does not affect MDX().

If you specify a nonexistent index file, MDX() returns a null string.

OPTIONS:
To find the name of an active MDX file in an unselected work area, supply the ALIAS name as

the second argument.

RECOMMENDED USE:
Use MDX() to display the active MDX files during development and debugging. This is helpful

when using index-dependent commands such as SET RELATION and SEEK.

Example—While debugging a sales tracking system, a programmer includes a procedure

SHOWMDX to display the names of active MDX files. At key breakpoints, the programmer

includes the command DO SHOWMDX.

* SHOWMDX.PRG

? DBF() && Show active database filename

ctr = 1

* Do while MDX(ctr) doesn't return a null value

DO WHILE "" # MDX(ctr)

 ? "MDX FILE " + STR(ctr,1,0) + ": " + MDX(ctr)

 ctr = ctr + 1

ENDDO

MDX() SECTION 3

The dBASE® Language Handbook 798 Back to CONTENTS

To find the name of an MDX file in an unselected area, use the alias as an MDX() argument. For

example, MDX(2,"SALES") returns the name of the second MDX associated with the SALES

database.

SEE ALSO:
Commands INDEX and SET INDEX TO; functions DBF(), NDX(), and TAG().

MDY() SECTION 3

The dBASE® Language Handbook 799 Back to CONTENTS

MDY()

DIALECTS:
dBASE IV only.

SYNTAX:
MDY(<expD>)

RETURNS:
Character

DEFINITION:
Converts a date expression to a Month DD, YY format. If you SET CENTURY ON, the result is

Month DD, YYYY.

DD appears without a leading zero if it has only one digit. Month is spelled out. A comma appears

after the day.

RECOMMENDED USE:
Use MDY() to report dates in a readable format.

Example—A monthly report displays the date in the top left corner in MDY format.

mtoday = DATE()

@ 04,01 SAY MDY(mtoday)

It prints as:

September 5, 88

With SET CENTURY ON, the date prints as

September 5, 1988

SEE ALSO:
Commands SET CENTURY and SET DATE; functions CDOW(), CMONTH(), DATE(), DOW(),

DMY(), and MONTH().

MEMLINES() SECTION 3

The dBASE® Language Handbook 800 Back to CONTENTS

MEMLINES()

DIALECTS:
dBASE IV only.

SYNTAX:
MEMLINES(<expC>)

RETURNS:
Numeric

DEFINITION:
Counts the number of word-wrapped lines that a memo field fills when formatted.

The SET MEMOWIDTH command sets the memo's width.

<expC> is the memo field name.

RECOMMENDED USE:
Use MEMLINES() to compute page breaks when including free form text in formatted reports. It

works with MLINE() to control text formatting.

Example—A legal application includes case abstracts in memo field ACASE. To print the text on

a form 15 lines long, MEMLINES() measures its formatted length, and MLINE() extracts and

prints lines.

USE abstract

SET DEVICE TO PRINT

SET MEMOWIDTH TO 20

tlen = MEMLINES(acase) && Measure text formatted to 20 characters

mline = 1 && Start counter for memo line (MLINE)

pline = 1 && Start counter for print line (PLINE)

DO WHILE mline <= tlen && PLINE increases from 1 to MEMLINES()

 extract = MLINE(acase,mline) && Function MLINE extracts line from memo

 @ pline,01 SAY extract

 mline = mline + 1 && Increase MLINE by 1 until out of lines

 pline = pline + 1 && Increase PLINE by 1 until

 IF pline = 15 && it reaches 15, then

 EJECT && EJECT and reset PLINE to 1

 pline = 1 && (It actually prints only 14 lines.)

 ENDIF

ENDDO

EJECT

SET DEVICE TO screen

MEMLINES() SECTION 3

The dBASE® Language Handbook 801 Back to CONTENTS

LIMITS/WARNINGS:
The name MEMLINES() is easy to confuse with Clipper's MEMOLINE(), which does a different

function. MEMLINES() is equivalent to Clipper's MLCOUNT().

SEE ALSO:
Functions HARDCR(), MEMOEDIT(), MEMOREAD(), MEMOTRAN(), MEMOWRIT(),

MLCOUNT(), and MLINE().

MEMOEDIT() SECTION 3

The dBASE® Language Handbook 802 Back to CONTENTS

MEMOEDIT()

DIALECTS:
Clipper only.

SYNTAX:
MEMOEDIT(<expC1>,[<expN1>,<expN2>,<expN3>,<expN4>]

 [,<expL1>][,<expC2>] [,<expN5>][,<expN6>][,<expN7>]

 [,<expN8>])[,<expN9>][,<expN10>])

RETURNS:
Character

DEFINITION:
Opens a window for editing character strings or memo fields. MEMOEDIT() provides full cursor

movement commands and automatic word wrap. If you modify the memo or string, it returns the

modified string. If you make no changes, it returns the original string.

<expC1> is the name of a memo field, or a string memory variable. Using optional numeric

arguments and a user defined function, you can control the cursor and customize MEMOEDIT()'s

response to key inputs.

OPTIONS:
The optional numeric expressions <expN1>, <expN2>, <expN3>, and <expN4> are the

coordinates of the editing window. <expN1>,<expN2> is the top left position. <expN3>,<expN4>

is the bottom right. If you do not specify coordinates, MEMOEDIT() uses the entire screen.

<expL> specifies whether the user can change a memo field. If it is true, the user can update the

memo (update mode); if it is false, he or she can only examine the memo (browse mode).

<expC2> is a user defined function that executes when the user presses a key not recognized by

MEMOEDIT() (a key exception). Key exceptions include Function, Ctrl, and Alt combinations.

See User defined function below for more information.

<expN5> sets the line length. If it exceeds the width of the editing window, the line scrolls

horizontally.

<expN6> sets the width of tab characters. If you specify it, MEMOEDIT() inserts hard tab

characters (09H) when you press the Tab key. If you do not specify <expN6>, MEMOEDIT()

inserts four spaces when you press Tab.

<expN7> is the initial line position of the cursor within the memo.

<expN8> is the initial column position of the cursor within the memo.

MEMOEDIT() SECTION 3

The dBASE® Language Handbook 803 Back to CONTENTS

<expN9> is the initial row to place the cursor relative to the window position. The default is zero.

<expN10> is the initial column to place the cursor relative to the window position. The default is

zero.

Note: To skip an argument (choosing the default), pass a dummy variable with a null value in its

position.

USER DEFINED FUNCTION:
In response to a key exception, MEMOEDIT() executes the user defined function specified in

<expC2>, automatically passing it three parameters:

MODE, LINE, and COLUMN.

MODE tells the user defined function about the state of MEMOEDIT(). The MODEs are:

Mode Description

0 Idle, no key to process.

1 User enters key exception without changing memo

2 User enters key exception, changing memo

3 Startup

LINE and COLUMN relay the cursor position. LINE begins at 1, and COLUMN begins at 0.

MODE 0
MODE 0 indicates that there is no key exception to process. The function can ignore MODE 0, or

use it simply to track the cursor's position and display the line and column numbers (using the

LINE and COLUMN

parameters).

MODE 1
MODE 1 indicates that the user has pressed a key exception without changing the memo.

MODE 2
MODE 2 indicates that the user has pressed a key exception, but has changed the memo.

MODE 3
MODE 3, the startup mode, indicates that the user has just invoked MEMOEDIT(). When it detects

MODE 3, the user defined function can configure MEMOEDIT()'s insert, scroll, or word wrap

toggles by RETURNing the appropriate codes.

MEMOEDIT() continues to call the function with MODE 0 until it RETURNs 0. MEMOEDIT()

then presents the memo or character string for editing.

The codes RETURNed to MEMOEDIT() from the function are based on Clipper's INKEY()

values.

MEMOEDIT() SECTION 3

The dBASE® Language Handbook 804 Back to CONTENTS

MEMOEDIT() User Function Return Codes

Value Action

0 Take default action

1 Move to top of editing window

2 Reform text (Ctrl-B)

3 Move down one page

4 Move right one space

5 Move up one line

7 Delete one character

18 Move up one page

19 Move left one space

22 Toggle insert mode

23 Save and exit

24 Move down one line

29 Move to top of memo

30 Move to bottom of memo

32 Ignore or disable the current key

33 Insert control key into the text as data

34 Toggle word wrap

35 Toggle vertical text scrolling

100 Move right one word

101 Move to bottom right of window

You can use LASTKEY() in the user defined function to redefine key combinations. For example,

you could define Alt-F2 to open a lookup window during data entry.

You can also assign the function keys to move the cursor, or save or abandon an edited memo or

character string.

Note that you cannot redefine or ignore keys normally used to control MEMOEDIT(). They

include cursor keys, the Enter key, backspace, Tab, Del, and other character keys.

MEMOEDIT() Editing Features
Text Reformatting
MEMOEDIT() follows the WordStar(tm) convention for reformatting text (Ctrl-B). Press Ctrl-B

or RETURN 2 from the user defined function. Reformatting ends with the next hard carriage return

or the end of the memo, whichever comes first.

Text Scrolling
By default, MEMOEDIT() scrolls the text vertically when the user presses the up and down arrow

keys. The cursor stays on the same line. RETURNing 35 from the user defined function turns the

scrolling off, instead letting the cursor move from line to line.

Word Wrap
MEMOEDIT()'s word wrap defaults to ON. You can turn it off by RETURNing 34 from the user

defined function.

With word wrap on, a word that does not fit on a line moves to the next one. MEMOEDIT() inserts

a soft carriage return/line feed at the break. With word wrap off, the line scrolls horizontally for

its defined width (the width of the window by default). To move to the next line, the user must

press Enter to insert a hard carriage return/line feed.

See HARDCR() and MEMOTRAN() for information on formatting memos with soft carriage

returns.

MEMOEDIT() SECTION 3

The dBASE® Language Handbook 805 Back to CONTENTS

Control Keys
Cursor movement keys generally mimic WordStar conventions.

Ctrl-A or Ctrl-Left arrow Move left one word

Ctrl-B Reformat memo (word wrap)

Ctrl-D or right arrow Move right one space

Ctrl-E or up arrow Move up one line

Ctrl-F or Ctrl-Right arrow Move right one word

Ctrl-S or left arrow Move left one space

Ctrl-T Delete word to the right

Ctrl-X or down arrow Move down one line

Ctrl-W Finish editing and save changes

Ctrl-Y Delete current line

ESC Cancel editing without saving changes

Home Beginning of current line

End End of current line

Ctrl-Home Top of current window

Ctrl-End Bottom of current window

PgUp Move up one page

PgDn Move down one page

Ctrl-PgUp Top of memo

Ctrl-PgDn End of memo

RECOMMENDED USE:
Use MEMOEDIT() to change or display memo fields. It is also useful for editing long character

memory variables. Clipper limits the length of character strings to 64K. So you can store an entire

memo field in a memory variable, then manipulate it like a character variable.

Example 1—A scientific application stores laboratory observations of cell cultures in a Clipper

memo field. The field is called OBSERVE, and each record pertains to a different petri dish. To

edit a memo field, the biologist selects "E" from the menu.

DO CASE

 * <user enters "E">

 CASE action = "E"

 SAVE SCREEN

 REPLACE observe WITH MEMOEDIT(observe,02,02,18,50,.T.)

 * <more cases>

ENDCASE

RESTORE SCREEN

The program first saves the current screen with SAVE SCREEN. Then it issues MEMOEDIT() in

a REPLACE statement, indicating that changes to the memo will be saved. The top left corner of

the editing window is at coordinate 2,2, and the bottom left corner is at 18,50. After the user

finishes editing the memo, RESTORE SCREEN redisplays the previous screen.

MEMOEDIT() SECTION 3

The dBASE® Language Handbook 806 Back to CONTENTS

Example 2—In the application from Example 1, a program module lets scientists review the

observations. MEMOEDIT() displays memo field OBSERVE, but the .F. parameter prevents them

from making changes.

MEMOEDIT(observe,02,02,18,50,.F.)

Example 3—When adding new memos to a database, the scientific application from Examples 1

and 2 first stores text in a memory variable. When the user finishes editing, the memory variable

is REPLACEd into the memo field. This keeps the database file open no longer than is necessary

to do the REPLACE, protecting data from power failures and program errors.

In this example, MOBSERVE is a character memory variable. The user defined function

MCONTROL assesses the parameters MODE, LINE, and COLUMN. At startup (MODE 3),

MCONTROL activates the insert mode (KEYBOARD CHR(22)), and turns word wrap and

scrolling off.

Since only one expression can be RETURNed at a time, the program uses the logical variables

FIRST and SECOND to determine how many times MCONTROL has been called. Because

MODE 3 (startup) repeats until it detects a RETURN of 0, MCONTROL can RETURN a different

value each time it is called, even if the MODE doesn't change.

CLEAR PUBLIC first && Set flag to count number of times

 && MEMOEDIT calls the UDF

first = .t.

@ 01,01 TO 19,51

* Window goes from 02,02 to 18,50, the udf is MCONTROL

* The line length is 79 (it scrolls beyond the window). The tab

* setting is 4 spaces, and the initial cursor position is 5,5

mosbserve = " "

mobserve = MEMOEDIT(mobserve,02,02,18,50,.T.,"mcontrol",79,4,5,5)

USE results INDEX dishdex

GOTO 10

REPLACE observe WITH mobserve

USE

RELEASE first,second

FUNCTION mcontrol

PARAMETERS mode,line,column

@ 24,30 SAY "<PRESS F2 TO ABANDON, F3 TO SAVE>"

DO CASE

 CASE mode = 0

 @ 24,01 SAY "COORD: " + STR(line,3,0) + "," + STR(column,2,0)

 CASE mode = 3

 * Use variable "flag" FIRST to count number of calls to the UDF

 * This lets you do multiple RETURNs for the same MODE

 KEYBOARD CHR(22) && Toggle insert mode ON

 IF first && First is flag set in calling program

 first = .f. && Make FIRST false, so it won't execute again

 PUBLIC second

MEMOEDIT() SECTION 3

The dBASE® Language Handbook 807 Back to CONTENTS

 second = .t.

 RETURN 34 && Turn WORD WRAP OFF

 ELSEIF second

 second = .f.

 RETURN 35 && Turn SCROLLING OFF

 ENDIF

 CASE mode = 1 .or. mode = 2

 IF LASTKEY() = -1 && Abandon memo if user presses F2

 KEYBOARD CHR(27)

 ELSEIF LASTKEY() = -2 && Save memo if user presses F3

 KEYBOARD CHR(23)

 ENDIF

ENDCASE

RETURN 0

LIMITS/WARNINGS:
MEMOEDIT's word wrap inserts soft carriage returns. To convert them to hard returns for display,

use the HARDCR() function.

MEMOEDIT() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions HARDCR(), MEMOLINE(), MEMOREAD(), MEMOTRAN(), MEMOWRIT(), and

MLCOUNT().

MEMOLINE() SECTION 3

The dBASE® Language Handbook 808 Back to CONTENTS

MEMOLINE()

DIALECTS:
Clipper only.

SYNTAX:
MEMOLINE(<expC>,<expN1>,<expN2>)

RETURNS:
Character

DEFINITION:
Formats a line of text from a memo field or character expression.

<expC> is the memo field name or character expression from which to extract the line. In character

expressions, lines are strings delimited by carriage return/line feeds.

<expN1> is the length of the formatted line. If you choose a memo field line longer than the

formatted line you specify, MEMOLINE() wraps extra words to the next line. If the memo field

line is shorter, MEMOLINE() pads the string with blanks. <expN2> is the line number to format.

If it is invalid, MLINE() returns a null string.

MEMOLINE() is similar to dBASE IV's MLINE() function.

RECOMMENDED USE:
Use MEMOLINE() to produce reports using free form text input.

Example—A patient's hospital record includes formatted data and free form text. To print the text,

MEMOLINE() extracts and formats lines from memo field PATIENT.

USE p_records

SET DEVICE TO PRINT

FOR lcount = 1 TO 60

 extract = MEMOLINE(patient,55,lcount)

 IF extract == "" && == is like SET EXACT ON for this comparison.

 EJECT && If EXTRACT is null, then EJECT and EXIT

 EXIT

 ENDIF

 @ lcount,01 SAY extract

NEXT

SET DEVICE TO screen

MEMOLINE() SECTION 3

The dBASE® Language Handbook 809 Back to CONTENTS

LIMITS/WARNINGS:
MEMOLINE() is in EXTEND.LIB on the system disk.

MEMOLINE() is easy to confuse with dBASE IV's MEMLINES() function. It is functionally

equivalent to dBASE IV's MLINE() function.

SEE ALSO:
Functions HARDCR(), MEMLINES(), MEMOEDIT(), MEMOREAD(), MEMOTRAN(),

MEMOWRIT(), and MLINE().

MEMOREAD() SECTION 3

The dBASE® Language Handbook 810 Back to CONTENTS

MEMOREAD()

DIALECTS:
Clipper only.

SYNTAX:
MEMOREAD(<filename>)

RETURNS:
Character

DEFINITION:
Reads a text file from disk. You can then store it in a memory variable, REPLACE it into a memo

field, or edit it with MEMOEDIT().

You must specify a full <filename>, including the extension.

RECOMMENDED USE:
MEMOREAD() lets you import entire text files into programs. This is useful for managing

documents produced by word processors.

Example—A scientific application stores laboratory observations of cell cultures in a Clipper

memo field. The memo field is OBSERVE, and each record in the database pertains to a different

petri dish. Some scientists in the field record observations using a text editor. MEMOREAD() later

imports their findings into memo field OBSERVE.

* <Routine to go to correct record>.

REPLACE observe WITH MEMOREAD("FIELD.TXT")

LIMITS/WARNINGS:
Text files must be in ASCII format.

MEMOREAD() is in EXTEND.LIB on the system disk.

SEE ALSO:
Command REPLACE; function MEMOEDIT().

MEMORY() SECTION 3

The dBASE® Language Handbook 811 Back to CONTENTS

MEMORY()

DIALECTS:
Clipper, dBASE IV, dBXL, and Quicksilver.

SYNTAX:
MEMORY(0) (Clipper, dBASE IV)

MEMORY() (dBASE IV, dBXL, Quicksilver)

RETURNS:
Numeric

DEFINITION:
Returns the amount of available memory.

Clipper and dBASE IV return K bytes, dBXL and Quicksilver return bytes.

RECOMMENDED USE:
Use MEMORY() during program development to determine how much memory a compiled

application requires. MEMORY() is also useful for checking whether your computer has enough

free memory to RUN external DOS commands or programs.

Example 1—A programmer wants to give end users access to an external text editor from within

a dBASE IV application. Because the amount of free memory can vary, MEMORY() tests how

much is available before running the editor. (The text editor requires 50K).

IF MEMORY() > 50

 RUN qedit

ELSE

 ? "Insufficient memory to run editor"

ENDIF

Example 2—While developing a dBXL/Quicksilver program, a programmer uses MEMORY() to

display the available memory and the amount taken by the program.

availmem = MEMORY()

totmem = 655360

usedmem = totmem - availmem

? "Available memory " + STR(availmem,8,0)

? "Memory used " + STR(usedmem,8,0)

The same example in Clipper requires slightly different syntax. The memory function must have

a 0 parameter, and the number of bytes must be multiplied by 1024.

MEMORY() SECTION 3

The dBASE® Language Handbook 812 Back to CONTENTS

availmem = MEMORY(0) * 1024

totmem = 655360

usedmem = totmem - availmem

? "Available memory " + STR(availmem,8,0)

? "Memory used " + STR(usedmem,8,0)

In dBASE IV, MEMORY() does not require an argument.

VARIATIONS:
dBASE IV: MEMORY() produces the same results with no argument and with an argument of 0.

FoxBASE+: The SYS(12) function returns the available memory in bytes.

SEE ALSO:
Function SYS(12).

MEMOTRAN() SECTION 3

The dBASE® Language Handbook 813 Back to CONTENTS

MEMOTRAN()

DIALECTS:
Clipper only.

SYNTAX:
MEMOTRAN(<expC>[,<expC2>][,<expC3>])

RETURNS:
Character

DEFINITION:
Replaces the carriage return/line feed characters in a character expression (usually a memo field)

with other characters as follows:

• Hard carriage returns (CHR(13) + CHR(10)) convert to semicolons.

• Soft carriage returns produced by automatic word wrap (CHR(141) + CHR(10)) convert to

spaces.

OPTIONS:
MEMOTRAN() lets you define replacement characters for hard and soft carriage returns. <expC2>

replaces hard carriage returns, <expC3> replaces soft carriage returns.

RECOMMENDED USE:
MEMOTRAN() lets you format text for use with an external editor by removing incompatible end-

of-line characters. MEMOTRAN() also lets you alter or remove the formatting of memo fields.

Example—A law office program stores case notes in memo fields. Very often, an attorney must

include the notes in a word processing document. Before exporting the text to the word processor,

MEMOTRAN() replaces all hard carriage returns with tildes (~) and all soft carriage returns with

spaces. This lets the secretary reformat the text without end-of-line commands in the wrong places.

USE caseload

* <CASENOTE is a MEMO field>

REPLACE casenote WITH MEMOTRAN(casenote,"~"," ")

MEMOTRAN() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions MEMOEDIT(), MEMOREAD(), and MEMOWRIT().

MEMOWRIT() SECTION 3

The dBASE® Language Handbook 814 Back to CONTENTS

MEMOWRIT()

DIALECTS:
Clipper only.

SYNTAX:
MEMOWRIT(<filename>,<expC>)

RETURNS:
Logical

DEFINITION:
Writes a character string to a disk file. If the write succeeds, MEMOWRIT() returns true (.T.).

RECOMMENDED USE:
MEMOWRIT() lets you export memo fields or other character strings to text files for use with a

word processor.

Example—A high school teacher tracks the progress of his students with Clipper memo fields.

The non-memo fields hold statistics, whereas the memo fields hold observations and

recommendations. When the teacher produces progress reports, he exports the text for word

processing, using MEMOWRIT(). (He first uses MEMOTRAN() to remove the hard and soft

carriage returns).

USE class

* <STUDENTS is a memo field>

* Remove hard and soft carriage returns with MEMOTRAN()

REPLACE students WITH MEMOTRAN(students," "," ")

* STU_NUM is a student number the program uses as a filename

valchk = MEMOWRIT("&stu_num.doc",students)

@ 24,03 SAY IIF(valchk,"Writing &stu_num","Unable to write &stu_num")

If the write succeeds, memory variable VALCHK is true and the message "Writing <filename>"

appears. If false, the message "Unable to write <filename>" appears.

MEMOWRIT() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions MEMOEDIT(), MEMOREAD(), and MEMOTRAN().

MENU() SECTION 3

The dBASE® Language Handbook 815 Back to CONTENTS

MENU()

DIALECTS:
dBASE IV only.

SYNTAX:
MENU()

RETURNS:
Character

DEFINITION:
Returns the name of the most recently activated menu. The menu must still be active.

MENU() returns the menu name in uppercase characters.

If no menu is active, MENU() returns a null string.

RECOMMENDED USE:
Use MENU() during debugging to display the name of the active menu. Also, by returning the

name, you can design subroutines that do different operations depending on the calling menu.

Example 1—In debugging a menu system, a programmer puts MENU() at the top of every

procedure. When a procedure executes, it displays the name of the calling menu.

DEFINE MENU planner

DEFINE PAD sel1 OF planner PROMPT "Project sales 10 months"

DEFINE PAD sel2 OF planner PROMPT "Plot sales 10 months"

ON SELECTION PAD sel1 OF planner DO fproject

ON SELECTION PAD sel2 OF planner DO fplot

ACTIVATE MENU planner

*

* <more menus>

PROCEDURE fproject

? MENU() && Returns "PLANNER"

* <statements>

* End of procedure

Example 2—An application has a HELP prompt in every menu. Choosing HELP executes a

procedure MHELP that displays information about the available menu selections. The MHELP

procedure gets the calling menu's name from MENU() and uses it like a parameter.

* MAIN.PRG—Main application program

*

MENU() SECTION 3

The dBASE® Language Handbook 816 Back to CONTENTS

* Define a window to contain help text, activated in MHELP

DEFINE WINDOW helpwind FROM 16,01 TO 23,70 PANEL

*

CLEAR

SET TALK OFF

DEFINE MENU master && Main menu

DEFINE PAD sel1 OF master PROMPT "File Maintenance"

DEFINE PAD sel2 OF master PROMPT "Record Updates"

DEFINE PAD sel3 OF master PROMPT "Get HELP about this menu"

ON SELECTION PAD sel1 OF master DO fmaint

ON SELECTION PAD sel1 OF master DO recup

ON SELECTION PAD sel3 OF master DO mhelp

ACTIVATE MENU master

PROCEDURE mhelp

ACTIVATE WINDOW helpwind

menuname = MENU()

DO CASE

 CASE menuname = "MASTER"

 @ 01,02 SAY "This is the main menu. From it, you can select"

 @ 02,02 SAY "other menus. File Maintenance lets you reindex"

 @ 03,02 SAY "database files. Record Updates lets you edit and"

 @ 04,02 SAY "add customer records."

 * UTILITY is another menu in the calling program

 CASE menuname = "UTILITY"

 @ 01,02 SAY "This is the Utility menu. From it, you can backup"

 @ 02,02 SAY "your databases or purge duplicate records"

 * <More cases>

ENDCASE

WAIT ""

DEACTIVATE WINDOW helpwind

RETURN

SEE ALSO:
Commands ACTIVATE MENU, DEFINE MENU, IF, ON SELECTION PAD, and

PROCEDURE.

MESSAGE() SECTION 3

The dBASE® Language Handbook 817 Back to CONTENTS

MESSAGE()

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
MESSAGE()

RETURNS:
Character

DEFINITION:
When ON ERROR is active, MESSAGE() returns a description of the last error condition.

RETURN and RETRY clear MESSAGE().

If no message exists, or if ON ERROR is inactive, MESSAGE() returns a null string.

Note that messages and error numbers are specific to each dBASE-compatible system.

RECOMMENDED USE:
Use MESSAGE() with ERROR() to trap and report errors. They can help you specify corrective

actions or display error information.

Example—A program tracks merchandise for a a department store. Within it, an error-trapping

procedure identifies system errors and responds to them. The error-trapping program tests for

common errors, such as FILE ALREADY OPEN and FILE NOT FOUND. If the program tries to

open an already-opened file, the program SUSPENDs operations to let the supervisor close the file

and do other repairs. If a file cannot be found, the program CANCELs.

ON ERROR DO errtrap

USE acquires && File inadvertently erased

PROCEDURE errtrap

@ 24,03 SAY MESSAGE() && Message function describes error condition

DO CASE

 CASE ERROR() = 1 && dBASE III PLUS error code (file not found)

 CANCEL

 CASE ERROR() = 3 && File already open.

 SUSPEND

 * <more cases>

ENDCASE

MESSAGE() SECTION 3

The dBASE® Language Handbook 818 Back to CONTENTS

VARIATIONS:
FoxBASE+: Using MESSAGE(1) returns the program line that caused the error. This is useful for

debugging and for documenting program errors. For example, you could create an error-trapping

procedure that saves, in a database, error messages and the program lines that caused them.

SEE ALSO:
Commands ON ERROR, RETRY, RETURN, and SUSPEND; functions DOSERROR(),

ERROR(), and FERROR().

MIN() SECTION 3

The dBASE® Language Handbook 819 Back to CONTENTS

MIN()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
MIN(<expN1>,<expN2>)

RETURNS:
Numeric

DEFINITION:
Returns the smaller of its numeric arguments.

RECOMMENDED USE:
MIN() compares any two valid numeric expressions, including numeric fields, and returns the

smaller. However, it cannot return the minimum value of a field throughout a database.

Example—Members of a health club pay $10 for each class they attend up to seven per month.

Any beyond seven are free.

The membership program tracks classes attended, and charges members the MIN() of either $70

or the number of classes times $10.

dues = MIN(70,classes*10)

* <GET number of hours>

service = MAX(850,hournum*85)

VARIATIONS:
Clipper, FoxBASE+: MIN() also returns the earlier of two date expressions.

dBASE IV: The MIN() option of the CALCULATE command lets you compute the minimum

value across multiple fields in a database.

SEE ALSO:
Command CALCULATE; function MAX().

MLCOUNT() SECTION 3

The dBASE® Language Handbook 820 Back to CONTENTS

MLCOUNT()

DIALECTS:
Clipper only.

SYNTAX:
MLCOUNT(<expC>[,<expN1>][,<expN2>][,<expL>)

RETURNS:
Numeric

DEFINITION:
Counts the number of word-wrapped lines that a character expression or memo field fills when

formatted.

<expC> is the memo field name or character expression to count. (Note that "lines" are strings

delimited by carriage return/line feeds).

<expN1> is the number of characters per line.

<expN2> is the size of embedded tab characters. It defaults to four. If you specify it to be larger

than <expN1>, it defaults to one less than <expN1>.

The logical expression <expL> toggles word wrap. The default is on (.T.).

RECOMMENDED USE:
Use MLCOUNT() to place page breaks when including free form text in formatted reports.

MLCOUNT() works with MEMOLINE() to control text formatting.

Example—A library application includes book abstracts in a memo field ABOOK. To print the

text, MLCOUNT() measures the formatted length of the text, and MEMOLINE() extracts and

prints lines.

USE sales

SET DEVICE TO PRINT

* Count 40-char lines. The "" (null) holds the places of optional arguments

tlen = MLCOUNT(abook,40,"",.F.)

pline = 1 && Start counter for print line (PLINE)

FOR mline = 1 TO tlen && MLINE increases from 1 to MLCOUNT()

 extract = MEMOLINE(abook,40,mline)

 @ pline,01 SAY extract

 pline = pline + 1 && Increase print line by 1 until

 IF pline = 20 && it reaches 20, then

 EJECT && EJECT and reset print line (PLINE)

MLCOUNT() SECTION 3

The dBASE® Language Handbook 821 Back to CONTENTS

 pline = 1 && to 1

 ENDIF

NEXT

SET DEVICE TO screen

LIMITS/WARNINGS:
MLCOUNT() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions HARDCR(), MEMLINES(), MEMOEDIT(), MEMOREAD(), MEMOTRAN(), and

MEMOWRIT().

MLINE() SECTION 3

The dBASE® Language Handbook 822 Back to CONTENTS

MLINE()

DIALECTS:
dBASE IV only.

SYNTAX:
MLINE(<expC>,<expN>)

RETURNS:
Character

DEFINITION:
Returns a specific line of text from a memo field. The SET MEMOWIDTH command determines

the line width.

<expC> is the memo field from which to extract the line.

<expN> is the line number to return. If you specify an invalid number, MLINE() returns a null

string.

RECOMMENDED USE:
Use MLINE() to produce reports using free form text input.

Example—A student's academic record includes formatted data and free form text. To print the

text, MLINE() extracts lines from memo field STUDENT.

USE s_records

SET DEVICE TO PRINT

SET MEMOWIDTH TO 55

FOR lcount = 1 TO 60

 extract = MLINE(student,lcount)

 IF extract == "" && == is like SET EXACT ON for this comparison.

 EJECT && If EXTRACT is null, then EJECT and EXIT.

 EXIT

 ENDIF

 @ lcount,01 SAY extract

NEXT

SET DEVICE TO screen

VARIATIONS:
Clipper: MEMOLINE() is equivalent.

MLINE() SECTION 3

The dBASE® Language Handbook 823 Back to CONTENTS

SEE ALSO:
Functions HARDCR(), MEMOEDIT(), MEMLINE(), MEMOLINE(), MEMOREAD(),

MEMOTRAN(), and MEMOWRIT().

MOD() SECTION 3

The dBASE® Language Handbook 824 Back to CONTENTS

MOD()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
MOD(<expN1>,<expN2>)

RETURNS:
Numeric

DEFINITION:
Returns the modulus, the remainder from dividing <expN1> by <expN2>.

The formula is

<expN1> - FLOOR(<expN1>/<expN2>) * <expN2>

where <expN1> and <expN2> are numeric expressions, and the asterisk is the multipy operator.

Note: FLOOR(), a dBASE IV/dBXL/Quicksilver function, returns the largest integer less than or

equal to its argument.

RECOMMENDED USE:
Use MOD() in base number conversions, such as minutes to hours and inches to yards.

Example 1—An aeronautical application converts total inches into feet and inches when tracking

trajectories. Instead of reporting 34,522 inches, the program reports the following:

totinch = 34522

feet = INT(totinch/12)

inches = MOD(totinch,12)

? "FEET: " + LTRIM(STR(feet,6,0)) + " INCHES: " + LTRIM(STR(inches,6,0))

 FEET: 2876 INCHES: 10

MOD() limits INCHES to the range 0 to 11.

VARIATIONS:
Clipper: MOD() is in EXTEND.LIB on the system disk. Clipper also has a modulus operator %,

as in <expN1> % <expN2>.

FoxBASE+: MOD() appears to be derived from a different internal formula:

INT(<expN1> - <expN2> * INT(<expN1> / <expN2>))

MOD() SECTION 3

The dBASE® Language Handbook 825 Back to CONTENTS

Clipper, dBASE III PLUS, dBXL, Quicksilver: When <expN2> is zero, MOD() returns

<expN1> (in Clipper, you must first link the error-handler ALTERROR.OBJ). Otherwise, it

returns a "division by 0" error. Clipper versions before Summer '87 return 0. FoxBASE+ produces

a "division by 0" error.

The FoxBASE+ result ("Division by 0" error) is technically correct, but requires greater care by

the programmer.

MOD() VARIATIONS

dBASE III PLUS/ Clipper

dBXL Summer 1987 FoxBASE+ dBASE IV Quicksilver

MOD(3,0) = 3 3 error error 3

MOD(3,-2) = -1 -1.00 1.00 -1 error

MOD(-3,2) = 1 1.00 -1.00 1 1

MOD(-3,0) = -3 -3 error error -3

MOD(-1,3) = 2 2.00 -1.00 2 2

MOD(-2,3) = 1 1.00 -2.00 1 1

MOD(2,-3) = -1 -1.00 2.00 -1 error

MOD(1,-3) = -2 -2.00 1.00 -2 error

Quicksilver returns erroneous results for all negative values of <expN2>:

LIMITS/WARNINGS:
Algorithms based on MOD() must be tested for each dBASE environment. Your results are almost

certain to vary.

SEE ALSO:
Functions FLOOR() and INT().

MONTH () SECTION 3

The dBASE® Language Handbook 826 Back to CONTENTS

MONTH ()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and

Quicksilver.

SYNTAX:
MONTH(<expD>)

RETURNS:
Numeric

DEFINITION:
Returns a number from 1 to 12 representing the month in the date expression <expD>, which may

be any expression that returns a date, including a memory variable, a field, or a function.

RECOMMENDED USE:
Use MONTH() in computations that depend on calendar months such as payment schedules and

end-of-month reports.

Example 1—A property management program computes monthly rents for tenants of a large

apartment complex. The landlord schedules a 10 percent rent increase starting in March. The

program derives MONTH() from the system date to determine when to implement the increase.

IF MONTH(DATE()) >= 3

 STORE rent * 1.1 TO rent

ENDIF

Example 2—A the end of the year, a payroll program produces a summary report for each month.

The program lists the taxable and non-taxable income for employees for the MONTH() derived

from date field PAYDATE.

SET PRINT on

ctr = 1

DO WHILE ctr <=12

 LIST taxable,nontax FOR MONTH(paydate) = ctr

 ctr = ctr + 1

ENDDO

SET PRINT off

SEE ALSO:
Functions CMONTH(), DAY(), and YEAR().

NDX() SECTION 3

The dBASE® Language Handbook 827 Back to CONTENTS

NDX()

DIALECTS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
NDX(<expN>)

RETURNS:
Character

DEFINITION:
Returns the name of an open index file.

<expN> is a number from 1 to 7 indicating the position of the index file in the file list of SET

INDEX TO and USE.

SET ORDER TO does not affect NDX().

The first index file in the list (the primary index) is number 1.

If you specify a nonexistent index file, NDX() returns a null string.

RECOMMENDED USE:
Use NDX() to display the active index files during development and debugging. This is helpful

when using index-dependent commands such as SET RELATION and SEEK.

You can also use NDX() to handle open index files without knowing their names.

Example—While debugging an inventory management system, a programmer includes a simple

procedure SHOWDEX to display the names of open index files. At key breakpoints, the

programmer includes the command DO SHOWDEX.

* SHOWDEX.PRG

? DBF() && Show active database filename

ctr = 1

* If length of the index name is 0 (null), stop counting

DO WHILE LEN(NDX(ctr)) > 0

 ? "INDEX " + STR(ctr,1,0) + ": " + NDX(ctr)

 ctr = ctr + 1

 IF ctr = 8

 EXIT

 ENDIF

ENDDO

NDX() SECTION 3

The dBASE® Language Handbook 828 Back to CONTENTS

VARIATIONS:
dBASE IV: Allows an alias name as an argument for checking an unselected database file. The

full syntax is

NDX(<expN>,<alias>)

To check the name of index 2 in a file REAL.DBF (in an unselected work area), specify NDX()

as follows:

? NDX(2,"REAL")

If the alias does not exist, dBASE IV reports "ALIAS name not found."

FoxBASE+: The numeric range of <expN> extends to 8, and NDX(8) always returns a null string.

This lets programmers determine the last valid index by testing for the null string rather than for

both a null string and an invalid index number (ctr = 8 in the example).

SEE ALSO:
Commands INDEX and SET INDEX TO; functions ALIAS(), DBF(), and MDX().

NETERR() SECTION 3

The dBASE® Language Handbook 829 Back to CONTENTS

NETERR()

DIALECTS:
Clipper only.

SYNTAX:
NETERR()

RETURNS:
Logical

DEFINITION:
Returns true (.T.) if APPEND BLANK, USE, or USE...EXCLUSIVE fails during multiuser

operation. NETERR() returns true if you try to USE a file that is already in exclusive use or locked

by another user, if you try to APPEND BLANK at the same time as another user, or if you try to

APPEND BLANK when another user has locked the file.

RECOMMENDED USE:
Use NETERR() to program retries of failed USE or APPEND BLANK attempts. If NETERR() is

false (.F.), you can stop retrying.

Example—Because APPEND BLANK changes data in the file header (the record count), it

requires momentary exclusive access to the file. If the file is not available, you can retry APPEND

BLANK until NETERR() returns false.

FOR ctr = 1 to 200 && Retry 200 times if necessary

 APPEND BLANK

 IF NETERR() && If NETERR() is true,

 INKEY(1) && pause one second

 ELSE

 ctr = 200 && If NETERR() is false, exit FOR/NEXT

 ENDIF

NEXT

SEE ALSO:
Commands APPEND BLANK and USE...EXCLUSIVE; functions ERROR(), FLOCK(),

INKEY(), and RLOCK().

NETNAME() SECTION 3

The dBASE® Language Handbook 830 Back to CONTENTS

NETNAME()

DIALECTS:
Clipper only.

SYNTAX:
NETNAME()

RETURNS:
Character

DEFINITION:
Returns the computer workstation identification as set in the IBM PC Local Area Network.

The identification name is a string fifteen characters long. If it was not set, NETNAME() returns

a null string.

RECOMMENDED USE:
Use NETNAME() to monitor which workstations have logged onto a network application.

Example—The network administrator in a defense plant monitors multiuser applications on the

local area network. When a network user executes a Clipper application, a subroutine updates a

log file indicating the date, time, and NETNAME().

ctr = 1 && Initialize retry counter if USE EXCLUSIVE fails

DO WHILE ctr < 50 && Retry USE EXCLUSIVE 50 times if necessary

 USE log EXCLUSIVE && Use log file exclusively

 INKEY(2) && Pause 2 seconds between retries

 ctr = ctr + 1 && Increment counter

ENDDO

IF NETERR() && If USE EXCLUSIVE fails...

 DO nerror && do error subroutine

ENDIF

APPEND BLANK && Add record containing date, time, and name

REPLACE logdate WITH DATE(), logtime WITH TIME(), netname WITH NETNAME()

LIMITS/WARNINGS:
NETNAME() works only on the IBM PC Local Area Network.

SEE ALSO:
Functions OS() and SYS(0).

NETWORK() SECTION 3

The dBASE® Language Handbook 831 Back to CONTENTS

NETWORK()

DIALECTS:
dBASE IV only.

SYNTAX:
NETWORK()

RETURNS:
Logical

DEFINITION:
Returns true (.T.) when dBASE IV is running on a local area network.

RECOMMENDED USE:
Use NETWORK() to determine whether to execute network-specific commands and functions.

You can use it to branch in an IF...ENDIF structure.

Example—When running on a network, an application maintains a user log on the server.

However, if it is running on a single user system, it skips the user login routines.

IF NETWORK()

 * <Do user login routines>

ENDIF

SEE ALSO:
Functions NETNAME() and USER().

NEXTKEY() SECTION 3

The dBASE® Language Handbook 832 Back to CONTENTS

NEXTKEY()

DIALECTS:
Clipper only.

SYNTAX:
NEXTKEY()

RETURNS:
Numeric

DEFINITION:
Returns the ASCII version of the next keystroke without clearing the keyboard buffer. If no key is

pressed, NEXTKEY() returns 0. The ASCII values are the ones returned by INKEY() and

LASTKEY() (see INKEY() for a complete list).

The ASCII values range from -39 to 386. NEXTKEY() recognizes all key combinations, including

ones involving function keys, Ctrl, and Alt.

RECOMMENDED USE:
Use NEXTKEY() to get user input without clearing the keyboard buffer. This lets you pass the

pressed key to a subroutine or menu that will use it.

Example—NEXTKEY() solves the problem of calling help from an INKEY() loop. Normally,

pressing F1 from a wait state (ACCEPT, READ, or WAIT) calls a program HELP.PRG. Since

INKEY() is not a wait state, pressing F1 to call help does not work. (INKEY() is often used to do

other processing, such as displaying the time, while awaiting input.)

The problem is that INKEY() removes the key from the buffer. In Clipper versions before Summer

'87, you can use the KEYBOARD command to reenter the pressed key. In Summer '87,

NEXTKEY() preserves the keypress. The WAIT near the bottom of the loop provides the conduit

for calling help.

* MAIN.PRG—Lookup program displays information during data entry

SET PROC TO HELP && Included so HELP.PRG will compile without

SET CURSOR OFF && a direct reference (without a DO)

CLEAR

@ 10,18 SAY "(C)ustomer IDs"

@ 11,18 SAY "(A)ccount Numbers"

@ 12,18 SAY "(E)xit" DO WHILE .t.

 nkey = 0

 DO WHILE nkey = 0

 @ 01,60 SAY AMPM(time()) && Display the 12-hour clock

 nkey = NEXTKEY() && Get next key pressed and store in NKEY

NEXTKEY() SECTION 3

The dBASE® Language Handbook 833 Back to CONTENTS

 ENDDO

 DO CASE

 CASE nkey = ASC("C")

 * <DO customer id subroutine>

 CASE nkey = ASC("A")

 * <DO account number subroutine>

 CASE nkey = ASC("E")

 SET CURSOR ON

 EXIT

 ENDCASE

 SET CONSOLE OFF && Disable screen to prevent keys from appearing

 WAIT && WAIT processes F1 key and clears keyboard buffer

 SET CONSOLE ON

ENDDO

* HELP.PRG

PARAMETERS x,y,z && Required parameters passed by F1

SAVE SCREEN

CLEAR

@ 10,10 say "This is help text"

INKEY(0) && Pause until a key is pressed (non-WAIT state)

RESTORE SCREEN

KEYBOARD CHR(13) && Keyboard CARRIAGE RETURN to clear pending WAIT

NEXTKEY() is in EXTEND.LIB on the system disk.

LIMITS/WARNINGS:
In a DO WHILE loop, you must clear the keyboard buffer before getting the next key. Otherwise,

NEXTKEY() will repeatedly "stuff" itself with the same key.

SEE ALSO:
Command KEYBOARD; function INKEY().

ORDER() SECTION 3

The dBASE® Language Handbook 834 Back to CONTENTS

ORDER()

DIALECTS:
dBASE IV only.

SYNTAX:
ORDER([<alias>]/<work area number>)

RETURNS:
Character

DEFINITION:
Returns the name of the controlling MDX (multiple index file) tag or index file. If you do not

specify an alias or work area number, ORDER() operates on the current work area.

ORDER() returns the index name or TAG in uppercase without an extension.

If no index or TAG is active, ORDER() returns a null string.

OPTIONS:
The <alias> or <work area number> lets you specify a file in an unselected work area.

RECOMMENDED USE:
Use ORDER() to identify the controlling index to the user or for debugging purposes.

Example 1—An inventory application has a main file INVENT and four indexes. The user can

define which one controls the order. For testing purposes, the program displays the ORDER().

? ORDER("INVENT")

PARTNO

To specify the database by its work area number, the program uses
the following SYNTAX:

? ORDER(1)

PARTNO

You can omit <alias> and <argument> if you are checking a database in the current work area.

You can also use ORDER() to manipulate indexes without knowing their names.

Example 2—A generic reporting module for a sales application relies on a previous program to

open databases and indexes. It then uses ORDER() to save the controlling index name. When

finished reporting, it restores the original order.

ORDER() SECTION 3

The dBASE® Language Handbook 835 Back to CONTENTS

old_order = ORDER()

* <Do reporting operations.>

SET ORDER TO TAG (old_order)

SEE ALSO:
Commands INDEX, SET INDEX, and SET ORDER; functions INDEXORD(), KEY(), MDX,

NDX(), and TAG().

OS() SECTION 3

The dBASE® Language Handbook 836 Back to CONTENTS

OS()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
OS()

RETURNS:
Character

DEFINITION:
Returns the name and version number of the computer's operating system.

RECOMMENDED USE:
Use OS() when writing programs for both MS-DOS and UNIX, or to take advantage of features in

particular versions of an operating system.

Example—To handle the different disk directory structures of DOS and UNIX, a programmer

uses OS() to determine which file path program to execute.

IF "DOS" $ OS() && If "DOS" is in the OS string,

 DO DOSpath && DO DOS file path program

ELSE && If not DOS, then

 DO UNIXpath && DO UNIX file program

ENDIF

VARIATIONS:
Clipper: OS() is a user defined function in EXAMPLEP.PRG on the system disk. It is also linked

into EXTEND.LIB on the system disk. It always returns a constant "MS/PC-DOS", regardless of

the operating system. Nantucket includes it for compatibility with dBASE III PLUS.

SEE ALSO:
Functions GETENV() and VERSION().

PAD() SECTION 3

The dBASE® Language Handbook 837 Back to CONTENTS

PAD()

DIALECTS:
dBASE IV only.

SYNTAX:
PAD()

RETURNS:
Character

DEFINITION:
Returns the uppercase name of the most recently selected PAD in an active menu. PADs are

selections specified in the DEFINE PAD command. If no menu is active, PAD() returns a null

string.

RECOMMENDED USE:
Use PAD() to display the name of the selected pad during debugging.

Example—The top menu in an inventory program has four pads. To debug the menu system, the

programmer uses the PAD() function in every procedure to display the name of the selected pad.

* INVENT.PRG—Main application program

DEFINE MENU topmenu

DEFINE PAD sel1 OF topmenu PROMPT "File Maintenance"

DEFINE PAD sel2 OF topmenu PROMPT "Record Updates"

DEFINE PAD sel3 OF topmenu PROMPT "Summary Report"

DEFINE PAD sel4 OF topmenu PROMPT "Inventory Report"

ON SELECTION PAD sel1 OF topmenu DO fmaint

ON SELECTION PAD sel2 OF topmenu DO rupdate

ON SELECTION PAD sel3 OF topmenu DO sumrept

ON SELECTION PAD sel4 OF topmenu DO invrept

ACTIVATE MENU topmenu

PROCEDURE fmaint

? PAD() && Returns "SEL1"

PROCEDURE rupdate

? PAD() && Returns "SEL2"

PROCEDURE sumrept

? PAD() && Returns "SEL3"

PROCEDURE invrept

? PAD() && Returns "SEL4"

LIMITS/WARNINGS:
PAD() is not valid from the dot prompt, since there can be no active menu.

PAD() SECTION 3

The dBASE® Language Handbook 838 Back to CONTENTS

SEE ALSO:
Commands @...PROMPT, DEFINE BAR, DEFINE MENU, DEFINE PAD, DEFINE POPUP,

MENU TO, ON PAD, and ON SELECTION PAD; functions MENU() and POPUP().

PAYMENT() SECTION 3

The dBASE® Language Handbook 839 Back to CONTENTS

PAYMENT()

DIALECTS:
dBASE IV only.

SYNTAX:
PAYMENT(<expN1>,<expN2>,<expN3>)

RETURNS:
Numeric

DEFINITION:
Computes the periodic payment needed to pay off the principal and interest of a loan.

<expN1> is a principal balance; it may be negative.

<expN2> is the constant interest rate per period. For example, you would express an 18 percent

annual interest rate as .18/12 or 0.015.

<expN3> is the number of payments. Fractional payments are rounded automatically.

RECOMMENDED USE:
PAYMENT() is useful in many financial applications, ranging from real estate to banking.

Example—Dave's new car cost $9,000...until he added the automatic transmission, cruise control,

and air conditioning options, bringing the total to $10,500. With $1,000 for a down payment, he

financed $9,500 for 60 months at an annual interest rate of 13.75 percent (.1375 in decimal). Using

PAYMENT(), we can calculate his monthly payment with:

SET DECIMALS TO 2

mtotal = PAYMENT(9500,.1375/12,60)

? mtotal

 219.82

Note: Because interest is computed annually, divide by 12 to get the rate per period.

SEE ALSO:
Command CALCULATE; functions FV() (future value), and PV() (present value).

PCOL() SECTION 3

The dBASE® Language Handbook 840 Back to CONTENTS

PCOL()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
PCOL()

RETURNS:
Numeric

DEFINITION:
Returns the printer's current column coordinate relative to the SET MARGIN command. SET

MARGIN defaults to 0.

For example, you can determine the printer's position after printing a string (in a program):

?? PCOL()

35

The printer must be on to use PCOL().

RECOMMENDED USE:
PCOL() lets you send output to the printer at a coordinate relative to the current position. This is

useful for printing reports that display multiple @...SAY...GETs on a single line.

Example—A report generator prints several columns of data. It uses the PCOL() function to

separate them.

CLEAR

@ 5,PCOL() SAY "SSN: " + ssn

@ 5,PCOL()+2 SAY "Employer: " + employer

@ 5,PCOL()+2 SAY "No. of Dependents: " + depends

Typical output would be:

SSN: 010-22-99XX Employer: Acme Publishing No. of Dependents: 2

If you SET MARGIN TO 10, printing starts at column 10; however, PCOL() still returns 0 as the

starting position.

VARIATIONS:
dBASE IV: The _ploffset system variable is equivalent to SET MARGIN. It defaults to 0.

PCOL() SECTION 3

The dBASE® Language Handbook 841 Back to CONTENTS

FoxBASE+: You need not turn on the printer to use PCOL() if you redirect output using the

command SET PRINTER TO <filename>.

SEE ALSO:
Command SET MARGIN; functions COL(), FCOL(), FROW(), PROW(), and ROW().

PCOUNT() SECTION 3

The dBASE® Language Handbook 842 Back to CONTENTS

PCOUNT()

DIALECTS:
Clipper only.

SYNTAX:
PCOUNT()

RETURNS:
Numeric

DEFINITION:
Returns the number of parameters passed to a procedure or user defined function.

RECOMMENDED USE:
PCOUNT() lets programs pass an unknown number of parameters. If a program expects

parameters, and none is passed, it can prompt the user to supply them. Some general purpose

subroutines may also allow a variable number of parameters.

Example—A telephone contact system accepts names to search for on the DOS command line.

The program expects a name and a data file as PARAMETERs. If the user does not supply them,

the program asks for them.

* CONTACT.PRG

PARAMETERS name,file

IF PCOUNT() = 0

 ACCEPT "Enter name: " TO name

 ACCEPT "Enter file: " TO file

ENDIF

IF PCOUNT() = 1

 ACCEPT "Enter file: " TO file

ENDIF

USE (file) INDEX (file)

SEEK name

SEE ALSO:
Commands DO and PARAMETERS.

PI() SECTION 3

The dBASE® Language Handbook 843 Back to CONTENTS

PI()

DIALECTS:
dBASE IV only.

SYNTAX:
PI()

RETURNS:
Floating point

DEFINITION:
Returns 3.141592653589793116, the approximate ratio of the circumference of a circle to its

diameter (represented by the Greek letter pi). Pi is a non-repeating irrational number.

RECOMMENDED USE:
Use PI() in scientific applications involving circles, spheres, cones, or other curves.

Example—A farmer wants to compute the volume of a cylindrical grain silo. The formula is (pi *

radius squared * height), where the asterisk is the multiplication operator. Given a radius of 25

feet, and a height of 125 feet, she determines the volume to be 245436.93 cubic feet.

volume = PI() * 25^2 * 125

? volume

245436.93

SEE ALSO:
Functions ACOS(), ASIN(), ATAN(), ATN2, COS(), SIN(), and TAN().

POPUP() SECTION 3

The dBASE® Language Handbook 844 Back to CONTENTS

POPUP()

DIALECTS:
dBASE IV only.

SYNTAX:
POPUP()

RETURNS:
Character

DEFINITION:
Returns the uppercase name of the active popup menu. If none is active, POPUP() returns a null

string.

RECOMMENDED USE:
Use POPUP() during debugging to display the name of the active popup menu. Also, by returning

the name, you can design subroutines that do different operations depending on the caller.

Example 1—In debugging a menu system, a programmer puts POPUP() at the top of every

procedure. When a procedure executes, it displays the name of the calling menu.

DEFINE POPUP banks FROM 01,01 TO 10,30

DEFINE BAR 1 OF students PROMPT "List Savings and Loans"

DEFINE BAR 2 OF students PROMPT "Geographic Focus"

* <Define more bars>

ON SELECTION POPUP students DO mbanks

ACTIVATE POPUP students

PROCEDURE mbanks

mbar = BAR()

? POPUP() && Returns BANKS

DO CASE

 CASE mbar = 1

 DO savings

 CASE mbar = 2

 DO geofocus

 * <More CASES>

ENDCASE

* End of procedure

Example 2—An academic management program lets administrators track students through a four-

year curriculum. A procedure containing a CASE structure is called by two different POPUPs. To

determine the calling POPUP, the procedure uses the POPUP() function.

POPUP() SECTION 3

The dBASE® Language Handbook 845 Back to CONTENTS

DEFINE POPUP students FROM 01,01 TO 10,30

DEFINE BAR 1 OF students PROMPT "Update G.P.A."

DEFINE BAR 2 OF students PROMPT "Change Student Status"

DEFINE BAR 3 OF students PROMPT "File Maintenance"

ON SELECTION POPUP students DO mcase

ACTIVATE POPUP students

DEFINE POPUP fmaint FROM 11,01 TO 20,30

* <Define more bar statements>

PROCEDURE mcase

mbar = BAR()

mpop = POPUP() && Get name of calling popup

DO CASE

 CASE mbar = 1 .AND. mpop = "STUDENTS"

 * <Update G.P.A. subroutine>

 CASE mbar = 2 .AND. mpop = "STUDENTS"

 * <Change Student Status subroutine>

 CASE mbar = 3 .AND. mpop = "STUDENTS"

 * <File maintenance>

 CASE mbar = 1 .AND. mpop = "FMAINT"

 *

 CASE mbar = 2 .AND. mpop = "FMAINT"

 *

ENDCASE

SEE ALSO:
Commands ACTIVATE POPUP, DEACTIVATE, and DEFINE POPUP; functions BAR(),

MENU(), PAD(), and PROMPT().

PRINTER() SECTION 3

The dBASE® Language Handbook 846 Back to CONTENTS

PRINTER()

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
PRINTER(<expC>)

RETURNS:
Logical

DEFINITION:
Returns true (.T.) if the device specified in the argument is READY. The valid devices have port

names LPT1, LPT2, LPT3, COM1, and COM2.

If the printer is disconnected or off line, PRINTER() returns false (.F.).

DEFAULT:
PRINTER() returns true (.T.) if you use an invalid port name. So check your spelling.

RECOMMENDED USE:
Use PRINTER() to test printer readiness when changing ports with the SET PRINTER command.

Example—A shipping program prints invoices, packing slips, and labels. To avoid changing

forms, the program prints each on a different printer. When changing ports, it uses PRINTER() to

check status. The program alerts the clerk if the printer is off line. After changing printers, the

program initializes a memory variable RDYPRINT with a value of true (.T.). Inside a DO WHILE

loop, PRINTER() tests the specified printer. If it returns false, RDYPRINT becomes false and the

DO WHILE repeats. The WAIT command pauses execution to let the clerk put the printer back

on line or cancel the print job.

SET PRINTER TO LPT2

rdyprint = .t.

DO WHILE rdyprint

 IF PRINTER("LPT2")

 rdyprint = .t.

 DO labels && If printer is ready, print labels

 ELSE

 rdyprint = .f.

 ?? CHR(7) && If not ready, alert shipping clerk with beep/message

 WAIT "LPT2 OFFLINE. Type 'C' to cancel " TO response

 IF response $ "cC"

 EXIT

 ENDIF

PRINTER() SECTION 3

The dBASE® Language Handbook 847 Back to CONTENTS

 ENDIF

ENDDO

LIMITS/WARNINGS:
PRINTER() may not work properly on computers that are not 100 percent IBM PC-compatible.

SEE ALSO:
Function ISPRINTER(), PRINTSTATUS(), and SYS(13).

PRINTSTATUS() SECTION 3

The dBASE® Language Handbook 848 Back to CONTENTS

PRINTSTATUS()

DIALECTS:
dBASE IV only.

SYNTAX:
PRINTSTATUS()

RETURNS:
Logical

DEFINITION:
Indicates whether the current parallel printer port is ready. PRINTSTATUS() returns true (.T.) if

the port is ready and the printer is online, and false (.F.) otherwise.

Similar to Clipper's ISPRINTER(), FoxBASE+'s SYS(13), and Quicksilver's PRINTER().

Unfortunately, this function has no standard name.

RECOMMENDED USE:
Use PRINTSTATUS() before printing reports to check the printer's status.

Example—Before printing a sales summary, PRINTSTATUS() checks the printer. The

programmer puts PRINTSTATUS() in a user defined function CHKPRINT() that both checks the

status and SETs DEVICE TO PRINT.

* CHKPRINT

FUNCTION chkprint

*

PRIVATE pkey,success

SET DEVICE TO SCREEN && Make sure printer is not already on

pkey = 0

DO WHILE pkey # 27.AND.(.NOT. PRINTSTATUS())

 @ 01,01 SAY "Printer not ready. Press ESC to cancel."

 pkey = INKEY(0)

ENDDO

IF pkey # 27

 SET DEVICE TO PRINT

ENDIF

RETURN = (pkey # 27)

The calling program uses CHKPRINT() to determine whether to print as follows:

IF CHKPRINT()

 DO acct_rpt

ELSE

PRINTSTATUS() SECTION 3

The dBASE® Language Handbook 849 Back to CONTENTS

 * DO <recovery procedure>

ENDIF

SEE ALSO:
Function PRINTER(), PRINTSTATUS(), and SYS(13).

PROCLINE(); PROCNAME() SECTION 3

The dBASE® Language Handbook 850 Back to CONTENTS

PROCLINE(); PROCNAME()

DIALECTS:
Clipper only.

SYNTAX:
PROCLINE()

PROCNAME()

RETURNS:
PROCLINE()—Numeric

PROCNAME()—Character

DEFINITION:
PROCLINE() returns the number of the currently executing program line. PROCNAME() returns

the name of the currently executing procedure.

RECOMMENDED USE:
Use PROCLINE() and PROCNAME() during program development to display information about

the currently executing program.

Example—A programmer uses PROCLINE() and PROCNAME() to trace program flow when

using SET KEY procedures. When control passes to a procedure, its name appears. At specified

breakpoints, the programmer uses PROCLINE() to trace the execution of individual lines.

SET KEY 21 TO calc && Execute calc.prg when user presses Ctrl-U

* <more statements>

* CALC.PRG

* Compute sales tax for sales items

PARAMETERS name,line,memvar && Accept required SET KEY parameters

? PROCNAME() && Display procedure name

* <more statements>

? "Now executing: "+STR(PROCLINE(),3,0) && Convert PROCLINE to string

VARIATIONS:
dBASE IV: PROCLINE() resembles dBASE IV's LINENO() function. PROCNAME() resembles

dBASE IV's PROGRAM() function.

FoxBASE+: PROCNAME() resembles FoxBASE+'s SYS(16) function. SYS(16) returns the

program name, and also lets you trace back multiple execution levels.

PROCLINE(); PROCNAME() SECTION 3

The dBASE® Language Handbook 851 Back to CONTENTS

SEE ALSO:
Command SET KEY; functions PROGRAM() and SYS(16).

PROGRAM() SECTION 3

The dBASE® Language Handbook 852 Back to CONTENTS

PROGRAM()

DIALECTS:
dBASE IV only.

SYNTAX:
PROGRAM()

RETURNS:
Character

DEFINITION:
Returns the name of the currently executing function, procedure, or program.

PROGRAM() returns an uppercase name without an extension. If no program is running, it returns

a null string.

RECOMMENDED USE:
Use PROGRAM() to determine which program or procedure caused an error. After SUSPENDing

program execution, use PROGRAM() from the dot prompt to return the program's name. You can

also use it in the debugger's display or breakpoint window, or within a program to display the

names of functions as they execute.

Example 1—An inventory management system consisting of 10 modules stops in the middle of

an input screen. The display seems to freeze, leaving no alternative but to reboot. The programmer

suspects that the user defined function CHKPRINT() is causing the problem. To debug the

program, he runs the debugger and uses PROGRAM() as a breakpoint condition to isolate the

suspect function. In the breakpoint window, he enters

PROGRAM() = "CHKPRINT" .AND. LINENO()=5

This tells the debugger to stop at line 5 of CHKPRINT. From there, the programmer can step

through the function, watching it execute.

Example 2—To stop execution when a particular subprogram begins executing, use PROGRAM()

in the breakpoint window as shown:

PROGRAM() SECTION 3

The dBASE® Language Handbook 853 Back to CONTENTS

When subprogram R_ADD begins executing, PROGRAM() returns "R_ADD" and the breakpoint

expression is true.

Example 3—You can also use program() in an ON ERROR command, to identify the location of

an error. The following statement eases debugging by indicating the program in which the error

occurred and the line number.

ON ERROR ? "Executing program: " + PROGRAM() +;

 " Error occured on line: " + STR(lineno(),5,0)

VARIATIONS:
Clipper: PROGRAM() is similar to Clipper's PROCNAME() function.

FoxBASE+: PROGRAM() is similar to SYS(16). SYS(16) returns the program name, and also

lets you trace back multiple execution levels.

SEE ALSO:
Commands DEBUG, ON ERROR, SET TRAP, and SUSPEND; functions ERROR(), LINENO(),

MESSAGE(), PROCNAME(), and SYS(16).

PROMPT() SECTION 3

The dBASE® Language Handbook 854 Back to CONTENTS

PROMPT()

DIALECTS:
dBASE IV only.

SYNTAX:
PROMPT()

RETURNS:
Character

DEFINITION:
Returns the PROMPT string of the selected popup or bar menu. If no menu is active, or if the user

presses the ESC key, PROMPT() returns a null string.

If you use the FIELD option of the DEFINE POPUP command, PROMPT() returns the selected

field's contents.

If you use the FILES option of DEFINE POPUP, PROMPT() returns the selected filename in

uppercase, including its extension and path.

If you use the STRUCTURE option, PROMPT() returns the name of the selected field in

uppercase.

RECOMMENDED USE:
Use PROMPT() to pass FIELD, FILES, or STRUCTURE data from a pick list to a subroutine.

Example—A sales program lets the user select a database from a POPUP list. When the selection

is made, the ON SELECTION command executes PROCEDURE MFILES. In the procedure, the

PROMPT() function returns the selected filename as the argument of a USE command.

DEFINE POPUP showfiles FROM 01,01 TO 10,30 PROMPT FILES LIKE *.DBF

ON SELECTION POPUP showfiles DO mfiles

ACTIVATE POPUP showfiles

PROCEDURE mfiles

USE (PROMPT()) && Puts the selected file into use

RETURN

SEE ALSO:
Commands DEFINE POPUP, ON SELECTION PAD, and ON SELECTION POPUP; functions

BAR() and POPUP().

PROPER() SECTION 3

The dBASE® Language Handbook 855 Back to CONTENTS

PROPER()

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
PROPER(<expC>)

RETURNS:
Character

DEFINITION:
Converts <expC> to upper and lower case, capitalizing the first character and any character after

a space or punctuation mark. PROPER() converts all other characters to lowercase.

To convert "david m. kalman" to upper and lower case, you would use PROPER() as follows:

? PROPER("david m. kalman")

 David M. Kalman

PROPER() correctly capitalizes names with apostrophes, hyphens, and most titles:

? PROPER("dr. david m. kalman, jr.")

 Dr. David M. Kalman, Jr.

? PROPER("david m. kalman-nugent")

 David M. Kalman-Nugent

? PROPER("DAVID M. O'LEARY")

 David M. O'Leary

Names with internal capital letters but no special punctuation (such as MacDonald and LeVine),

and some titles do not convert properly:

? PROPER("david m. kalman, iii")

 David M. Kalman, Iii

? PROPER("david m. macdonald")

 David M. Macdonald

DEFINITION:
Use PROPER() to display proper names in the correct case.

Example—For ease of data entry, a mailing program stores data in all uppercase. When producing

reports, the program uses PROPER() to convert names to upper and lower case.

? mdate

? PROPER(mname)

PROPER() SECTION 3

The dBASE® Language Handbook 856 Back to CONTENTS

? maddress

? TRIM(mcity)+ " " + mstate + mzip

SEE ALSO:
Functions LOWER() and UPPER().

PROW() SECTION 3

The dBASE® Language Handbook 857 Back to CONTENTS

PROW()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
PROW()

RETURNS:
Numeric

DEFINITION:
Returns the printer's current row position.

EJECT sets PROW() to 0.

RECOMMENDED USE:
Use PROW() to print at a row relative to its predecessor. This is helpful when formatting reports

and printing non-standard forms.

Example 1—A bus ticketing application prints tickets on continuous paper, ten rows apart.

USE ticket

SET DEVICE TO PRINT

DO WHILE .NOT. EOF()

 @ PROW()+10,01 SAY "Passenger's Name: " + pname

 @ PROW(),01 SAY "Destination : " + pdest

 * <more ticket information>

 SKIP

ENDDO

Example 2—A stock market report lists weekly advances and declines. When the printer row

position exceeds 59, the program EJECTs a page.

USE stocks

DO WHILE .NOT. EOF()

 ? sname + " High:" + STR(high,8,2) + " Low:" + STR(low,8,2)

 IF PROW() > 59

 EJECT

 ENDIF

 SKIP

ENDDO

PROW() SECTION 3

The dBASE® Language Handbook 858 Back to CONTENTS

SPECIAL USES:
In all systems except Clipper, a dollar sign in an @...SAY statement indicates the current row or

column. For example, to print a name on the current row, use the command

@ $,02 SAY "Name " + sname

LIMITS/WARNINGS:
PROW() does not allow a negative offset.

SEE ALSO:
Commands EJECT, SET DEVICE TO, and SET PRINTER; functions COL(), FCOL(), FROW(),

PCOL(), and ROW().

PV() SECTION 3

The dBASE® Language Handbook 859 Back to CONTENTS

PV()

DIALECTS:
dBASE IV only.

SYNTAX:
PV(<expN1>,<expN2>,<expN3>)

RETURNS:
Numeric

DEFINITION:
Computes the present value of equal periodic payments, invested at a constant interest rate. The

value returned is the part applied to the principal.

<expN1> is a positive or negative payment amount that includes principal and interest.

<expN2> is the constant interest rate per period, expressed as a decimal value. For example, you

would express an 18 percent annual interest rate compounded monthly as .18/12, or .015.

<expN3> is the number of payments. Fractional values are rounded automatically.

RECOMMENDED USE:
PV() is useful in financial applications such as banking and real estate.

Example—Joan makes a $500 monthly payment for her mortgage at the fixed annual rate of 11.5

percent compounded monthly. After five years (60 payments), she wants to know how much she

has paid on the principal (i.e., the present value).

SET DECIMALS TO 2

mtotal = PV(500,.115/12,60)

? mtotal

22734.91

To determine the interest paid, Joan subtracts the present value ($22734.91) from her total

payments ($500 * 60 or $30,000) where the asterisk is the multiplication operator, yielding

$7265.09.

SEE ALSO:
Command CALCULATE; function FV() (future value).

RAND() SECTION 3

The dBASE® Language Handbook 860 Back to CONTENTS

RAND()

DIALECTS:
dBASE IV only.

SYNTAX:
RAND([<expN>])

RETURNS:
Numeric

DEFINITION:
Returns a random number in the range 0 through 1 inclusive.

Numbers generated by RAND() are not truly random. Instead, they are produced by a formula

based on a seed value. The same seed always produces the same sequence of "random" numbers.

OPTIONS:
<expN> is the seed (may be positive or negative).

If the seed is negative, RAND() derives the actual seed from the system clock.

DEFAULT:
If you do not supply a seed the first time you issue RAND(), dBASE supplies a default of 100001.

You can restore the default by issuing RAND(100001).

RECOMMENDED USE:
For maximum randomness, seed RAND() from the system clock by making its argument negative.

Avoid seeding RAND() with a constant unless you want to repeat a sequence of numbers.

Example—A student testing program uses RAND() to select the order in which questions are

posed. The program INDEXes the questions on the string value of RAND(), plus one character of

the CATEGORY field.

USE test

INDEX ON STR(RAND(-1),4,2)+SUBSTR(category,1,1) TO t_order

Using -1 as an argument makes RAND() derive its seed from the system clock. The order of the

questions will differ for every generation of the index.

SEE ALSO:
Command GENERATE.

RAT() SECTION 3

The dBASE® Language Handbook 861 Back to CONTENTS

RAT()

DIALECTS:
Clipper only. Other systems lack this sophisticated-sounding function.

SYNTAX:
RAT(<expC1>,<expC2>)

RETURNS:
Numeric

DEFINITION:
Searches for the last (rightmost) occurrence of one character string <expC1> within another

<expC2> and returns the position at which it starts. If <expC2> does not contain <expC1>, RAT()

returns 0.

<expC1> is called a substring of <expC2>.

RAT() is similar to AT(), except that AT() searches for the first occurrence of <expC1> instead of

the last.

RECOMMENDED USE:
Use RAT() in string manipulation routines to find and extract substrings.

Example—The contents of field NAME are in the form LASTNAME, FIRSTNAME. For

printing, the form must be converted to FIRSTNAME LASTNAME. First, RAT() finds the last

comma in the field, providing a base for the SUBSTRING() function. SUBSTR() is then used to

transpose the sections.

USE customers

DO WHILE .NOT. EOF()

 pos = RAT(",",name) && POS is the location of the last comma

 new = TRIM(SUBSTR(name,pos+1,30-pos+1))+" "+LTRIM(SUBSTR(name,1,pos-1))

 REPLACE name WITH new

 SKIP

ENDDO

Before the conversion, the names appear as follows:

LIST name

Record# NAME

 1 Holden, Susan

 2 Kalman, David M.

 3 Randall, III, Byron

RAT() SECTION 3

The dBASE® Language Handbook 862 Back to CONTENTS

Afterward, the names are:

LIST name

 Record# NAME

 1 Susan Holden

 2 David M. Kalman

 3 Byron Randall,III

RAT() is in EXTEND.LIB on the system disk.

SEE ALSO:
Functions AT() and SUBSTR().

READEXIT() SECTION 3

The dBASE® Language Handbook 863 Back to CONTENTS

READEXIT()

DIALECTS:
Clipper only.

SYNTAX:
READEXIT([<expL>])

RETURNS:
Logical

DEFINITION:
Controls whether the "up arrow" and "down arrow" keys exit a READ.

An argument of true (.T.) allows exits, false (.F.) prevents them.

READEXIT() with no parameter returns the current setting. This lets you save the value for later

restoration.

If you set READEXIT(.T.), READKEY() returns 0 when you exit a GET with an up or down

arrow.

DEFAULT:
False

RECOMMENDED USE:
READEXIT() provides compatibility with dBASE III PLUS and dBASE IV which allow you to

exit a READ with the up or down arrow keys.

Example—A corporate office uses both Clipper and dBASE III PLUS and dBASE IV

applications. For consistency in data entry forms, the Clipper applications use READEXIT().

* ENTRY.PRG

* Housekeeping

CLEAR ALL

SET SCORE OFF

READEXIT(.T.)

* <more commands>

In some parts of a program, exiting with the arrow keys might not be desirable. A good example

of this is when you use several character fields to simulate a memo. Users often use the arrow keys

to navigate through text, making it possible to exit a read inadvertently.

To prevent such exits, specify

READEXIT() SECTION 3

The dBASE® Language Handbook 864 Back to CONTENTS

READEXIT(.F.)

SEE ALSO:
Command READ; function READINSERT().

READINSERT() SECTION 3

The dBASE® Language Handbook 865 Back to CONTENTS

READINSERT()

DIALECTS:
Clipper only.

SYNTAX:
READINSERT([<expL>])

RETURNS:
Logical

DEFINITION:
Controls the insert mode setting for READ and MEMOEDIT(). True (.T.) turns insert on. False

(.F.) turns it off.

If you do not specify an argument, READINSERT() returns the current setting (.T. or .F.).

If you specify an argument, READINSERT() returns the previous setting.

DEFAULT:
False

RECOMMENDED USE:
Use READINSERT() during data entry, especially in memos, to activate the insert mode as if the

user had pressed the Ins key.

Example—A legal office system uses MEMOEDIT() to enter client data. To reduce the risk of

overwriting data, the program activates the insert mode. First, it saves the previous setting for later

restoration.

minsert = READINSERT(.T.) && Activate insert mode and

 && save previous setting

MEMOEDIT(client,5,10,20,69,.T.)

READINSERT(minsert) && Restore last setting

SEE ALSO:
Command READ; functions MEMOEDIT() and READEXIT().

READKEY() SECTION 3

The dBASE® Language Handbook 866 Back to CONTENTS

READKEY()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
READKEY()

RETURNS:
Numeric

DEFINITION:
Returns an integer value referring to the key pressed to exit the latest full-screen editing command.

The full-screen editing commands include APPEND, BROWSE, CHANGE, CREATE, EDIT,

INSERT, MODIFY, and READ.

Each key pressed returns one of two possible codes. If the user did not change the data,

READKEY() returns a number from 0 to 36. Otherwise, it returns from 256 to 292. The change

value is 256 larger than the no change value. dBASE III PLUS, dBASE IV, dBXL, Quicksilver,

and FoxBASE+ READKEY() values are:

READKEY() returns:

Key pressed Description without change with change

Ctrl-H Left one space 250 256

Ctrl-S

Backspace

Left arrow

Ctrl-D Right one space 1 257

Ctrl-L

Right arrow

Ctrl-A Left one word 2 258

Home

Ctrl-F Right one word 3 259

End

Ctrl-E Back one field 4 260

Ctrl-K

Up arrow

READKEY() SECTION 3

The dBASE® Language Handbook 867 Back to CONTENTS

Ctrl-J Forward one field 5 261

Ctrl-X

Down arrow

Ctrl-R Back one screen 6 262

PgUp

Ctrl-C Forward one screen 7 263

PgDn

Ctrl-Q Exit, abandon change 12 12

Esc

Ctrl-W Exit, save changes 270 270

Ctrl-M Return, any character beyond 15 271

Enter key end of input field

Ctrl-Home menu display toggle 33 289

Ctrl-PgUp 34 290

Ctrl-PgDn 35 291

F1* HELP key 36 292

*(dBXL/Quicksilver do not exit on F1. They branch to user help.)

Clipper values differ.

RECOMMENDED USE:
Use READKEY() to specify an action after the user exits a full-screen editing command. Such

actions often include:

1. data validation;

2. another full-screen editing command to give the "panning" effect of moving from screen

to screen;

3. REPLACEing data into a data file;

4. branch to another procedure.

Example—To allow greater error-checking and data validation in an invoicing application, a

programmer simulates the EDIT command in programs (EDIT does not allow PICTUREs,

templates, range checking, or other validation).

Using READKEY(), the programmer controls the movement of the record pointer based on how

the user exits the READ. Pressing PgUp or Ctrl-R causes a SKIP -1. Pressing PgDn or Ctrl-C

causes a SKIP.

READKEY() SECTION 3

The dBASE® Language Handbook 868 Back to CONTENTS

USE invoice1

DO WHILE .t.

 mhours = hours

 mrate = rate

 mservice = service

 @ 00,01 SAY recno()

 @ 01,01 SAY "Number of hours: " GET mhours RANGE 1,40

 @ 02,01 SAY "Hourly rate : " GET mrate RANGE 1,300

 @ 03,01 SAY "Service charge : " GET mservice

 READ

 mread = READKEY() && Store READKEY() in memory variable so we

 && don't lose its value during the next READ

 IF mread > 255 && If the data was changed,

 msave = "?" && ask user whether to save it

 @ 05,01 SAY "Save changes? (Y/N) " GET msave PICTURE "!"

 READ

 IF msave = "Y" && If user responds "Y", replace data into fields

 REPLACE hours WITH mhours,rate WITH mrate,service WITH mservice

 ENDIF

 ENDIF

 IF (mread = 6 .OR. mread = 262) .AND. (RECNO()>1) && If PgUp or Ctrl-R,

 SKIP - 1 && skip backwards

 ENDIF

 IF (mread=7 .OR. mread=263) .AND. (RECNO()<RECCOUNT())&& Skip forward

 SKIP

 ENDIF

ENDDO

SPECIAL USE:
You can use READKEY() to simulate the Clipper/FoxBASE+ UPDATED() function. To

determine whether data was changed in the previous full-screen operation, use the statement

? READKEY() >= 256

It returns true (.T.) if data was changed.

VARIATIONS:
Clipper: READKEY() is in EXTEND.LIB on the system disk. READKEY() return values differ

from those in dBASE III PLUS and dBASE IV. Use the UPDATED() function to determine

whether the user changed data.

Exit Codes

Exit Key Clipper

Backspace Does not exit

Ctrl-D, Ctrl-L Does not exit

Left arrow Does not exit

READKEY() SECTION 3

The dBASE® Language Handbook 869 Back to CONTENTS

Right arrow Does not exit

Up arrow Does not exit

Dn arrow Does not exit

PgUp 6

PgDn 7

Esc 12 (Esc only)

Ctrl-Q Does not exit

Ctrl-W 14

Ctrl-End Does not exit

Any character

typed beyond 271

the field's end

Enter key 15

Ctrl-Home Does not exit

Ctrl-PgUp Does not exit

Ctrl-PgDn Does not exit

F1 Does not exit

If you change the contents of the field, Clipper adds 256 to the READKEY() value.

If you set READEXIT(.T.), Clipper lets you exit a field with an up or down arrow. In this case,

READEXIT() returns 0, regardless of whether data was changed.

SEE ALSO:
Commands ON KEY and READ; functions LASTKEY() and UPDATED().

READVAR() SECTION 3

The dBASE® Language Handbook 870 Back to CONTENTS

READVAR()

DIALECTS:
Clipper only.

Same as dBASE IV VARREAD().

SYNTAX:
READVAR()

RETURNS:
Character

DEFINITION:
Returns the name of the memory variable or field in the current GET or PROMPT. If none is

active, READVAR() returns a null string.

RECOMMENDED USE:
Use READVAR() in user defined functions that return a value to the current READ, or do data

validation on a field basis. READVAR() is also useful for creating custom help systems based on

the current GET or PROMPT variable.

Example—A hotel reservation system checks the number of available rooms when a reservation

is made. The VALID clause activates the user defined function AVAIL(), using the requested

number of rooms as an argument. READVAR() identifies the GET variable to validate. AVAIL()

then compares the number of rooms requested to the number available in the log file RESERVES.

If the clerk requests fewer rooms than are available, the system fulfills the request and AVAIL()

returns true (.T.). Otherwise, AVAIL() returns false (.T.) and displays a warning.

* HOTEL.PRG

STORE 0 TO singles,doubles

@ 10,10 SAY "Number of single rooms to reserve: " GET singles VALID

AVAIL(singles)

@ 11,10 SAY "Number of double rooms to reserve: " GET doubles VALID

AVAIL(doubles)

READ

FUNCTION avail

PARAMETERS num

USE reserves && RESERVES is a log

DO CASE && indicating rooms available

 CASE READVAR() = "SINGLES"

 ok = (srooms > num) && Check SROOMS

 @ 24,03 SAY IIF(ok,SPACE(26),"Only "+LTRIM(STR(srooms))+;

 " rooms available")

READVAR() SECTION 3

The dBASE® Language Handbook 871 Back to CONTENTS

 CASE READVAR() = "DOUBLES"

 ok = (drooms>num) && Check DROOMS

 @ 24,03 SAY IIF(ok,SPACE(26),"Only "+LTRIM(STR(drooms))+;

 " rooms available")

ENDCASE

RETURN ok

SEE ALSO:
Commands APPEND, DEFINE WINDOW, EDIT, READ, and SET KEY.

RECCOUNT() SECTION 3

The dBASE® Language Handbook 872 Back to CONTENTS

RECCOUNT()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RECCOUNT()

RETURNS:
Numeric

DEFINITION:
Returns the total number of records in the active database file. It includes records hidden by active

filters or SET DELETED ON.

To determine RECCOUNT() for the active database, use the command

? RECCOUNT()

 244

DEFAULT:
Zero if no file is active in the current work area.

RECOMMENDED USE:
Use it with DISKSPACE() and RECSIZE() to determine whether a disk has enough room for

operations such as SORT, INDEX, and COPY. A command that creates an output file will fail if

there is not enough disk space.

For a detailed example, see function RECSIZE().

VARIATIONS:
Clipper: Same as LASTREC().

dBASE IV: You can specify an unselected work area by using its ALIAS as a parameter, in the

form

RECCOUNT(<expC>)

FoxBASE+: You can specify an unselected work area by using its number as a parameter, in the

form

RECCOUNT(<expN>)

RECCOUNT() SECTION 3

The dBASE® Language Handbook 873 Back to CONTENTS

SEE ALSO:
Functions DBF(), DISKSPACE(), FCOUNT(), HEADER(), LASTREC(), and RECSIZE().

RECNO() SECTION 3

The dBASE® Language Handbook 874 Back to CONTENTS

RECNO()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RECNO()

RETURNS:
Numeric

DEFINITION:
Returns the current record number.

If the database is empty, RECNO() returns 1. It returns 0 if no database is open.

If the record pointer moves ahead of the first record (BOF() = .T.), RECNO() returns 1.

If the record pointer moves past the last record (EOF() = .T.), RECCOUNT() returns one more

than than the total number of records.

RECOMMENDED USE:
Use RECNO() to save the position of the current record in a memory variable. This lets you close

the current file, operate on other files, and then return to where you left off.

RECNO() is also useful for displaying the current record number so users know their position in a

file.

Example 1—An editing screen in a mailing list management program displays the record number

at the top.

@ 01,05 SAY "Record number: " + STR(RECNO(),3,0)

@ 04,05 SAY " Name: " GET name

@ 05,05 SAY "Company: " GET company

@ 06,05 SAY "Address: " GET address

@ 07,05 SAY " City: " GET city

@ 08,05 SAY " State: " GET state

READ

Example 2—A video store application uses several files, each with several indexes. The files

include rental transactions, sales transactions, inventory, and memberships. To keep the

application within the system limits for open files, some operations temporarily close a database,

saving its current record number in a memory variable. When other operations are complete, the

program re-opens the original file and moves the record pointer to the original record.

RECNO() SECTION 3

The dBASE® Language Handbook 875 Back to CONTENTS

USE sales INDEX acct,paysh,vidrent

* <user selects lookup in another file>

marker = RECNO() && Store record number in MARKER

USE && Close SALES

* <do other operations>

USE sales INDEX acct,paysh,vidrent && Return to original file

GOTO marker && and original record

VARIATIONS:
dBASE IV: You can specify an unselected work area by using its ALIAS as a parameter, in the

form

RECNO(<expC>)

FoxBASE+: You can specify an unselected work area by using its number as a parameter, in the

form

RECNO(<expN>)

SEE ALSO:
Functions LASTREC() and RECCOUNT().

RECSIZE() SECTION 3

The dBASE® Language Handbook 876 Back to CONTENTS

RECSIZE()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RECSIZE()

RETURNS:
Numeric

DEFINITION:
Returns the record size in the current database file.

DEFAULT:
0 if no file is in USE.

RECOMMENDED USE:
Use RECSIZE() with DISKSPACE() and RECCOUNT() to determine whether a disk has enough

room for operations such as COPY, INDEX, and SORT. A command that creates an output file

will fail if there is not enough

disk space.

Example—An advertising program sorts databases and copies them. Before a SORT or COPY, a

procedure compares the file size with DISKSPACE(). The subroutine computes file size as

RECCOUNT() times RECSIZE(), plus the size of the database file header. If the file size exceeds

one half the DISKSPACE(), an error routine prompts the user to select an alternative action.

You can determine the size of the header with the formula

32 * <field count> + 35

where the asterisk is the multiplication operator. To determine the field count, use FIELD() in a

DO WHILE loop to test each field name. FCOUNT counts each field, until FIELD() returns a null

string.

fcount = 1 && Start with FIELD 1

DO WHILE LEN(FIELD(fcount)) > 0 && Continue until FIELD returns null

 fcount = fcount + 1 && Increment counter

ENDDO

fcount = fcount - 1 && FCOUNT cannot start at 0, so adjust final total

header = (32 * fcount) + 35 && Compute header size

totsize = recsize() * reccount() + header && Compute total file size

IF totsize > DISKSPACE()/2

RECSIZE() SECTION 3

The dBASE® Language Handbook 877 Back to CONTENTS

 * <error routine>

ENDIF

Note that Clipper has a field count function FCOUNT().

VARIATIONS:
Clipper: RECSIZE() is in EXTEND.LIB on the system disk.

dBASE IV: You can specify an open database in an unselected work area by using its ALIAS as

an argument, in the form

RECSIZE(<expC>)

FoxBASE+: You can specify an open database in an unselected work area by using its work area

number as an argument, in the form

RECSIZE(<expN>)

SEE ALSO:
Functions DISKSPACE(), FCOUNT(), and RECCOUNT().

REPLICATE() SECTION 3

The dBASE® Language Handbook 878 Back to CONTENTS

REPLICATE()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
REPLICATE(<expC>,<expN>)

RETURNS:
Character

DEFINITION:
Repeats a character string <expC> a number of times specified by an integer <expN>.

(REPLICATE ignores fractions.)

The total length of the resulting character string must not exceed 254.

RECOMMENDED USE:
Use REPLICATE() to produce menu frames by repeating regular or extended ASCII characters.

You can also use it to generate crude bar graphs.

Example—Placing frames around menus and prompts can make the screen more attractive and

easier to read. REPLICATE() lets you create long character strings efficiently for this purpose.

In this example, REPLICATE() creates horizontal lines of dollar signs for the top and bottom parts

of the menu frame.

mtotal = 888.22

@ 02,02 REPLICATE("$",25)

@ 03,02 "$"

@ 03,26 "$"

@ 04,02 "$"

@ 04,26 "$"

@ 05,02 REPLICATE("$",25)

@ 04,04 SAY "TOTAL: " + STR(mtotal,7,2)

The frame appears as follows:

REPLICATE() SECTION 3

The dBASE® Language Handbook 879 Back to CONTENTS

 $$$$$$$$$$$$$$$$$$$$$$$$$$$

 $ $

 $ TOTAL: 888.22 $

 $$$$$$$$$$$$$$$$$$$$$$$$$$$

LIMITS/WARNINGS:
dBASE III PLUS: Using STORE or the equal sign operator with REPLICATE() can lock up the

computer when trying to create strings beyond the 254-character limit, as in the following:

mspace = SPACE(130)

mtest = REPLICATE(mspace,254) && REPLICATE repeats MSPACE 254 times

 && in an attempt to create a string

This problem generally occurs when the string length computes to 33020 or more.

SEE ALSO:
Commands @...TO and STORE; function SPACE().

RESTSCREEN() SECTION 3

The dBASE® Language Handbook 880 Back to CONTENTS

RESTSCREEN()

DIALECTS:
Clipper only.

SYNTAX:
RESTSCREEN(<expN1,expN2>, <expN3,expN4>, <expC>)

RETURNS:
Nothing

DEFINITION:
Restores a screen saved by the SAVESCREEN() function.

<expN1,expN2> is the top left coordinate of the screen, <expN3,expN4> is the bottom right

coordinate. <expC> is the character variable containing the screen.

RECOMMENDED USE:
Use RESTSCREEN() with SAVESCREEN() to manipulate partial screen images. They are useful

for creating multi-layered user interfaces in which menus, help windows, and dialog boxes pop up

on the screen. For simple applications, the SAVE SCREEN and RESTORE SCREEN commands

are easier to use; however, they work only with entire screens. If you want multiple layers with

the ability to move objects, use RESTSCREEN() and SAVESCREEN().

Example—In an accounting application, a user presses F1 to call help. The program saves a

designated region of the screen, then overlays the help message there. Afterward, the program

restores the original region.

* GLEDGER.PRG

CLEAR

* <user presses F1 in the READ to execute HELP.PRG>

macctno = space(10)

* <more SAYs and GETs>

@ 04,10 SAY "Enter ID: " GET macctno

READ

* HELP.PRG

PARAMETERS x,y,z && Parameters sent automatically

*

m_base1 = SAVESCREEN(1,1,15,40) && Save screen region

@ 01,01 TO 06,39

@ 02,02 SAY "======DATA ENTRY HELP========"

@ 03,02 SAY "Enter client's account number"

@ 04,02 SAY "from the range 2222-3323, then"

@ 05,02 SAY "return to menu 2 and press 'C'"

RESTSCREEN() SECTION 3

The dBASE® Language Handbook 881 Back to CONTENTS

WAIT ""

* <statements>

RESTSCREEN(1,1,15,40,m_base1)

LIMITS/WARNINGS:
Be sure to restore screens in regions the same size as the ones from which you saved them. You

may change locations, but the size must stay the same.

Do not use the RESTORE SCREEN command to restore SAVESCREEN() regions.

The ANSI.OBJ screen driver does not support RESTSCREEN().

RESTSCREEN() is in EXTEND.LIB on the system disk.

SEE ALSO:
Commands RESTORE SCREEN and SAVE SCREEN; function SAVESCREEN().

RIGHT() SECTION 3

The dBASE® Language Handbook 882 Back to CONTENTS

RIGHT()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RIGHT(<expC>,<expN>)

RETURNS:
Character

DEFINITION:
Returns <expN> characters of a character expression <expC>, counting from right to left.

If <expN> is negative or zero, RIGHT() returns a null string.

RECOMMENDED USE:
Use RIGHT() to extract data from the right side of a string.

Example—A programmer uses DOS directory information within dBASE applications to

determine which files to back up. First, the programmer RUNs the DOS DIR command with the

redirection (>) option. The option saves the directory listing in an ASCII file. Then, using

APPEND FROM...SDF, the programmer imports the ASCII file into a database file containing

one 80-character field LINE.

Each record contains a single directory entry. A typical entry is

15 EQUIP PRG 1398 3-14-87 10:41p

The program uses RIGHT() to extract the time of the last update (information that is not available

through dBASE directly).

lup_time = RIGHT(TRIM(line),6)

? lup_time

10:41p

VARIATIONS:
Clipper: RIGHT() is in EXTEND.LIB on the system disk. It can take a memo field as an argument.

dBASE IV: RIGHT() can take a memo field as an argument.

SEE ALSO:
Functions AT(), LEFT(), LTRIM(), RTRIM(), STUFF(), SUBSTR(), and TRIM().

RIGHT() SECTION 3

The dBASE® Language Handbook 883 Back to CONTENTS

RLOCK() SECTION 3

The dBASE® Language Handbook 884 Back to CONTENTS

RLOCK()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, FoxBASE+, and Quicksilver.

SYNTAX:
RLOCK()

RETURNS:
Logical

DEFINITION:
Tries to lock the current record. Same as function LOCK().

SEE ALSO:
Functions FLOCK() and LOCK().

ROLLBACK() SECTION 3

The dBASE® Language Handbook 885 Back to CONTENTS

ROLLBACK()

DIALECTS:
dBASE IV only.

SYNTAX:
ROLLBACK()

RETURNS:
Logical

DEFINITION:
Indicates whether the last ROLLBACK succeeded. If so, ROLLBACK() returns true (.T.).

DEFAULT:
True

RECOMMENDED USE:
dBASE IV's transaction processing features let you ROLLBACK, or undo, a transaction. However,

under some conditions, a ROLLBACK will fail.

Use ROLLBACK() after issuing the ROLLBACK command. If the ROLLBACK fails

(ROLLBACK() returns false), use RESET to reset the file's integrity tag or restore from backups.

Example—A power loss during a transaction leaves the integrity tag set to true. Upon restarting

the program, ISMARKED() returns .T., warning that the file may be corrupted. The program can

then try to recover by issuing ROLLBACK. If the ROLLBACK fails, ROLLBACK() returns false

and the program issues the RESET command to reset the integrity tag.

USE accounts EXCLUSIVE

IF ISMARKED()

 ROLLBACK

 IF .NOT. ROLLBACK()

 RESET

 ENDIF

ENDIF

SEE ALSO:
Commands BEGIN TRANSACTION, END TRANSACTION, RESET, and ROLLBACK;

functions COMPLETED() and ISMARKED().

ROUND() SECTION 3

The dBASE® Language Handbook 886 Back to CONTENTS

ROUND()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ROUND(<expN1>,<expN2>)

RETURNS:
Numeric

DEFINITION:
Returns <expN1> rounded to <expN2> decimals.

ROUND() returns a rounded whole number if <expN2> is negative.

RECOMMENDED USE:
Use ROUND() to specify the numeric accuracy of computations.

Example—A commodity trading program computes prices to thousandths of dollars. For example,

wheat might trade at 1.246 dollars per bushel. When computing totals, however, the program

ROUNDs prices to the nearest cent.

cost = 2546 * 1.246 && 2546 bushels times 1.246

? cost

 3172.316

? ROUND(cost,2)

 3172.32

LIMITS/WARNINGS:
Clipper: Versions before Summer '87 round both positive and negative numbers incorrectly. For

example, ROUND(3.5,0) produces 3 instead of 4 and ROUND(-11.5,0) produces -11 instead of -

12. Do not use ROUND() in Clipper versions before Summer '87.

dBASE III PLUS: Numbers in the range 4096.355 through 5242.355 round improperly.

ROUND(4096.355,2) produces 4096.35, incorrectly rounding down. ROUND() should return

4096.36.

dBASE III PLUS, dBASE IV: Negative numbers are rounded improperly. For example, rounding

-11.5 with 0 decimal places should produce -12. dBASE III PLUS and dBASE IV produce -11.

To work around the problem in dBASE IV, take the absolute value of the number before rounding,

and multiply by its SIGN() as follows:

ROUND() SECTION 3

The dBASE® Language Handbook 887 Back to CONTENTS

mnum = -11.5

 ? ROUND(ABS(mnum),0) * SIGN(mnum)

 -12

As dBASE III PLUS doesn't have a SIGN function, you must determine the sign using IIF as

follows:

mnum = -11.5

? ROUND(ABS(mnum),0) * IIF(mnum<0,-1,1)

 -12

Note that the SET DECIMALS command rounds correctly despite the errors in the ROUND()

function. For example:

SET DECIMALS TO 0

* SET FIXED ON && Used in dBASE III PLUS, but not dBASE IV

mnum = -11.5

? mnum

-12

SEE ALSO:
Functions CEILING(), FLOOR(), INT(), MOD(), STR(), and VAL(); command SET

DECIMALS.

ROW() SECTION 3

The dBASE® Language Handbook 888 Back to CONTENTS

ROW()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
ROW()

RETURNS:
Numeric

DEFINITION:
Returns the vertical coordinate of the cursor's position. Coordinates range from 0 (top) to 24

(bottom) on a standard screen.

RECOMMENDED USE:
ROW() lets you place output on the screen relative to the current cursor position. This is useful for

displaying @...SAYs and GETs from general purpose subroutines. You do not need to know the

exact cursor position.

Example—A procedure centers text on the screen, using a parameter to pass data. Because the

procedure does not know the current position, it uses the ROW() function to place the text.

* CENTER.PRG

PARAMETERS mstring

@ ROW(),(80-LEN(mstring))/2 SAY mstring

To call CENTER.PRG, you would issue the command

string = "You pressed an incorrect key. Try again" && Sample message

DO CENTER WITH string

SEE ALSO:
Functions COL(), FCOL(), FROW(), PCOL(), and PROW().

RTOD() SECTION 3

The dBASE® Language Handbook 889 Back to CONTENTS

RTOD()

DIALECTS:
dBASE IV only.

SYNTAX:
RTOD(<expN>)

RETURNS:
Numeric

DEFINITION:
Converts radians to degrees.

<expN> is the angle in radians.

The conversion formula is

 N * 57.3

where N is the angle in radians. (57.3 is 180/pi). The asterisk is the multiplication operator.

RECOMMENDED USE:
RTOD() is used in engineering and scientific applications.

Example—To plot a graph, a scientist converts 0.2618 radians to degrees. The result is 15.

mdegrees = RTOD(0.2618)

 15.00

SEE ALSO:
Functions ACOS(), ATAN(), ATN2(), COS(), DTOR(), SIN(), and TAN(); command SET

DECIMALS.

RTRIM() SECTION 3

The dBASE® Language Handbook 890 Back to CONTENTS

RTRIM()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
RTRIM(<expC>)

RETURNS:
Character

DEFINITION:
Removes spaces from the end of a character string. RTRIM() is the same as TRIM().

SEE ALSO:
Functions LEFT(), LTRIM(), RIGHT(), STUFF(), and TRIM().

SAVESCREEN() SECTION 3

The dBASE® Language Handbook 891 Back to CONTENTS

SAVESCREEN()

DIALECTS:
Clipper only.

SYNTAX:
SAVESCREEN(<expN1,expN2>, <expN3,expN4>)

RETURNS:
Character

DEFINITION:
Saves a region of the screen in a character memory variable for later restoration with

RESTSCREEN().

<expN1,expN2> is the top left coordinate of the region to save.

<expN3,expN4> is the bottom right coordinate.

RECOMMENDED USE:
Use RESTSCREEN() with SAVESCREEN() to manipulate partial screen images. They are useful

for creating multi-layered user interfaces in which menus, help windows, and dialog boxes pop up

on the screen. For simple applications, the SAVE SCREEN and RESTORE SCREEN commands

are easier to use; however, they work only with entire screens. If you want multiple layers with

the ability to move objects, use RESTSCREEN() and SAVESCREEN().

Example 1—An inventory application lets the user select from a "pulldown" box created with

ACHOICE(). Before displaying the box, the program saves the screen region.

* MENU.PRG

DECLARE main[10] && Declare array for ACHOICE()

USE action && Database file action contains menu choices

FOR i = 1 to 10 && Count from 1 to 10

 main[i] = item && Store item in array element

 SKIP && Skip to next record

NEXT

m_base1 = SAVESCREEN(1,1,15,40) && Save screen region

@ 01,01 CLEAR TO 15,40 && Clear region

@ 01,01 TO 15,40 && Show double line border

mchoice = ACHOICE(02,02,14,39,main) && Display menu in window with

* && coordinates one less

* <statements/subroutines> && than region and border

RESTSCREEN(1,1,15,40,m_base1) && Restore original screen

SAVESCREEN() SECTION 3

The dBASE® Language Handbook 892 Back to CONTENTS

LIMITS/WARNINGS:
SAVESCREEN() saves up to 4000 byte screens.

Be sure to restore a screen in a region the same size as the one from which it was saved. You may

change locations, but the size must stay the same.

Do not use RESTORE SCREEN to restore SAVESCREEN() regions.

The ANSI.OBJ screen driver does not support SAVESCREEN().

SAVESCREEN() is in EXTEND.LIB on the system disk.

SEE ALSO:
Commands RESTORE SCREEN and SAVE SCREEN; function RESTSCREEN().

SECONDS() SECTION 3

The dBASE® Language Handbook 893 Back to CONTENTS

SECONDS()

DIALECTS:
Clipper only.

SYNTAX:
SECONDS()

RETURNS:
Numeric

DEFINITION:
Returns the system time as a number of seconds since midnight.

SECONDS() returns a number ranging from 0 to 86399 (23 hours, 59 minutes, and 59 seconds).

RECOMMENDED USE:
Use SECONDS() to simplify time computations and create indexes based on time-ordered events.

Example—A scheduling program keeps appointments in a career counseling office. The schedule

is indexed on appointment time, which is stored internally as SECONDS(). To minimize

conversions, when a customer makes an appointment, the program stores both TIME() and

SECONDS() in the database file.

USE appts INDEX apptsecs

appt = TIME()

@ 02,02 SAY "Enter time: " GET appt PICTURE "99:99:99"

READ

REPLACE apptime WITH appt

REPLACE apptsecs WITH SECONDS()

LIST apptsecs

Record# APPTSECS

 4 78769

 1 87650

 3 87658

 2 89087

 5 92794

VARIATIONS:
FoxBASE+: Use the function SYS(2) to return seconds elapsed since midnight.

SEE ALSO:
Functions SYS(2) and TIME().

SEEK() SECTION 3

The dBASE® Language Handbook 894 Back to CONTENTS

SEEK()

DIALECTS:
dBASE IV only.

SYNTAX:
SEEK(<exp>[,<alias>])

RETURNS:
Logical

DEFINITION:
Searches a database file using its primary index, returning true (.T.) if the search succeeds or false

(.F.) if it fails.

The SEEK() expression <exp> is a numeric or character expression matching the key expression

of the primary index.

If the SEEK() succeeds, the record pointer moves to the matching record. Otherwise, it moves to

the end of file.

SEEK() combines the command SEEK and the function FOUND().

DEFAULT:
SEEK() searches the database in the current work area.

OPTIONS:
You can specify an unselected work area by using its alias as the second SEEK() argument. Be

sure that the unselected database has an open index.

RECOMMENDED USE:
You can use SEEK() to replace the combination of the SEEK command and FOUND(). This

simplifies code and makes it more readable. It is also easier to type. A better use of SEEK(), and

probably the reason why it exists, is in a VALID clause of @...SAY...GET. This lets you easily

validate user input against a "lookup" database.

Example—A programmer creates a lookup database to verify company codes. When the user

enters a code, SEEK() searches for it in the database. If it is found, SEEK() returns true (.T.) to the

VALID statement and the user may proceed. If the SEEK() fails, the ERROR clause prompts the

user to reenter the value.

SELECT 1

USE main

SEEK() SECTION 3

The dBASE® Language Handbook 895 Back to CONTENTS

SELECT 2

USE lookup INDEX codedex

SELECT 1

* <Data entry code>

mcode = SPACE(4)

@ 10,01 SAY "Enter company code: " GET mcode VALID SEEK(mcode,"LOOKUP") ;

 ERROR "Code not found, please reenter"

READ

VARIATIONS:
You can simulate SEEK() with a Clipper, dBXL, FoxBASE+, or Quicksilver user defined

function:

FUNCTION useek && Make a PROCEDURE in FoxBASE+

PARAMETERS mexp,malias

oldalias = STR(SELECT())

SELECT &malias && In Clipper, you can use parentheses around MALIAS

SEEK mexp && instead of the macro (&)

isfound = FOUND() && Save the FOUND() value after a SEEK since a

SELECT &oldalias && subsequent change in work areas will reset it

RETURN isfound

Be sure to pass both parameters to the user defined function. For Example, to SEEK a code of

"ABCD" in file CODES, issue USEEK() as follows:

? USEEK("ABCD","CODES")

You can also use USEEK with numeric expressions.

SEE ALSO:
Commands @...SAY...GET, FIND, FUNCTION, SEEK, and SELECT; functions FOUND(),

LOOKUP(), and SELECT().

SELECT() SECTION 3

The dBASE® Language Handbook 896 Back to CONTENTS

SELECT()

DIALECTS:
Clipper, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SELECT()

RETURNS:
Numeric

DEFINITION:
Returns the number of the currently selected work area.

Work area numbers range from 1 to 10.

RECOMMENDED USE:
Use SELECT() to indicate the current work area number while debugging applications. Also use

it to store the number before running a subroutine that changes areas. Upon RETURNing from the

subroutine, you can then re-SELECT the original work area with a CASE statement.

Example 1—While debugging an accounting system, the programmer displays the SELECT()

area at the top of every program module. This helps detect errors.

* AR_RPT.PRG

? "Current work area:" + STR(SELECT(),2,0)

* <more statements>

If, for example, the current work area is 5, the following message appears:

Current work area: 5

Example 2—The accounting system from Example 1 includes a procedure that opens a database

file and displays a "lookup" list. When the user presses a key, the program stores the current work

area number in memory variable OLD_AREA. The lookup procedure changes areas, leaving the

previous one intact. Upon completion, it returns to the original area.

* LOOKUP.PRG

SELECT 2

old_area = STR(SELECT()) && Store work area in OLD_AREA

SELECT 8 && Select new work area

* <lookup operations>

SELECT &old_area

RETURN && Return to caller

SELECT() SECTION 3

The dBASE® Language Handbook 897 Back to CONTENTS

VARIATIONS:
Clipper: Work area numbers range from 0 to 254. SELECT() also accepts an alias as an argument,

returning its work area number or zero if it does not exist. The alias can be in an unselected work

area. For example, SELECT("ACCT") returns the work area number of the alias ACCT.

dBASE IV: SELECT() returns the highest unused work area number. This allows you to select an

unused work area with:

SELECT SELECT()

LIMITS/WARNINGS:
dBASE IV's SELECT() differs from the Clipper, dBXL, FoxBASE+, and Quicksilver SELECT().

See Variations above.

SEE ALSO:
Command SELECT; functions ALIAS() and WSELECT().

SET() SECTION 3

The dBASE® Language Handbook 898 Back to CONTENTS

SET()

DIALECTS:
dBASE IV only.

SYNTAX:
SET(<expC>)

RETURNS:
Character/Numeric

DEFINITION:
Returns the current setting of SET ON and SET TO options. <expC> is the command keyword,

such as BELL, CARRY, or ECHO. SET() accepts four character abbreviations.

SET() returns the data type appropriate to the SETting, for example, SET("BELL") returns "ON"

or "OFF" (character type), whereas SET("DECIMALS") returns a number.

RECOMMENDED USE:
Use SET() to inform the user of the current settings, for example:

? SET("BELL")

OFF

You can then let the user change the SETting.

SET() also lets you save and restore SETtings. This is helpful for creating generic program

modules that do not conflict.

Example—A generic file maintenance program can be called from an inventory application. To

preserve the settings established by the application, the maintenance program saves them with

SET().

* Save SETtings (shown with sample values)

mbell = SET("BELL") && BELL was SET ON

mescape = SET("ESCAPE") && ESCAPE was SET OFF

mexact = SET("EXACT") && EXACT was SET OFF

mdeleted = SET("DELETED") && DELETED was SET OFF

* <Do other modules, then return to caller>

* Restore previous SETtings

SET BELL &mbell

SET ESCAPE &mescape

SET EXACT &mexact

SET DELETED &mdeleted

SET() SECTION 3

The dBASE® Language Handbook 899 Back to CONTENTS

LIMITS/WARNINGS:
SET() does not recognize the DEVICE keyword.

SEE ALSO:
Commands DISPLAY STATUS and SET; function SELECT().

SETCANCEL() SECTION 3

The dBASE® Language Handbook 900 Back to CONTENTS

SETCANCEL()

DIALECTS:
Clipper only.

SYNTAX:
SETCANCEL([<expL>])

RETURNS:
Logical

DEFINITION:
Enables or disables the runtime termination key Alt-C.

SETCANCEL() works like SET ESCAPE, except that it returns a value you can save and restore.

An argument of true (.T.) lets you press Alt-C to stop program execution. An argument of false

(.F.) disables Alt-C.

SETCANCEL() with no argument returns the current setting (.T. or .F.). With an argument, it

returns the previous setting.

RECOMMENDED USE:
Use SETCANCEL() to prevent users from ending program execution abnormally, short of pulling

the plug or flipping the switch. This reduces the risk of damage to data files.

Example—Before posting transactions to the main database, SETCANCEL(.F.) disables the Alt-

C key combination.

oldcancel = SETCANCEL(.F.) && Disable Alt-C and save previous setting

* <update files>

SETCANCEL(oldcancel) && Restore previous setting

SEE ALSO:
Command SET ESCAPE; function ALTD().

SETCOLOR() SECTION 3

The dBASE® Language Handbook 901 Back to CONTENTS

SETCOLOR()

DIALECTS:
Clipper only.

SYNTAX:
SETCOLOR([<expC>])

RETURNS:
Character

DEFINITION:
Returns the current color setting and optionally sets new colors. The argument <expC> is a valid

color specification string. Valid specifications consist of standard, enhanced, border, background,

and unselected color settings.

See command SET COLOR TO for a color table and a description of color specifications.

When you specify <expC>, SETCOLOR() changes the colors. The new colors take effect with the

next screen display command.

SETCOLOR() with no argument returns the color value for the current screen. With an argument,

it returns the colors before the new ones go into effect.

RECOMMENDED USE:
SETCOLOR() supersedes the SET COLOR TO command since it lets you save and restore color

settings from the environment. This makes it especially useful in modular programming since you

can change colors in subroutines, then restore the original settings.

Example 1—A programmer maintains a library of common subroutines and user defined functions

to speed program development. To prevent conflicts, subroutines save the current colors before

activating new ones. Before the RETURN, SETCOLOR() restores the original colors. The

following function accepts a filename and a fieldname as parameters. It then displays the specified

field in a bounce bar menu. The original color value is stored in variable OLDCOLOR. Just before

the function RETURNs, SETCOLOR() restores OLDCOLOR.

FUNCTION windosel

PARAMETERS mdbf,mfield

PRIVATE oldcolor,mrec,mchoice,pt1,pt2,pt3,pt4,ctr

oldcolor = SETCOLOR("GR+/B,R/W,R,,GR") && Save prior color setting

USE (mdbf)

mrec=RECCOUNT()

pt1 = 1

pt2 = 1

SETCOLOR() SECTION 3

The dBASE® Language Handbook 902 Back to CONTENTS

pt3 = 5

pt4 = LEN(&mfield)+3

DECLARE master[mrec] && Array has same number of elements as records

FOR ctr=1 TO mrec

 master[ctr]=&mfield

 SKIP

NEXT

@ pt1,pt2 TO pt3,pt4

mchoice=ACHOICE(pt1+1,pt2+1,pt3-1,pt4-1,master)

SETCOLOR(oldcolor) && Restore original setting

RETURN mchoice

Example 2—A programmer includes a field in a database specifically for setting colors. To

prevent reprogramming, the field can simply be edited to change the colors of the application.

USE msystem

mcolor=TRIM(fcolor) && FCOLOR is a char field with value "GR+/B,R/W,B"

SETCOLOR(mcolor) && Sets color to value stored in mcolor in this case,

 && yellow on blue standard, red on white enhanced, and a blue border

active=SETCOLOR() && Store current color setting in variable ACTIVE

A display of variable ACTIVE shows the current color string, including defaults not even specified

in field FCOLOR:

? active

GR+/B,R/W,B,N,R/W

LIMITS/WARNINGS:
Unlike the SET COLOR TO command, SETCOLOR() without a parameter does not restore the

color to its default, "W/N,I/N,N,N,I/N".

You cannot use numeric color specifications with SETCOLOR(). It allows only letters.

SETCOLOR() is in EXTEND.LIB on the system disk.

SEE ALSO:
Command SET COLOR TO.

SETPRC() SECTION 3

The dBASE® Language Handbook 903 Back to CONTENTS

SETPRC()

DIALECTS:
Clipper only.

SYNTAX:
SETPRC(<expN>,<expN2>)

DEFINITION:
Changes the printer row and column coordinates (PROW() and PCOL())

to the specified values, without moving the print head.

<expN> is the row; <expN2> is the column.

RECOMMENDED USE:
Normally, printing at a coordinate less then a previous coordinate causes the printer to eject a page.

With SETPRC(), you can set the logical printer coordinate to the top of the page, without moving

the print head or ejecting a page.

Example—Printing on non-standard sized forms usually requires the use of printer-specific codes

to set the page length or top-of-form. With SETPRC() as an alternative, you can print a form, reset

the logical top-of-form, then resume printing. This method works uniformly on all printers.

The following example prints a 22-line invoice on a 25-line form, then resets PROW() and PCOL()

to 0,0. Without any EJECTs, invoices print on consecutive 25-line forms.

USE inv_data

SET DEVICE TO PRINT

DO WHILE .NOT. EOF()

 * <Print 22 line invoice>

 @ 01,01 SAY "Hourly : " + STR(hourly,8,2)

 @ 02,01 SAY "Number of Hours: " + STR(numhours,5,0)

 @ 03,01 SAY "Second Person : " + STR(second,8,2)

 @ 04,01 SAY "Mileage : " + STR(miles,8,2)

 * <more @...SAYS>

 @ 23,01 SAY "Please pay ——> " + STR(total,8,2)

 SETPRC(0,0) && Set page to top-of-form

 SKIP

ENDDO

SET DEVICE TO SCREEN

SEE ALSO:
Functions PCOL() and PROW().

SIGN() SECTION 3

The dBASE® Language Handbook 904 Back to CONTENTS

SIGN()

DIALECTS:
dBASE IV only.

SYNTAX:
SIGN(<expN>)

RETURNS:
Numeric

DEFINITION:
Indicates whether a number is negative, positive, or zero.

<expN> is any numeric expression.

RECOMMENDED USE:
Use SIGN() in computations to keep track of signs while dealing with absolute values.

Example—An accounts payable/receivable system tracks cash flow. In computing the absolute

difference between debits and credits for a graph, the programmer first saves the original SIGNs

of both variables (they could be negative if they represent bad debts or uncollected payables).

credit = 2212

debit = -877

signdeb = SIGN(debit) && sdebit now is -1

signcred = SIGN(credit) && scredit now is 1

After doing the computations, the programmer restores the original signs:

credit = (credit * signcred)

debit = (debit * signdeb)

VARIATIONS:
You can simulate SIGN() with a Clipper, dBXL, FoxBASE+, or Quicksilver user defined function.

FUNCTION sign && Use a PROCEDURE for FoxBASE+

PARAMETERS expN

RETURN IIF(expN#0, IIF(expN>0,1,-1), 0)

Call the SIGN() user defined function as you would in dBASE IV.

SIGN() SECTION 3

The dBASE® Language Handbook 905 Back to CONTENTS

SPECIAL USE:
Because rounding with no decimal places doesn't work properly with some negative numbers,

SIGN() to ensure correct results. For example, rounding -9.5 to 0 decimal places should produce -

10. dBASE IV produces -9.

To solve the problem, take the absolute value of the number before rounding, and multiply it by

its SIGN() as follows:

mnum = -9.5

? ROUND(ABS(mnum),0) * SIGN(mnum)

-10

SEE ALSO:
Functions ABS() and ROUND().

SIN() SECTION 3

The dBASE® Language Handbook 906 Back to CONTENTS

SIN()

DIALECTS:
dBASE IV only.

SYNTAX:
SIN(<expN>)

RETURNS:
Floating point

DEFINITION:
Computes the sine of an angle, where <expN> is its size in radians.

SIN() returns a floating point number in the range -1.0 to +1.0.

Use DTOR() and RTOD() to convert degrees to radians and vice versa. A radian is approximately

57.3 degrees.

The SET DECIMALS and SET PRECISION commands determine numeric accuracy.

RECOMMENDED USE:
SIN() is a trigonometric function used in engineering and scientific applications.

Example—An aerospace application for determining rocket trajectories expresses angles in

radians. Angle B is 4.2 radians; its SIN() is -0.87.

msin = SIN(4.2)

? msin

 -0.87

SEE ALSO:
Functions ACOS(), ASIN(), ATAN(), ATN2(), COS(), DTOR(), PI(), RTOD(), and TAN().

SINKEY() SECTION 3

The dBASE® Language Handbook 907 Back to CONTENTS

SINKEY()

DIALECTS:
Quicksilver only.

SYNTAX:
SINKEY()

RETURNS:
Numeric

DEFINITION:
Checks the keyboard for a pressed key. Returns the character value if the user presses a key while

the command is executing.

SINKEY() is like INKEY(), except that INKEY() returns an ASCII value. Despite its name,

SINKEY is neither immoral nor disgusting.

If the user presses a single character key, SINKEY() returns it. If the user presses a Ctrl, Function,

or cursor key, SINKEY() returns two characters. The first is always the blank character

hexadecimal FF (CHR(12)). The second character is as follows:

Key Pressed and Second Character Returned

F1 ;

F2 <

F3 =

F4 >

F5 ?

F6 @

F7 A

F8 B

F9 C

F10 D

← K

→ M

↑ H

↓ P

Ctrl-F1 ̂

Ctrl-F2 _

Ctrl-F3 ̀

Ctrl-F4 a

Ctrl-F5 b

Ctrl-F6 c

Ctrl-F7 d

Ctrl-F8 e

Ctrl-F9 f

Ctrl-F10 g

Ctrl- ← s

Ctrl- → t

Ctrl- ↑ N/A

Ctrl- ↓ N/A

Alt-F1 h

Alt-F2 i

Alt-F3 j

Alt-F4 k

Alt-F5 l

Alt-F6 m

Alt-F7 n

Alt-F8 o

Alt-F9 p

Alt-F10 q

Alt- ← N/A

Alt- → N/A

Alt- ↑ N/A

Alt- ↓ N/A

Shift-F1 T

Shift-F2 U

Shift-F3 V

Shift-F4 W

Shift-F5 X

Shift-F6 Y

Shift-F7 Z

Shift-F8 [

Shift-F9 \

Shift-F10]

Shift- ← N/A

Shift- → N/A

Shift- ↑ N/A

Shift- ↓ N/A

SINKEY() SECTION 3

The dBASE® Language Handbook 908 Back to CONTENTS

RECOMMENDED USE:
Use SINKEY() to get user input without pausing program execution. Because it returns the actual

key pressed (whereas INKEY() returns an ASCII value), use it rather than INKEY() to increase

program readability.

Example 1—During printing, a mailing label jams the platen. Names and addresses continue to

print; however, they overwrite as the labels cannot advance. The print program allows the end user

to press "C" to force a stop. To do this, the program uses SINKEY() inside a DO WHILE loop,

checking for a press of a key. Because it does not pause execution, SINKEY() does not interfere

with label printing.

CLEAR TYPEAHEAD

SET PRINT ON

keypress = ""

* DO WHILE KEYPRESS is not "C" or "c" (and not end of file)

DO WHILE .NOT. EOF() .AND. .NOT. keypress $ "cC"

 ?

 ? NAME

 ? COMPANY

 ? ADDRESS

 ? TRIM(CITY) + ", " + STATE + " " + ZIP

 ?

 SKIP && Move to next record

 keypress = SINKEY() && Store SINKEY() value in KEYPRESS

ENDDO

SET PRINT OFF && Upon exiting DO WHILE, SET PRINT OFF

Example 2—The main menu of an order entry system displays a clock using the system time. The

clock ticks until the user presses a key. SINKEY() stores the key value in memory variable

KEYPRESS. When the length of KEYPRESS exceeds one (when any key is pressed), execution

of the DO WHILE ends and the clock stops.

CLEAR TYPEAHEAD

* <@...SAY...GETs> keypress = ""

DO WHILE LEN(keypress) < 1

 @ 24,70 SAY TIME() && Display time

 interval = TIME() && Store time in variable

 keypress = SINKEY() && Check for KEYPRESS with SINKEY()

 * Stay in DO WHILE until TIME() changes, updating screen a maximum

 * of once per second

 DO WHILE LEN(keypress) < 1 .AND. interval = TIME()

 keypress = SINKEY() && Check for KEYPRESS again

 ENDDO

ENDDO * <CASE structure to process user selections>

LIMITS/WARNINGS:
SINKEY() only checks the keyboard momentarily, rather than repeating until a key is pressed.

SINKEY() SECTION 3

The dBASE® Language Handbook 909 Back to CONTENTS

SINKEY() does not detect the ESCape key.

SINKEY() is hardware specific and may not work on machines with non-standard character sets.

Avoid using SINKEY() in the condition of a DO WHILE or CASE statement. (Previous CASEs

will remove the first character from the keyboard buffer).

VARIATIONS:
Clipper, FoxBASE+: You can simulate SINKEY() with a user defined function that returns the

CHR() of an INKEY() value.

Clipper:

FUNCTION SINKEY()

* Accepts keyboard input and returns its character value

RETURN CHR(INKEY())

FoxBASE+:

* SINKEY.PRG

*

* Accepts keyboard input and returns its character value

RETURN CHR(INKEY())

SEE ALSO:
Commands CLEAR KEY and SET TYPEAHEAD; functions CHR() and INKEY().

SOUNDEX() SECTION 3

The dBASE® Language Handbook 910 Back to CONTENTS

SOUNDEX()

DIALECTS:
Clipper, dBASE IV, dBXL, and Quicksilver.

SYNTAX:
SOUNDEX(<expC>)

RETURNS:
Character

DEFINITION:
Converts <expC> to a four-character, phonetically equivalent, SOUNDEX string. Similar, but not

necessarily identical, character strings may have the same SOUNDEX() values.

SOUNDEX() generally disregards differences in vowels.

For example, the following names all have the same SOUNDEX() value:

? SOUNDEX("Peoples")

P142

? SOUNDEX("Peeples")

P142

? SOUNDEX("Peples")

P142

Completely different strings produce different SOUNDEX() values:

? SOUNDEX("Maryanne")

M650

? SOUNDEX("George")

G620

SOUNDEX() is not case-sensitive.

RECOMMENDED USE:
Use SOUNDEX() in applications that search for key values when the exact spelling is not known.

When you index files on SOUNDEX() values, you can use FIND or SEEK to find records with

SOUNDEX() keys.

SOUNDEX() SECTION 3

The dBASE® Language Handbook 911 Back to CONTENTS

Example—A credit information service searches for customer histories. The main database file is

indexed on the SOUNDEX() value of the CUSTOMER last name. This lets the operator find

matching records when the spelling is not exact.

To set up the database, the programmer issues the following commands:

USE customers

INDEX ON SOUNDEX(lastname) TO custdex

To search the database, the program GETs the search value and SEEKs its SOUNDEX()

equivalent.

search = SPACE(15)

@ 10,10 SAY "Enter name to search: " GET search

READ

SEEK SOUNDEX(search)

LIMITS/WARNINGS:
SOUNDEX() keys are rarely unique, so you will often have to search through many records before

finding the correct one. To avoid this inconvenience, first search for exact keys, then switch to

SOUNDEX() only if necessary.

SOUNDEX() values can vary slightly among the systems. To minimize differences, avoid any

punctuation in SOUNDEXed fields. Also, to run applications on different systems, create a generic

re-SOUNDEX() routine to INDEX or REPLACE SOUNDEX fields, if necessary.

VARIATIONS:
Clipper: SOUNDEX() is in EXTEND.LIB on the system disk.

SEE ALSO:
Commands INDEX and SEEK; functions DIFFERENCE() and LIKE().

SPACE() SECTION 3

The dBASE® Language Handbook 912 Back to CONTENTS

SPACE()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SPACE(<expN>)

RETURNS:
Character

DEFINITION:
Creates a character string containing <expN> spaces.

RECOMMENDED USE:
Use SPACE() to initialize character memory variables.

Example—The editing routine in a truck management program keeps data in memory variables

until the user indicates he or she has finished editing. The programmer uses SPACE() to initialize

each character memory variable.

SET DELIMITERS on

mroute = SPACE(30)

mdriver = SPACE(25)

mlicense = SPACE(15)

@ 01,01 SAY " Enter route " GET mroute

@ 02,01 SAY " Enter driver " GET mdriver

@ 03,01 SAY "Enter license " GET mlicense

READ

When this program runs, each GET assumes the length of its particular memory variable:

Enter route : :

Enter driver : :

Enter license : :

SEE ALSO:
Function REPLICATE().

SQRT() SECTION 3

The dBASE® Language Handbook 913 Back to CONTENTS

SQRT()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SQRT(<expN>)

RETURNS:
Numeric

DEFINITION:
Returns the square root of its argument, which must be a positive number.

The returned value has the same number of decimal places as <expN>, or the number defined by

the SET DECIMALS command, whichever is larger.

RECOMMENDED USE:
Example—An architectural application uses SQRT() in formulas to determine the amount of

materials required for geometrical designs. To determine the area of an equilateral triangle, use the

formula:

𝐴 =
𝑆2 × √3

4

where s is the length of a side. For a side s equal to 300, the dBASE formula would be as follows:

SET DECIMALS TO 2

area = (300^2) * SQRT(3) / 4

? area

38971.14

SEE ALSO:
Command SET DECIMALS; functions ABS() and INT().

STR() SECTION 3

The dBASE® Language Handbook 914 Back to CONTENTS

STR()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
STR(<expN>[,<length>[,<decimals>]])

RETURNS:
Character

DEFINITION:
Converts <expN> to a character string.

<expN> is a numeric expression. <length> is the total number of characters created by STR(),

including decimals, the decimal point, and a sign. <decimals> gives the number of decimal places

to include in the string.

If you specify a <length> less than the number of digits left of the decimal point, STR() returns

asterisks (numeric overflow).

If you specify fewer <decimals> than in the original number, STR() truncates the output.

If you specify a <length> greater than the number of digits left of the decimal point, STR() pads

the output with leading blanks.

STR() is the inverse of VAL().

DEFAULT:
If you do not specify <length> or <decimals>, STR() returns 10 digits. If you specify only <length>

and not <decimals>, STR() truncates to the nearest integer.

You must specify a <length> to specify <decimals>.

RECOMMENDED USE:
Use STR() to include numbers in character expressions such as @...SAYs and filenames.

Example 1—The invoicing program at a local newspaper reminds readers how many issues

remain in their subscriptions. The program stores the number in the memory variable ISSUES.

The reporting program merges ISSUES with character text using STR().

issues = 21

@ 09,01 SAY "Renew Today!"

@ 10,01 SAY "You have only " + STR(issues,2,0) + " issues remaining!"

STR() SECTION 3

The dBASE® Language Handbook 915 Back to CONTENTS

The following appears at the top of the renewal notice:

 Renew Today!

 You have only 21 issues remaining!

Example 2—A report lists stock market data in several formats. Subroutines STOCK1 through

STOCK10 create the listings and store the results in text files TEMP1.TXT through

TEMP10.TXT. The STR() function converts the counter CTR to character type to concatenate it

with both the output filename and the subroutine name. LTRIM() removes

leading blanks. The resulting string is stored in variable STR_CTR. The macro (&) function then

evaluates STR_CTR as a literal string.

USE stockdata

ctr = 1

DO WHILE ctr < 10

 str_ctr = LTRIM(STR(ctr,1,0)) && Store string of CTR in STR_CTR

 SET ALTERNATE TO temp&str_ctr && Create numbered text file

 SET ALTERNATE ON

 DO stock&str_ctr && DO numbered subroutine

 ctr = ctr + 1 && Increment CTR by one

ENDDO

SET ALTERNATE ON && Close last text file

SEE ALSO:
Functions SUBSTR() and VAL().

STRTRAN() SECTION 3

The dBASE® Language Handbook 916 Back to CONTENTS

STRTRAN()

DIALECTS:
Clipper only.

SYNTAX:
STRTRAN(<expC1>,<expC2>[,<expC3>][,<expN1>][,<expN2>])

RETURNS:
Character

DEFINITION:
Searches for occurrences of one string within another (substrings), and replaces them with a third

string.

<expC1> is the string to search. <expC2> is the substring to find.

OPTIONS:
<expC3> is the replacement string. If you omit it, STRTRAN() deletes all matches.

<expN1> is the first match to replace. If you omit it, replacements begin with the first match.

<expN2> designates the number of matches to replace. If you omit it, STRTRAN() replaces all

matches.

RECOMMENDED USE:
STRTRAN() is useful in many string routines, including simple data encryption, memo field

handling, and general database housekeeping.

Example 1—Joan creates text reports using Clipper memo fields. To speed data entry, she

employs several abbreviations that she later replaces using STRTRAN(). Examples are "DV",

meaning "Dear Valued Customer:", and "TY", meaning "Thank you for your business!" To prevent

incorrect replacements, Joan puts a bracket ([) ahead of all abbreviations. Joan's most recent memo

before translation:

[DV

Our annual clearance sale begins on Nov. 3. Don't miss it.

Hours will be 9 a.m. to 8 p.m. All items up to 50% off.

<more text>

[TY

After translation, it reads

STRTRAN() SECTION 3

The dBASE® Language Handbook 917 Back to CONTENTS

Dear Valued Customer:

Our annual clearance sale begins on Nov. 3. Don't miss it.

Hours will be 9 a.m. to 8 p.m. All items up to 50% off.

 <more text>

Thank you for your business!

In the program, MEMOEDIT() lets Joan create or change a memo. Before printing the report,

STRTRAN() searches for her abbreviations and replaces them with predefined character strings.

Abbreviations and their strings could also be stored in a file, then loaded into memory variables or

arrays for easier program modification.

USE names

REPLACE newmemo WITH MEMOEDIT(newmemo)

temp = STRTRAN(newmemo,"[TY","Thank you for your business!")

temp = STRTRAN(temp,"[DV","Dear Valued Customer:")

* <more STRTRAN()s>

REPLACE newmemo WITH temp

Example 2—Because data can come from many sources (electronic networks, mailing list brokers,

and data entry services), it is not always in a form we like. Names or titles may be misspelled or

capitalized incorrectly. Strange delimiters (usually those used by other database systems) appear

in unlikely places. STRTRAN() can help put your database in order. For example, your data entry

operators put an asterisk in a CTYSTATE field after the state when you only want one after the

city:

Peabody* MA*01960

To correct the problem throughout the file, issue the following command:

REPLACE ALL ctystate WITH STRTRAN(ctystate,"*"," ",2)

Note that <expC2> is an asterisk. <expC3> is a space. <expN1> is 2, indicating that the

replacement begins with the second occurrence. The function omits <expN2>.

VARIATIONS:
You can simulate STRTRAN() by making the following program into a dBASE IV, dBXL,

FoxBASE+, or Quicksilver user defined function.

The first three parameters are the same as in the Clipper version. The fourth, <expN>, indicates

how many replacements to make, rather than the starting number as in Clipper.

* STRTRAN.PRG

* Function syntax: STRTRAN(<expC1>,<expC2>,<expC3>,<expN>)

* Returns: character

PROCEDURE strtran

PARAMETERS str1,str2,str3,expN && Note: no error checking to increase

PRIVATE pos,rstr,slen,npos,nlen && execution speed

pos = AT(str2,str1) && Get position of first occurrence

STRTRAN() SECTION 3

The dBASE® Language Handbook 918 Back to CONTENTS

rstr = str1 && Create string work variable

slen = LEN(str2) && Get length of substring to find

npos = pos && Create position work variable

i = 1 && Start counter

DO WHILE pos > 0 .AND. i < expN+1 && If > 0, POS points to next match

 rstr = STUFF(rstr,npos,slen,str3) && Insert replacement string

 mlen = len(rstr) && Compute new string length

 nlen = npos + slen + 1 && Compute new starting position

 * New starting position is where replacement string ends plus

 * the number of characters already searched. SUBSTR() must

 * not look beyond end of string, so that must also be computed

 pos=IIF(nlen<mlen,AT(str2,SUBSTR(rstr,nlen,mlen-npos-1)),0)

 npos = pos + slen + npos && Compute new starting position

 i = i + 1 && Increase counter

ENDDO

RETURN rstr

SEE ALSO:
Command PARAMETERS; functions AT() and SUBSTR().

STUFF() SECTION 3

The dBASE® Language Handbook 919 Back to CONTENTS

STUFF()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
STUFF(<expC1>,<expN1>,<expN2>,<expC2>)

RETURNS:
Character

DEFINITION:
Replaces part of character string <expC1> with character string <expC2>.

<expN1> is the position at which to start replacing. <expN2> is the number of characters to

replace.

If <expN2> is 0, STUFF() does not replace any characters. Instead, it inserts <expC2> into

<expC1> starting at <expN1>.

If <expC2> is null, STUFF() removes the number of characters from <expC1> given by <expN2>.

RECOMMENDED USE:
STUFF() lets you easily rearrange character strings and insert new values.

Example 1—The customer account number for a monthly book club contains several significant

pieces of information including: customer name, status (paid or trial), address, and expiration. A

typical account number would be "KALMAN4675010689". The last four characters indicate the

expiration date. The eleventh and twelfth characters, "01", indicates the account is on a "trial" basis

("02" would indicate "paid"). When the account is paid, the STUFF() function replaces the "01"

with "02."

account = "KALMAN4675010689"

account = STUFF(account,11,2,"02")

? account

KALMAN4675020689

Example 2—A user defined function (Clipper, dBASE IV, or FoxBASE+) centers text within a

specified number of spaces for display. Parameter STNG is the character string. MLEN is the

length in which to center it. STUFF() inserts STNG into a blank string, SPACE(mlen), at a position

derived by subtracting one half STNG's length from the total length MLEN.

* FUNCTION center && Clipper syntax

PROCEDURE center && FoxBASE+ syntax

STUFF() SECTION 3

The dBASE® Language Handbook 920 Back to CONTENTS

* Syntax: CENTER(<expC>,<expN>)

PARAMETERS stng,mlen

RETURN STUFF(SPACE(mlen),(mlen-(LEN(stng)))/2,LEN(stng),stng)

To use function CENTER in a FoxBASE+ report, store the CENTER() of a string in a memory

variable, then SAY it.

text = "Press any key to continue"

ctext = CENTER(text,40)

@ 10,01 SAY ctext

In Clipper, you can use CENTER() in the @...SAY command directly.

@ 10,01 SAY CENTER(text,40)

dBXL and Quicksilver already have a CENTER() function.

VARIATIONS:
Clipper: STUFF() is in EXTEND.LIB on the system disk.

dBASE IV: STUFF() allows a memo field as an argument.

SEE ALSO:
Functions IIF() and SUBSTR().

SUBSTR() SECTION 3

The dBASE® Language Handbook 921 Back to CONTENTS

SUBSTR()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
SUBSTR(<expC>,<expN1>,[<expN2>])

RETURNS:
Character

DEFINITION:
Extracts a string from within string <expC>, starting at position <expN1> and continuing for

<expN2> characters.

The extracted string is called a substring.

DEFAULT:
If you omit <expN2>, SUBSTR() extracts through the end of <expC>.

RECOMMENDED USE:
Use SUBSTR() to evaluate and manipulate strings.

Example 1—When printing a columnar report, the titles do not always fit. Using SUBSTR(), you

can split a title and print it in pieces.

mtitle = "Incremental growth of profits"

@ 01,01 SAY SUBSTR(mtitle,1,11)

@ 02,01 SAY SUBSTR(mtitle,12,11)

@ 03,01 SAY SUBSTR(mtitle,23)

Incremental

growth of

profits

Example 2—An account code identifies customers of a mail order company. The first five

characters are the Zip Code. The next five are the first five characters of the first name. The next

four are the first four letters of the last name. The last four are the date of the last order.

Using SUBSTR(), the program breaks the code into its components.

acct = "92222GERALBROW0988"

mzip = SUBSTR(acct,1,5)

mfirst = SUBSTR(acct,6,5)

SUBSTR() SECTION 3

The dBASE® Language Handbook 922 Back to CONTENTS

mlast = SUBSTR(acct,11,4)

lastord = SUBSTR(acct,14,4)

? "Zip: "+mzip+" First: "+mfirst+" Last: "+mlast+" Last order: "+lastord

Zip: 92222 First: GERAL Last: BROW Last order: 0988

VARIATIONS:
Clipper: You can begin SUBSTR() from the right side of the string by specifying a negative

starting position <expN1>. For example, to extract the last four digits from a vehicle identification

number, use SUBSTR() as follows:

mvin = "2444848563AAX"

? SUBSTR(mvin,-1,4)

3AAX

dBASE IV: SUBSTR() allows a memo field as an argument.

SEE ALSO:
Functions LEFT(), RAT(), RIGHT(), STR(), STRTRAN(), and STUFF().

SYS() SECTION 3

The dBASE® Language Handbook 923 Back to CONTENTS

SYS()

DIALECTS:
FoxBASE+ only.

SYNTAX:
SYS(<expN>,[options])

RETURNS:
Character

DEFINITION:
Returns system information.

RECOMMENDED USE:
Use SYS() functions to incorporate system information in FoxBASE+ applications. Because they

return the SETtings of system attributes (such as DEVICE, TALK, and PRINT), you can use them

to restore settings after recovery from error conditions.

SYS(0)
Returns the machine name and number on a local area network. In single user systems, it returns

1.

SYS(1)
Returns the system date as a Julian day number. Fox Software provides it to maintain compatibility

with the original dBASE II-compatible FoxBASE.

On 11/11/87, SYS(1) returns

. ? SYS(1)

 2447111

SYS(2)
Returns the number of seconds elapsed since midnight. Use it to "time-stamp" file updates, or to

do elapsed time computations. For example, the time elapsed between the start and end of a

subroutine would be the ending time minus the starting time.

start = SYS(2)

* <do subroutine>

end = SYS(2)

? (VAL(end) - VAL(start))/3600

6.0233

SYS() SECTION 3

The dBASE® Language Handbook 924 Back to CONTENTS

Divide seconds by 3600 to return hours. Note that START and END must occur within the same

day on the system clock. Night owls beware!

See function SECONDS().

SYS(3)
Returns a unique name you can use for temporary files. The filename changes each time you use

SYS(3), preventing you from overwriting files.

tempname = SYS(3)

COPY ALL sales TO &tempname

? tempname

04393B07

Be sure to save SYS(3) in a memory variable; otherwise, your program will not "know" the

temporary filename and will be unable to delete the file.

SYS(5)
Returns the current default disk drive specified by the command SET DEFAULT (A:, C:, etc.).

See command SET DEFAULT.

SYS(6)
Returns the current print device specified by the command SET PRINT TO <PRN:/filename>. See

command SET PRINT TO.

SYS(7[,w])
Returns the name of the current format file. Option <w> refers to a work area number. If you do

not specify one, SYS(7) defaults to the current area. SYS(7[,w]) returns a null character when no

format file is active.

SYS(9)
Returns the FoxBASE+ serial number. Use it to match your professional FoxBASE+ application

with a specific copy of FoxBASE+. If you are a FoxBASE+ dealer, this may inhibit unauthorized

duplication of both the application and FoxBASE+. See function VERSION().

SYS(10,d)
Converts a Julian day number d to a character string in the date format MM/DD/YY. Fox Software

provides it to maintain compatibility with the original dBASE II-compatible FoxBASE.

SYS(11,s)
Converts a date or character string in MM/DD/YY format to a Julian day number. Fox Software

provides it to maintain compatibility with the original dBASE II-compatible FoxBASE.

SYS(12)
Returns the amount of free memory. Use it to test the amount of memory before running external

programs. For example, if you want to RUN an external program that requires 256K of memory,

first use SYS(12) to determine whether enough memory is available. FoxBASE+ will normally

SYS() SECTION 3

The dBASE® Language Handbook 925 Back to CONTENTS

trap insufficient memory errors; however, SYS(12) can insulate the end user from alarming error

messages.

IF VAL(SYS(12)) > 256000

 RUN WS

ELSE

 MODI COMM

ENDIF

SYS(13)
Returns the state of the printer. If it is not ready, SYS(13) returns "OFFLINE." If it is ready,

SYS(13) returns "READY." Use SYS(13) to check the printer status before issuing SET PRINT

ON or SET DEVICE TO PRINT. It returns "READY" if you specify a file as the PRINT device.

IF SYS(13) = "OFFLINE"

 @ 10,10 SAY "PRINTER NOT READY. "

 * <user options>

ELSE

 SET PRINT ON

 * <print report>

 SET PRINT OFF

ENDIF

SYS(14,n[,w])
Returns the key expression for index file <n>, where <n> is the index number (its position in the

index list) from 1 to 7. <w> is a work area other than the current one. If you do not specify <w>,

SYS(14) defaults to the current area. If no index exists for the number <n> you specify, SYS(14)

returns a null character.

SYS(15,t,s)
Translates characters with diacritical marks in string <s> into characters without diacritical marks

found in table <t>. Fox Software provides SYS(15) and the table EUROPEAN.MEM so European

users can create correct indexes. (Indexing on fields containing diacritical marks does not usually

produce a correct order).

To index on a field SURNAME that contains characters with accents and other diacritical marks,

use SYS(15) as follows:

INDEX ON SYS(15,european,surname) TO namedex

SYS(16[,<expN>])
Returns the name of an executing program. The option <expN> is the number of levels of DO

nesting to trace. It can range from 0 to N, where N is the total number of DOs executed. An

argument of 0 or 1 returns the name of the master program. If you omit the argument, SYS(16)

returns the name of the currently executing program. If <expN> exceeds the number of available

nesting levels, SYS(16) returns a null.

The following program displays program names at all levels of execution.

SYS() SECTION 3

The dBASE® Language Handbook 926 Back to CONTENTS

level = 1

DO WHILE SYS(16,level) # ""

 ? SYS(16,level)

 level = level + 1

ENDDO

SYS(17)
Returns the name of the processor (e.g., 8088, 80286, or 80386).

SYS(100)
Returns the current CONSOLE setting (ON/OFF). See command SET CONSOLE; function

SYS(103).

SYS(101)
Returns the current DEVICE setting (PRINT/SCREEN).

SYS(102)
Returns the PRINT setting (ON/OFF).

SYS(103)
Returns the TALK setting (ON/OFF).

Use SYS(100) through SYS(103) to restore system attributes after error recovery. When branching

with the ON ERROR command, save the previous settings at the beginning of the error-handling

subroutine.

ON ERROR DO errhandle

* <error condition>

* ERRHANDLE.PRG

mtalk = SYS(103)

mdevice = SYS(101)

mprint = SYS(102)

mconsole = SYS(100)

* <error handling routine>

SET TALK &mtalk

SET DEVICE TO &mdevice

SET PRINT &mprint

SET CONSOLE &mconsole

SEE ALSO:
Commands INDEX, SET CONSOLE, SET DATE, SET DEFAULT, SET DEVICE, SET PRINT,

SET PRINTER, and SET TALK; functions MEMORY(), NETNAME(), OS(), PROCNAME(),

and SET().

TAG() SECTION 3

The dBASE® Language Handbook 927 Back to CONTENTS

TAG()

DIALECTS:
dBASE IV only.

SYNTAX:
TAG([<.mdx name>,]<expN>[,<alias>])

RETURNS:
Character

DEFINITION:
Returns the name of the specified multiple index (MDX) file TAG or index (NDX) filename.

<expN> is the TAG's number in the MDX file or the index's position in the INDEX list.

The TAG's number is determined by the order in which it was created. The index's number depends

on its position in the list defined by the USE...INDEX or SET INDEX TO commands.

If there is no open index, TAG() returns a null string.

OPTIONS:
<mdx name> is the name of an open MDX file in the current work area.

You can specify a database in an unselected work area by using its <alias> as a TAG() argument.

You can specify only one option (<alias> or <mdx filename>) at a time.

RECOMMENDED USE:
Use TAG() to refer to MDX tags by number instead of name. This lets you treat TAGs as variables

rather than constants.

Example—A file maintenance program uses a specified file, then displays the available TAGs in

the associated MDX file.

PROCEDURE showtag

PARAMETERS filename

USE (filename)

ctr = 1

DO WHILE "" # TRIM(TAG(ctr))

 ? TAG(ctr)

 ctr = ctr + 1

ENDDO

The command produces the following result when applied to a sales tracking database:

TAG() SECTION 3

The dBASE® Language Handbook 928 Back to CONTENTS

DO showtag WITH "CLIENTS"

 LNAME

 FNAME

 COMPANY

 ZIPDEX

Within the DO WHILE...ENDDO structure, the program could also STORE the TAG names in an

array or in memory variables. Users could then be prompted to select available TAGs from a menu.

SEE ALSO:
Command INDEX; functions DBF(), INDEXKEY(), INDEXORD(), NDX(), and ORDER().

TAN() SECTION 3

The dBASE® Language Handbook 929 Back to CONTENTS

TAN()

DIALECTS:
dBASE IV only.

SYNTAX:
TAN(<expN>)

RETURNS:
Floating point

DEFINITION:
Computes the tangent of an angle.

<expN> is the angle in radians.

The SET DECIMALS command determines the numeric accuracy of the result.

Use DTOR() and RTOD() to convert degrees to radians and vice versa. A radian is approximately

57.3 degrees.

RECOMMENDED USE:
TAN() is a trigonometric function used in engineering and scientific applications.

Example—A structural engineering application expresses angles in radians. Angle A is 3.344

radians. Its TAN() is 0.21.

SET DECIMALS TO 2

mtan = TAN(3.344)

?mtan

0.21

SEE ALSO:
Functions ACOS(), ASIN(), ATAN(), ATN2(), COS(), and SIN().

TIME() SECTION 3

The dBASE® Language Handbook 930 Back to CONTENTS

TIME()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
TIME()

RETURNS:
Character

DEFINITION:
Returns the system time as a character string in the form HH:MM:SS.

Because TIME() returns a string, you must convert it to numeric to do computations.

RECOMMENDED USE:
Use TIME() to "stamp" records with the time of their last update (assuming you set the system

time correctly). Also use it to do elapsed time computations.

Example 1—Whenever an operator updates data in a medical program, the TIME() and DATE()

are stored in the associated record.

* <@...SAY...GETs>

REPLACE patient WITH mpatient,acct WITH macct,insured WITH minsured

REPLACE up_time WITH TIME(), up_date WITH DATE()

LIST patient,up_time,up_date

Record# PATIENT UP_TIME UP_DATE

 1 Aaron 10:23:16 05/22/87

 2 Bellamy 11:45:17 08/07/87

 3 D'Amico 15:38:17 09/20/87

 4 Faulk 08:10:46 04/30/87

 5 Gillette 16:44:37 10/01/87

 6 Glazier 22:34:66 06/13/87

 7 Goldberg 19:16:36 06/24/87

Example 2—To calculate the difference between times, you must convert the character TIME()

to numeric. To do so, use the VAL() function. The following procedure uses VAL() to split the

time string into its components. It then multiplies hours times 3600 and minutes times 60. The

total number of seconds stored in ELAP is the elapsed time.

* ELAPSE.PRG

* Displays seconds elapsed between a beginning and ending TIME().

TIME() SECTION 3

The dBASE® Language Handbook 931 Back to CONTENTS

begt = TIME()

* <Do operations>

endt = TIME()

elap=((VAL(endt)*3600)+(VAL(SUBSTR(endt,4,2))*60)+(VAL(RIGHT(endt,2))))-;

 ((VAL(begt)*3600)+(VAL(SUBSTR(begt,4,2))*60)+(VAL(RIGHT(begt,2))))

? "Elapsed time: " + STR(elap,8,0)

With a beginning time of 00:13:03 and an ending time of 00:22:52, the elapsed time is 589 seconds.

VARIATIONS:
Clipper: The SECONDS() function returns the time as numeric seconds (and hundredths of

seconds) since midnight. This simplifies elapsed time computations. Clipper provides a user

defined function ELAPTIME() that returns a time string showing elapsed time. It is in

EXTEND.LIB on the system disk.

FoxBASE+: TIME(1) returns the time string with hundredths of seconds:

? TIME(1)

08:15:21.33

SYS(2) returns seconds since midnight. This simplifies elapsed time computations.

SEE ALSO:
Command SET TIME; functions SECONDS() and SYS(2).

TONE() SECTION 3

The dBASE® Language Handbook 932 Back to CONTENTS

TONE()

DIALECTS:
Clipper only.

SYNTAX:
TONE(<expN1>,<expN2>)

RETURNS:
Nothing

DEFINITION:
Sends a tone through the computer's speaker with a specified frequency and duration.

<expN1> is the frequency in cycles per second (Hertz). Audible frequencies range from 20 to

approximately 17000—higher if you have canine hearing.

<expN2> is the duration in eighteenths of a second.

TONE() truncates decimals for both arguments.

RECOMMENDED USE:
Use TONE() to inform the user about a program's status.

Example—Warning "buzzers" inform users about system errors. Steady, low-pitched beeps

confirm that a process is continuing as expected. Brief tones rising in pitch can encourage users

when they take an appropriate action or announce the end of a process.

*REWARD.PRG—Positive feedback.

FOR ctr = 50 TO 100 STEP 10

 TONE(ctr^2,1)

NEXT

*MINOR.PRG—Minor warning such as out of paper.

FOR ctr = 1 TO 10

 TONE(40,10)

 TONE(50,20)

NEXT

*MAJOR.PRG—Major warning, just shy of reactor meltdown.

FOR ctr = 1 TO 20

 TONE(5000,3)

 TONE(2000,5)

NEXT

TONE() SECTION 3

The dBASE® Language Handbook 933 Back to CONTENTS

TONE() is in EXTEND.LIB on the system disk. Its assembly language

source code is in EXAMPLEA.ASM.

SEE ALSO:
Command SET BELL; function CHR() (? CHR(7)).

TRANSFORM() SECTION 3

The dBASE® Language Handbook 934 Back to CONTENTS

TRANSFORM()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
TRANSFORM(<exp>,<expC>)

RETURNS:
Character

DEFINITION:
Formats a numeric or character expression according to the PICTURE format in <expC>.

TRANSFORM() always returns a character expression.

A PICTURE consists of a TEMPLATE or FUNCTION. See @...SAY...GET for a detailed

explanation of PICTUREs.

RECOMMENDED USE:
PICTUREs are usually associated with @...SAY statements. With TRANSFORM(), you can use

them to format and display expressions with the commands ?, ??, DISPLAY, and LIST.

TRANSFORM() also lets you format output in LABEL and REPORT forms.

Example—An inventory application produces LIST-oriented reports (as opposed to page-

formatted reports). By using TRANSFORM(), the programmer formats numbers and strings with

all the functions and templates in @...SAY PICTUREs.

For example, TRANSFORM() displays AMOUNTs in the SALES file with leading dollar signs

and commas instead of spaces.

USE SALES

LIST TRANSFORM(amount,"$9,999.99")

Record # TRANSFORM(amount,"$9,999.99")

 1 $1,728.00

 2 $2,197.00

 3 $2,744.00

To display AMOUNTS with CR if positive, and DB if negative, the programmer uses

TRANSFORM with the @C and @X functions.

LIST TRANSFORM(AMOUNT,"@C@ X9,999.99")

Record# TRANSFORM(AMOUNT,"@C@X 9,999.99")

 1 1,728.00 CR

TRANSFORM() SECTION 3

The dBASE® Language Handbook 935 Back to CONTENTS

 2 2,197.00 CR

 3 2,744.00 DB

 4 3,375.00 CR

 5 4,096.00 CR

TRANSFORM also formats character and date strings in similar reports. For example, an

inventory report goes to the main office in London. When listing dates, the programmer specifies

European format (DD/MM/YY) with TRANSFORM().

LIST amount, TRANSFORM(saledate,"@E")

Record# AMOUNT TRANSFORM(saledate,"@E")

 1 1331.00 07/08/86

 2 1728.00 18/08/87

 3 2197.00 29/08/87

 4 -2744.00 09/09/88

At the end of the report, SUM TO saves the sum of AMOUNT in MAMOUNT. The ? then displays

the total, formatted with TRANSFORM.

SUM amount TO mamount

? TRANSFORM(mamount,"@C@X *9,999,999.99")

****13,927.00 CR

SEE ALSO:
Command @...SAY for a complete list of PICTUREs and FUNCTIONs. See also commands

DISPLAY and LIST.

TRIM()/RTRIM() SECTION 3

The dBASE® Language Handbook 936 Back to CONTENTS

TRIM()/RTRIM()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
TRIM(<expC>)

RETURNS:
Character

DEFINITION:
Removes spaces from the end of a character string. The TRIM() of an empty character string is a

null string (zero length).RTRIM() is a synonym for TRIM().

RECOMMENDED USE:
Example 1—A project management system contains a field FORENAME with a length of 20. It

accommodates the longest known first name. However, most names have fewer characters, leaving

spaces at the end. When printing a name, you must use TRIM() to remove the extra spaces.

? TRIM(forename) + " " + lastname

Example 2—The input screen of a general ledger system lets users leave the first field blank to

exit to a menu. When the user exits the GET, the LEN() and TRIM() functions test its memory

variable. If the length of its TRIM() is zero, the field is blank.

mlname = 20

@ 10,10 SAY "Enter last name (or leave blank to exit): " GET mlname

READ

IF LEN(TRIM(mlname))=0

 CLEAR

 RETURN

ENDIF

VARIATIONS:
Clipper: ALLTRIM() removes both leading and trailing blanks.

SEE ALSO:
Functions ALLTRIM(), STUFF(), and SUBSTR().

TYPE() SECTION 3

The dBASE® Language Handbook 937 Back to CONTENTS

TYPE()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
TYPE(<expC>)

RETURNS:
Character

DEFINITION:
Returns the data type of the contents of <expC>. The type is a single uppercase letter, given by:

• C Character

• D Date

• L Logical

• M Memo

• N Numeric

• U Undefined

To test a literal string or expression (not in a memory variable), enclose it in quotation marks in

the TYPE() argument (you must test data of all types in character expression form).

You must also enclose memory variables in quotation marks unless they contain the name of

another memory variable.

RECOMMENDED USE:
Use TYPE() to determine if a memory variable exists. Also use it when manipulating data of

unknown types, as in general purpose file handling subroutines.

TYPE() can also validate an expression. It returns "U" if the expression is undefined.

Example 1—A sales contact application contains a "quick lookup" feature. The salesperson can

execute the program with one of two command line parameters, LASTNAME or DOLLAR

volume. Depending on the data TYPE(), the program decides which index to search.

PARAMETERS searchkey

USE sales

IF TYPE("searchkey") = "N"

 SET INDEX TO vol_dex

ELSE

 SET INDEX TO name_dex

ENDIF

TYPE() SECTION 3

The dBASE® Language Handbook 938 Back to CONTENTS

SEEK searchkey

Example 2—A database report program analyzes the structure of any file and SUMs all numeric

fields. It stores the SUM results in memory variables with names corresponding to the field

numbers. The program uses the SUM results to analyze and report the data.

The program processes each field in a DO WHILE structure. It continues as long as the length of

the fieldname is non-zero. The TYPE() function then tests each field. If it returns "N," the program

SUMs the field and stores the result in a memory variable numbered with the field number.

PARAMETERS filename

USE &filename && USE file passed as a parameter

fieldnum = 1 && Initialize field counter

DO WHILE LEN(FIELD(fieldnum)) # 0 && DO WHILE the field is valid

 fname = FIELD(fieldnum) && Store field name in FNAME.

 IF TYPE(fname) = "N" && If field is numeric,

 string = LTRIM(STR(fieldnum)) && convert FIELDNUM to a string,

 SUM &fname TO f_sum&string && SUM to f_sum1, f_sum2, f_sum3,...

 ENDIF

 fieldnum = fieldnum + 1 && Increment field counter

ENDDO

VARIATIONS:
Clipper: "A" indicates an array reference. Reference to an array element returns its type. Also

note that type "U" can indicate an undefined variable, an undefined array reference, a user defined

function, or an immediate if expression. Type "UE" indicates a syntax error. Type "UI" indicates

an invalid function name.

When evaluating an IIF() statement, TYPE() tests the evaluated (true) expression. If it is invalid,

TYPE() returns "UE".

SEE ALSO:
Command PARAMETERS; function FIELD().

UPDATED() SECTION 3

The dBASE® Language Handbook 939 Back to CONTENTS

UPDATED()

DIALECTS:
Clipper and FoxBASE+.

SYNTAX:
UPDATED()

RETURNS:
Logical

DEFINITION:
Indicates whether data was changed during the last READ.

UPDATED() returns true (.T.) if the data changes.

RECOMMENDED USE:
Use UPDATED() after a READ to determine whether data was changed. If not, you do not need

to issue REPLACE commands.

Example—A data entry program checks whether the user changed data in the active GETs.

If UPDATED() returns .T., the program REPLACEs the database fields with the contents of the

GET variables. Otherwise, the program skips the GETs.

* <initialize variables>

@ 02,01 SAY "Enter account number: " GET macct

@ 03,01 SAY "Enter invoice number: " GET minv

@ 04,01 SAY "Enter invoice total : " GET mtot

@ 05,01 SAY "Enter sales tax : " GET mtax

READ

IF UPDATED()

 REPLACE acct WITH macct,inv WITH minv,tot WITH mtot,tax WITH mtax

ENDIF

VARIATIONS:
dBASE III PLUS, dBASE IV, dBXL, Quicksilver: READKEY() returns a value of 256 or more

if data was changed in the previous full screen operation. You can simulate UPDATED() with the

statement

? READKEY() >= 256

If the statement returns true (.T.), data was changed.

UPDATED() SECTION 3

The dBASE® Language Handbook 940 Back to CONTENTS

SEE ALSO:
Functions CHANGED(), LASTKEY(), and READKEY().

UPPER() SECTION 3

The dBASE® Language Handbook 941 Back to CONTENTS

UPPER()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
UPPER(<expC>)

RETURNS:
Character

DEFINITION:
Converts all lowercase letters in <expC> to uppercase.

UPPER() does not affect characters other than lowercase letters.

RECOMMENDED USE:
Because dBASE expressions are case sensitive, convert character strings to either uppercase or

lowercase when evaluating them. This assures consistency.

Example—A user prompt in an accounting program requests a "Y" or "N" response. Because the

program uses WAIT TO to get the response, there is no way to force either upper or lower case

entry. Thus, the program must disregard case. To do this, it evaluates the UPPER() value of the

string.

WAIT "Continue with end of month posting? (Y/N)" TO action

IF UPPER(action) = "Y"

 DO eompost

ENDIF

UPPER() is often used in index key expressions to simplify searches. You can then SEEK the

UPPER() value of a search expression, disregarding case.

SEE ALSO:
Functions ISUPPER(), ISLOWER(), and LOWER().

USED() SECTION 3

The dBASE® Language Handbook 942 Back to CONTENTS

USED()

DIALECTS:
Clipper only.

SYNTAX:
USED()

RETURNS:
Logical

DEFINITION:
Returns true (.T.) if a database file is open in the current work area. Otherwise, it returns false (.F.).

RECOMMENDED USE:
Issue USED() in multiuser environments to determine if the previous USE command succeeded.

If another user has exclusive use, USED() returns false (.F.). Note that NETERR() returns (.T.).

SET EXCLUSIVE OFF

FOR ctr = 1 to 500

 USE accounts

 IF USED() && USE succeeds

 EXIT

 ELSE

 @ 24,01 SAY "Retrying " + STR(ctr,1,3) + " out of 500 times"

 ENDIF

NEXT

LIMITS/WARNINGS:
Although USED() can help you navigate through work areas when looking for an unoccupied one,

SELECT(0) is more direct.

VARIATIONS:
dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, Quicksilver: You can tell if a database file is

open by testing the return value of the DBF() function as follows:

mused = LEN(TRIM(DBF()))>0

If the LENgth of the TRIM of the DBF is zero, no file is in use. MUSED then is (.F.).

SEE ALSO:
Commands SELECT and USE; function NETERR().

USER() SECTION 3

The dBASE® Language Handbook 943 Back to CONTENTS

USER()

DIALECTS:
dBASE IV only.

SYNTAX:
USER()

RETURNS:
Character

DEFINITION:
Returns the current user's name if the PROTECT system is active. If the system is not

PROTECTed, USER() returns "" (a null string).

RECOMMENDED USE:
Use USER() to create custom security systems in applications.

Example—A multiuser accounting program limits access to different modules by checking the

USER() name. A database file contains valid users for specific modules.

* MODULE PAYROLL

USE pass INDEX passdex

SEEK USER() && USER() is "DAVIDK"

IF .NOT. FOUND()

 CLEAR

 ?

 ? "I'm sorry, you do not have access privileges to this module."

 ? "Please see the system administrator for more information."

 WAIT

 CLEAR

 RETURN

ENDIF

SEE ALSO:
Command PROTECT; functions ACCESS() and NETWORK().

USERNO() SECTION 3

The dBASE® Language Handbook 944 Back to CONTENTS

USERNO()

DIALECTS:
Quicksilver only.

SYNTAX:
USERNO()

RETURNS:
Numeric

DEFINITION:
Returns the number of the current workstation on a local area network.

The Networker Plus module automatically assigns each station (running a Quicksilver application)

a unique identification number. The number remains in effect until the user exits the application.

Numbers are not necessarily assigned in sequence. If there are ten stations, and user 8 exits, the

next user to log on becomes user 8.

Multiuser dBXL users and interactive Networker Plus Dialog users are also assigned user numbers.

DEFAULT:
In a single-user mode, USERNO() returns 0.

RECOMMENDED USE:
Use USERNO() in filenames to prevent different Quicksilver programs on a local area network

from creating files with identical names.

Example—A sales application creates temporary files during report writing. First, it stores the

string version of USERNO() in STATION. The program opens PROSPECTS, then copies all

records for SALARY greater than $50,000. If USERNO() is 3, the resulting file is called

PRIME3.DBF.

station = STR(USERNO(),1,0)

USE prospects INDEX lname

COPY TO prime&station FOR salary > 50000

USERNO() SECTION 3

The dBASE® Language Handbook 945 Back to CONTENTS

LIMITS/WARNINGS:
Because USERNO() is specific to Quicksilver, it does not protect files from being overwritten by

other dBASE-compatible applications. A better solution is to define unique DOS variables in the

AUTOEXEC files of each work station, then use the GETENV() function to identify the

workstation.

SEE ALSO:
Function GETENV().

VAL() SECTION 3

The dBASE® Language Handbook 946 Back to CONTENTS

VAL()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
VAL(<expC>)

RETURNS:
Numeric

DEFINITION:
Converts character expressions to numeric.

VAL() processes only the digits to the left of the first non-numeric character in <expC>, ignoring

leading blanks. Moving from left to right, VAL() terminates when it encounters a non- digit. If the

first non-blank character is not a digit, VAL() returns 0. The SET DECIMALS command controls

how VAL() displays decimals.

VAL() is the inverse of STR().

RECOMMENDED USE:
To do computations on numbers stored as character strings, or on functions that return numbers in

character form, you must first convert them to numerics with VAL().

Example—A medical research program tracks how long it takes drugs to dissolve. The program

uses the TIME() function to mark the start time. Because TIME() returns a character string, it is

difficult to compute time differences. To simplify computations, the program uses VAL() to

convert TIME() into the number of seconds since midnight.

mtime = TIME() && As an example, TIME() = 17:21:34

* Use SUBSTR() to extract HH, MM, and SS characters

hours = SUBSTR(mtime,1,2)

minutes = SUBSTR(mtime,4,2)

seconds = SUBSTR(mtime,7,2)

* Multiple hours x secs per hour, minutes x secs. per minute,

* then add seconds for total seconds since midnight

? (VAL(hours) * 3600) + (VAL(minutes) * 60) + VAL(seconds)

62494

SEE ALSO:
Functions STR(), SUBSTR(), and TIME().

VARREAD() SECTION 3

The dBASE® Language Handbook 947 Back to CONTENTS

VARREAD()

DIALECTS:
dBASE IV only.

SYNTAX:
VARREAD()

RETURNS:
Character

DEFINITION:
Returns the name of the memory variable or field in the current GET or PROMPT.

If no GET or PROMPT is active, VARREAD() returns a null string.

Note: VARREAD() was renamed from READVAR() to avoid conflicting with READKEY() when

abbreviated. See READVAR() for an example.

VARIATIONS:
Clipper: READVAR() does the same task.

SEE ALSO:
Commands APPEND, DEFINE WINDOW, EDIT, READ, and SET KEY; function READVAR().

VERSION() SECTION 3

The dBASE® Language Handbook 948 Back to CONTENTS

VERSION()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
VERSION()

RETURNS:
Character

DEFINITION:
Returns the name and version number of the compiler or interpreter in use.

RECOMMENDED USE:
Use VERSION() to identify which system is in use. This lets you implement version specific

commands without re-coding.

Example—A commercial hotel reservation system runs under Clipper, dBASE III PLUS, dBASE

IV, FoxBASE+, or Quicksilver. The programmer uses VERSION() to optimize the method of

getting user responses. If VERSION() contains "Fox" or "Clip," the program uses bounce bar

menus (see MENU TO). If VERSION() contains "Quick," the program uses windows. Otherwise,

it uses standard menu routines.

DO CASE

 CASE "Fox" $ VERSION() .or. "Clip" $ VERSION()

 DO mbounce

 CASE "Quick" $ VERSION()

 DO mwindow

 CASE "dBASE IV" $ VERSION()

 OTHERWISE

 DO mstandrd

ENDCASE

VARIATIONS:
Clipper: VERSION() is in EXTEND.LIB on the system disk.

dBASE III PLUS, dBASE IV: VERSION(1) returns Ashton-Tate's internal revision number and

the date the dBASE program was created. Normally, the dBASE III PLUS VERSION() returns

. ? VERSION()

 dBASE III PLUS Version 1.1

Adding a 1 to the function changes the output to:

VERSION() SECTION 3

The dBASE® Language Handbook 949 Back to CONTENTS

. ? VERSION(1)

dBASE III PLUS Version 2.0x100 (02/28/87)

FoxBASE+: VERSION(1) returns Fox Software's internal revision number and the date the

FoxBASE+ program was created. Normally, VERSION() returns

. ? VERSION()

FoxBASE+ Rev 2.00

VERSION(1) returns additional information

. ? VERSION(1)

FoxBASE+ Rev 2.00 [01-July-87] Serial # XXXXXXXXX

SEE ALSO:
Command PUBLIC; Appendix 2, "Sensing the Environment."

WACTIVE() SECTION 3

The dBASE® Language Handbook 950 Back to CONTENTS

WACTIVE()

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WACTIVE()

RETURNS:
Logical

DEFINITION:
Indicates whether a window is active in the currently selected area.

When WACTIVE() evaluates true, a window is active in the current WSELECT area.

To make windowing commands and functions consistent (all starting with W), WACTIVE()

replaced ACTIVEWIN() in Quicksilver Version 1.1.

RECOMMENDED USE:
A general purpose windowing subroutine must avoid areas with active windows. WACTIVE()

determines whether a window is active.

Example—A general purpose windowing routine pops up lists of disk files when the user presses

a particular key. To avoid conflict with other applications, the routine checks whether a window

is active in the selected area. If WACTIVE() detects a window, it increases the WAREA counter

and checks successive areas until it finds an unoccupied one.

WSET WINDOW nuscreen TO 1,1,18,30

warea = 0

DO WHILE WACTIVE()

 warea = warea + 1

 WSELECT warea

ENDDO

WUSE nuscreen

SEE ALSO:
Commands WSELECT and WUSE; function WACTIVE.

WORD() SECTION 3

The dBASE® Language Handbook 951 Back to CONTENTS

WORD()

DIALECTS:
Clipper only.

SYNTAX:
WORD(<expN>)

RETURNS:
Nothing

DEFINITION:
Converts numeric parameters from Clipper's internal format (type DOUBLE) to integers (type

INT) to pass them to C subroutines with the CALL command.

<expN> is a numeric value ranging from -32,767 to 32,767.

RECOMMENDED USE:
Without WORD(), numeric parameters are passed in IEEE 754 floating point format (8 byte

floating point representation with a 53 bit characteristic and an 11 bit exponent biased by 1023).

This causes longer subroutines since each one must convert DOUBLEs to INTs.

Example—A graphics subroutine plots data on a bar graph. Data is passed using WORD().

yaxis = 44

CALL c_bar WITH WORD(yaxis)

SEE ALSO:
Command [C]CALL.

WSELECT() SECTION 3

The dBASE® Language Handbook 952 Back to CONTENTS

WSELECT()

DIALECTS:
dBXL and Quicksilver.

SYNTAX:
WSELECT()

RETURNS:
Numeric

DEFINITION:
Returns the number of the currently selected window area. Area numbers range from 0 to 99.

RECOMMENDED USE:
Use WSELECT() with WACTIVE() to avoid conflicts between windowing subroutines. You can

also use WSELECT() with WSET TITLE TO to display the currently selected window area within

the window frame.

Example—A general purpose routine creates a window that lists valid account numbers when the

user presses a key. To avoid conflict with the existing application, the routine checks for an active

window in the selected area. If WACTIVE() detects a window, it increases the WAREA counter

and re-checks successive areas until it finds an unoccupied one. When it succeeds, WSET TITLE

TO displays the WSELECT() area number in the window frame. This routine avoids

WSELECTing area 0. It also assumes that at least one of the 99 window areas is available. You

could add error trapping code to prevent the routine from failing due to lack of available window

areas.

WSET WINDOW lscreen TO 1,1,18,40

warea = 1

DO WHILE WACTIVE()

 warea = warea + 1

 WSELECT warea

ENDDO

WUSE lscreen

WSET TITLE TO "WINDOW AREA: " + STR(WSELECT(),2,0)

WDISPLAY

SEE ALSO:
Commands WDISPLAY, WSELECT, WSET, and WUSE; function WACTIVE().

YEAR() SECTION 3

The dBASE® Language Handbook 953 Back to CONTENTS

YEAR()

DIALECTS:
Clipper, dBASE III PLUS, dBASE IV, dBXL, FoxBASE+, and Quicksilver.

SYNTAX:
YEAR(<expD>)

RETURNS:
Numeric

DEFINITION:
Returns a four-digit year from the specified date expression.

RECOMMENDED USE:
Use YEAR() to compute years elapsed, or to simply display the year in its four-digit form.

Example—An insurance program computes an applicant's age by subtracting his or her birthdate

from the current date.

today = YEAR(DATE())

? today

1988

previous = CTOD("09/21/62")

elapsed = YEAR(today) - YEAR(previous)

? elapsed

26

SEE ALSO:
Functions DAY() and MONTH().

 APPENDIX 1

The dBASE® Language Handbook 954 Back to CONTENTS

APPENDIX 1

CLIPPER SUMMER '87 RESERVED WORDS
Do not use the following words in Clipper programs. Those preceded by asterisks may not even

be used in abbreviated form.

*BATCH

*BEGINAREA

 CODE

 DATA

*DEBUG

*ENDAREA

 ERRORLEVEL

 INDEXEXT

 INDEXORD

*FILE

*HEIGHT

*LIBRARY

*LOWERCASE

*MAP

 NETERR

*NOBELL

*OUTPUT

 PROCFILE

 READEXIT

 READINSERT

*SEARCH

*SECTION

 SETPRC

 SUMMER87

 SYSTEM

*UPPERCASE

*VERBOSE

*WIDTH

*WORKFILE

 APPENDIX 2

The dBASE® Language Handbook 955 Back to CONTENTS

APPENDIX 2

SENSING THE ENVIRONMENT

As noted throughout this book, the commands and functions of the dBASE dialects vary. For

example, dBXL and Quicksilver provide the PROPER() function for capitalizing names. The other

systems offer no equivalent. Where equivalent commands and functions exist, variations in usage

and syntax can produce unexpected results.

A difficulty arises when you want to use more than one system. For example, you may prefer to

develop programs using an interpreter such as dBASE III PLUS, dBASE IV, dBXL, or

FoxBASE+. But you may eventually want to compile the programs with Clipper or Quicksilver.

Because the commands and functions differ, you face time-consuming conversions unless you plan

carefully.

To write programs that work with more than one system, consider these approaches:

1) Use only common commands and functions (a subset).

2) Detect the system in use and conditionally execute specific commands and functions.

The advantages of the first approach are maximum portability and simplified

maintenance. Your programming constructs tend to be simpler. The disadvantages

include lower productivity and slower running programs. System-specific enhancements

often improve productivity and increase execution speed.

The advantage of the second approach is optimized performance. The disadvantages include an

increase in application size (because of alternative sequences) and increased difficulty of

maintenance. As system versions change, upgrading a program with multiple sets of program

instructions can be tricky.

If you use only a subset of dBASE commands and functions, your programs will probably not need

to detect which compatible system is running. However, if you optimize performance by using

system-specific commands and functions, you need a way to tell one system from another. The

VERSION() function, special memory variables, and special comment notation can let you easily

determine which system is in use.

Clipper, FoxBASE+, Quicksilver Special Variables
When you declare a memory variable PUBLIC, its initial value is normally false (.F.). Clipper,

FoxBASE+, and Quicksilver all have special variables that initialize to true (.T.) when you declare

them PUBLIC. Your program can use them to differentiate systems.

 APPENDIX 2

The dBASE® Language Handbook 956 Back to CONTENTS

Clipper provides the variable CLIPPER. Declaring PUBLIC CLIPPER gives it a value of true

(.T.). You can then define conditional structures that execute commands depending on CLIPPER's

value.

The same holds in FoxBASE+, except that the variable's name is FOX. PUBLIC FOX initializes

it with a value of true (.T.).

Because Quicksilver has two operating modes, d-code and optimized native code, it provides two

special variables, XQUICKS and XNATIVE. XNATIVE refers to the native code optimizer.

If you declare a public variable XQUICKS, it will always be initialized to .T. in a Quicksilver-

compiled application. The variable XNATIVE will only be initialized to .T. if the application is

running in optimized native code.

Quicksilver Comment Notation
Special notation (*\ and &&\) make program statements invisible to all dBASE-compatible

systems except Quicksilver and dBXL.

For example, the statements

 *\ ? BITSET(3,0)

 &&\ DOSINT mvar

are treated as program comments (NOTE) in Clipper, dBASE III PLUS, dBASE IV, and

FoxBASE+. dBXL and Quicksilver recognize them as valid commands and execute them

accordingly.

Note: To treat *\ and &&\ as standard NOTEs in dBXL, put the statement COMMENT=OFF in

the CONFIG.XL file. In Quicksilver, use the -\ compiler switch.

Normally, Quicksilver cannot compile unsupported commands such as EDIT and BROWSE, even

if they are "hidden" by the special memory variables XQUICKS or XNATIVE. However, the

*QSOFF and *QSON switches let you compile and run applications despite the presence of

unsupported commands. All text between *QSOFF and *QSON is ignored, for example

*QSOFF

BROWSE

*QSON

lets you include the BROWSE statement in a Quicksilver program.

Other systems treat *QSOFF and *QSON like program comments.

dBASE III PLUS/dBASE IV/dBXL VERSION() Function
dBASE III PLUS, dBASE IV, and dBXL lack special identifying memory variables. However, the

VERSION() function lets you simulate this feature.

 APPENDIX 2

The dBASE® Language Handbook 957 Back to CONTENTS

The following code uses the $ operator to determine whether the string returned by VERSION()

contains "dBASE III PLUS," "dBASE IV," or "dBXL." If it contains "dBASE III PLUS," the code

creates a PUBLIC memory variable DBASE3 and makes it true (.T.). If VERSION() returns

"dBXL," the code creates a PUBLIC memory variable DBXL and makes it true. The dBASE IV

version creates a PUBLIC memory variable DBASE4 and makes it true.

DO CASE

CASE "dBASE III PLUS" $ VERSION()

 PUBLIC dbase3

 dbase3 = .t.

CASE "dBXL" $ VERSION()

 PUBLIC dbxl

 dbxl = .t.

CASE "dBASE IV" $ VERSION()

 PUBLIC dbase4

 dbase4 = .t.

ENDCASE

At any point thereafter, you can run dBASE III PLUS-, dBASE IV-, or dBXL-specific commands

by testing the PUBLIC variables.

Example 1—To include a FoxBASE+-specific function in a dBASE III PLUS program, declare

PUBLIC FOX. Then test FOX to determine which system is running. If FOX is true, use the

FoxBASE+ SYS(3) function to create a temporary filename. If it is false, explicitly create a

temporary file name.

* UPDATE.PRG

* <statements>

USE acctmain

PUBLIC FOX

IF FOX && If TRUE, use SYS(3) to create a temporary filename

 tname = SYS(3)

 COPY TO &tname FOR acctno = "1252"

 LIST acctno

 DELETE FILE &tname..DBF

ELSE

 COPY TO temp1 FOR acctno = "1252"

 LIST acctno

 DELETE FILE temp1.dbf

ENDIF

Example 2—The Quicksilver XNATIVE variable differentiates between d-code mode and

optimized mode. For example, the CCALL command is available only in the optimized mode. You

can text XNATIVE to determine whether CCALL is currently available.

IF XNATIVE

 CCALL SUMADDON WITH memvar

 APPENDIX 2

The dBASE® Language Handbook 958 Back to CONTENTS

ELSE

 LOAD SUMADDON

 CALL SUMADDON WITH memvar

 * Use the LOAD/CALL scheme instead

ENDIF

Example 3—Clipper, FoxBASE+, and Quicksilver all try to compile unsupported commands,

even if they are "hidden" by a special memory variable (CLIPPER/FOX/XQUICKS). Clipper and

FoxBASE+ generate error messages, but do produce programs that run. Quicksilver compiles only

trivial unsupported commands (such as SET TALK), but refuses to compile commands such as

BROWSE and EDIT. To compile these commands in Quicksilver, you must use the *QSOFF and

*QSON switches to hide them.

PUBLIC xquicks,clipper

IF xquicks .OR. clipper

 DO browprog

ELSE

 *QSOFF

 BROWSE

 *QSON

ENDIF

SEE ALSO:
Command PUBLIC; function VERSION(); Appendix 4: dBXL/Quicksilver Environment

Variables.

 APPENDIX 3

The dBASE® Language Handbook 959 Back to CONTENTS

APPENDIX 3

SCAN CODES/ASCII CHART

ASCII Characters

Auxiliary Byte Values for the Special Keys and
Combinations on the IBM Standard PC Keyboard

 Value (Hex) Key Value (Hex) Key

 0F Shift-Tab 14 Alt-T

 10 Alt-Q 15 Alt-Y

 11 Alt-W 16 Alt-U

 12 Alt-E 17 Alt-I

 13 Alt-R 18 Alt-O

 APPENDIX 3

The dBASE® Language Handbook 960 Back to CONTENTS

 APPENDIX 3

The dBASE® Language Handbook 961 Back to CONTENTS

 APPENDIX 3

The dBASE® Language Handbook 962 Back to CONTENTS

 APPENDIX 3

The dBASE® Language Handbook 963 Back to CONTENTS

 APPENDIX 3

The dBASE® Language Handbook 964 Back to CONTENTS

 APPENDIX 3

The dBASE® Language Handbook 965 Back to CONTENTS

 APPENDIX 4

The dBASE® Language Handbook 966 Back to CONTENTS

APPENDIX 4

QUICKSILVER/dBXL ENVIRONMENT VARIABLES

DESCRIPTION:
At runtime, Quicksilver automatically creates seven public memory variables, and dBXL creates

four. They provide information about the computer on which your application is running, and

about parameters passed to the application from the operating system command line.

Environment variables are created only when you start up the application. They are not updated

during program execution.

dBXL NAME DATA TYPE RETURNS

 XARGC Numeric number of command-line arguments

 XARG00 Character program name (command-line argument)

 XCOLOR Logical TRUE if the system has a color monitor

 XCURRDIR Character current default directory

 XDRIVE Character current default drive

 XPRINTBUSY Logical TRUE if the printer is

 XPRINTON Logical TRUE if the printer is on (on/off)

In Quicksilver programs, XARG00 always contains the compiled program's name. dBXL creates

XARG00 only if you specify a program name on the command line, as follows:

@SYNTAX = C> DBXL <program name>

XARG00 is the name of a program (PRG) file if you specify one. Besides the variables listed

above, dBXL and Quicksilver create up to thirty others, named XARG01 through XARG30, that

contain arguments passed on the command line. This is similar to the C method of passing

command-line -arguments.

As of Version 1.1, dBXL does not support XPRINTON or XPRINTBUSY.

You can release environment variables just like "regular" memory variables, thereby freeing

memory. To release all Quicksilver environment variables, use

RELEASE ALL LIKE X*

Of course, be sure that you have no other variable names starting with X. To use environment

variables later, save them in a MEM file with the command

SAVE ALL LIKE X* TO ENVIRON

 APPENDIX 4

The dBASE® Language Handbook 967 Back to CONTENTS

Later in the program you can reload them with

RESTORE FROM ENVIRON ADDITIVE

RECOMMENDED USE:
XARGC/XARGn: The XARG environment variables let the application use data supplied on the

DOS command line without a PARAMETERS statement.

XARGC is the total number of arguments passed. It lets the program process command line

arguments by number without having to error-check ranges.

Example 1—Program menus that help novices can hinder experienced users. Command line

arguments allow experienced users to bypass them. To run a credit search program CSEARCH, a

novice simply types its name at the DOS prompt. A menu appears, and the user makes the desired

selections. An expert user enters the program name, along with command line arguments that

specify name, identification number, and address.

From the DOS prompt, the user types

C> CSEARCH "Robertson" "ROB33" "29 S. Main St."

The program first checks for the correct number of parameters. If it does not find them, it presents

the menu. Otherwise, it uses the parameters to call a subroutine.

IF xargc = 4

 DO namefind WITH xarg01,xarg02,xarg03

ELSE

 DO menu

ENDIF

Example 2—A brief subroutine inventories Quicksilver environment variables and reports their

meanings. Use it during program development and debugging to validate parameters and system

attributes.

CLEAR

@ 6,12 SAY "Startup default disk drive is: " + xdrive

@ 7,12 SAY "Startup default directory is: " + xcurrdir

@ 8,12 SAY "Printer was " + IIF(xprinton,"on","off") +;

 "at startup and was " + IIF(xprintbusy,"","not ") + "busy"

@ 9,12 SAY "You have a color monitor " +;

 IIF(ISCOLOR(),"","but it is inactive")

@ 10,12 SAY "Name of this program is: " + xarg00

@ 11,12 SAY "Number of command-line arguments was: " + LTRIM(STR(xargc-1))

IF xargc <2 && XARG00 counts as one argument

 @ 12,12 SAY "There were no command-line arguments"

ELSE

 APPENDIX 4

The dBASE® Language Handbook 968 Back to CONTENTS

 @ 12,12 SAY "The command-line arguments were:"

 commandln = ""

 FOR argc = 1 TO (xargc - 1)

 cargc = "0" + LTRIM(STR(argc))

 cargc = "XARG" + cargc

 commandln = commandln + " " + &cargc

 NEXT argc

 @ 15,12 SAY commandln

 ?

ENDIF

WAIT

XCOLOR/XPRINTBUSY/XPRINTON: Avoid using them. The ISCOLOR() and PRINTER()

functions provide more reliable information for determining monitor type and printer,

XCURRDIR/XDRIVE: Use XCURRDIR and XDRIVE when you change default drives and

directories and later want to return to the originals.

Example 3—A program stores transaction and archive data on different drives and directories.

System data such as passwords and user logs remain in the default directory. At various times, the

program changes defaults. Because the original values remain in XCURRDIR and XDRIVE, the

program can easily return to them.

SET DEFAULT TO E:

SET DBF TO \transacts

DO transact

SET DEFAULT TO xdrive

SET DBF TO xcurrdir

LIMITS/WARNINGS:
XCOLOR: XCOLOR is not the same as the ISCOLOR() function. In Quicksilver, XCOLOR is

TRUE (.T.) if a color monitor is connected to the system, regardless of whether it is active (as in

a system with two monitors). To test whether the active monitor is color, use the ISCOLOR()

function.

In dBXL Version 1.1, XCOLOR returns the same values as ISCOLOR().

XPRINTON/XPRINTBUSY: The printer status variables only reflect conditions at startup.

Furthermore, on some machines XPRINTON may be initialized as .F. if the printer is offline, even

if it is turned on. WordTech recommends using Quicksilver's PRINTER() function to check printer

status.

dBXL: Note that for dBXL to create environmental variables, you must include the line

XVARS=ON

in the configuration file CONFIG.XL.

 APPENDIX 5

The dBASE® Language Handbook 969 Back to CONTENTS

See commands PUBLIC and SET PRINTER; functions ISCOLOR(), PRINTER(), and SYS(13).

APPENDIX 5

dBASE IV SYSTEM VARIABLE SUMMARY

_alignment = "<left/center/right>"
Default: LEFT

Example: ALIGNMENT = "LEFT"

Controls text alignment when _WRAP is true (.T.).

_box = <.t./.f.>
Default: .T.

Example: _BOX = .t.

When true (.T.), prints the box specified with the DEFINE BOX command.

_indent = <expN>
Range: 0-254

Default: 0

Example: _indent = 20

Indents text <expN> spaces when _WRAP is true (.T.). You can set the indent for each ? command.

(_INDENT + _LMARGIN) may not exceed the _RMARGIN setting. _INDENT is also added to

the _PLOFFSET setting.

_lmargin = <expN>
Range: 0-254

Default: 0

Example: _lmargin = 30

Sets the left margin when _WRAP is true (.T.). The left margin is the column where unindented

text begins printing. _LMARGIN is added to the page left offset (_PLOFFSET).

_padvance = "<formfeed/linefeeds"
Default: "FORMFEED"

Example: _padvance = "FORMFEED"

Specifies how the printer advances paper when an EJECT is issued or when a report reaches the

maximum page length (_PLENGTH). FORMFEED advances the paper one page as defined by the

printer's internal setting. In a PRINTJOB, the LINEFEEDS option subtracts _PLINENO from

_PLENGTH to determine the number of lines to advance to the top of the next form. EJECT

outside a printjob advances the paper by calculating the current line number and subtracting it from

_PLENGTH as follows (_PLENGTH - MOD(PROW(),_PLENGTH))

 _pageno = <expN>
Range: 1-32,767

 APPENDIX 5

The dBASE® Language Handbook 970 Back to CONTENTS

Default: 1

Example: _pageno = 9 && Set page number to 9.

Returns the current page number, or assigns a new one. Use it to print page numbers during

printjobs. _PAGENO increases by 1 when a page ejects. When setting _PAGENO, be sure it falls

between the current beginning page (_PBPAGE) and ending page (_PEPAGE); otherwise, nothing

will print.

_pbpage = <expN>
Range: 1-32,767

Default: 1

Example: _pbpage = 5

Determines the beginning page for a printjob. May not exceed the ending page (_PEPAGE). No

printing occurs if _PAGENO is less than _PBPAGE; however, non-printing pages scroll internally.

Printing begins with _PAGENO equal to _PBPAGE.

_pcolno = <expN>
Range: 0 to 255 when _WRAP is false (.F.), or 0 to _RMARGIN when _WRAP is true (.T.).

Example: _pcolno = 34 && Set print column to 34.

Moves the printhead to column <expN>, or returns the current column position. Works only in

printjobs. The printer need not be on.

_pcopies = <expN>
Default: 1

Range: 1-32,767

Example: _pcopies = 10

Determines how many copies to print in a printjob. Use it before the PRINTJOB command.

_pdriver = "<printer driver name>"
Default: Assigned during installation or by PDRIVER in CONFIG.DB.

Example: _pdriver = "LX80" && Install Epson LX-80 printer

Activates the specified printer driver (extension PR2), or returns the current driver. _PDRIVER

looks in the current directory on the current drive unless you specify otherwise.

_pecode = <expC>
Range: Limited to 255 bytes.

Default: Null

Example: _pecode = "{27}E" && Epson emphasized mode

Sends a string of printer control codes upon ENDPRINT. Use _PECODE to change print

characteristics or reset them when PRINTJOB ends. See the command ??? for a list of control code

specifiers. You must have the correct printer driver installed with _PDRIVER.

_peject = "<before/after/both/none>"
Default: NONE

Example: _peject = "BEFORE"

Determines when a page ejects relative to a PRINTJOB. BEFORE ejects before printing the first

page. AFTER ejects after printing the last page. BOTH ejects before and after. NONE omits the

page eject.

 APPENDIX 5

The dBASE® Language Handbook 971 Back to CONTENTS

_pepage = <expN>
Range: 1-32,767

Default: 32,767

Example: _pepage = 8

Determines the ending page for a PRINTJOB. May not be less than the beginning page

(_PBPAGE). No printing occurs if _PAGENO is greater than _PEPAGE.

_pform = "<print form filename>"
Default: Null

Example: _PFORM = "REPORT"

Activates a print form file. When you create a report with the report generator (CREATE/MODIFY

REPORT), you can optionally save the system variable settings in a print form file. You can then

use the file with other reports created externally. Print form files have a default extension of PRF.

_plength = <expN>
Range: 1 to 32,767

Default: 66

Example: _plength = 50 && Set page length of 50

Changes the page length setting, or returns its value. The page length is the total number of lines

per page, including headers and footers.

_plineno = <expN>
Range: 0 to (_plength -1)

Default: 0

Example: _plineno = 10 && Set line number to 10

Sets the printer line number, or returns its value. Stays in effect regardless of whether the printer

is on or off.

_ploffset = <expN>
Range: 0 to 254

Default: 0

Example: _ploffset = 5

Offset from the left edge of the paper. <expN> is the number of columns to offset. _LMARGIN is

relative to _PLOFFSET. _PLOFFSET is equivalent to the SET MARGIN command.

_ppitch = "/default/elite/pica"
Default: "DEFAULT"

Example: _ppitch = "ELITE"

Changes the printer pitch. _PPITCH depends on the installation of the correct printer driver with

_PDRIVER. If you change the pitch with a control code or with a printer DIP switch, _PPITCH

may not match the actual output until you issue another _PPITCH statement.

_pquality = <.t./.f.>
Default: .F.

Example: _pquality = .t.

 APPENDIX 5

The dBASE® Language Handbook 972 Back to CONTENTS

Toggles draft or letter quality printer output. _PQUALITY depends on the installation of the

correct printer driver with _PDRIVER. If you change the quality with a control code or with a

printer DIP switch, _PQUALITY may not match the actual output until you issue another

_PQUALITY statement.

_pscode = <expC>
Range: Limited to 255 bytes

Default: Null

Example: _pscode = "{ESC}4" && Select Epson italic mode.

Specifies the printer setup codes issued when the PRINTJOB command executes. You can reset

the printer at the end of a printjob with _PECODE.

_pspacing = <1/2/3>
Default: 1

Example: _pspacing = 2

Controls line spacing for screen, printer, and disk file output.

_pwait = <.t./.f.>
Default: .F.

Example: _pwait = .t.

Pauses printing after each page when true (.T.). This lets you use sheet fed paper. Pauses occur

with each EJECT, or when the current line number reaches the page length (_PLENGTH). For

printjobs, use _PWAIT before the PRINTJOB command.

_rmargin = <expN>
Range: 1 to 255

Default: 80

Example: _rmargin = 60

Sets the right margin. Must exceed (_LMARGIN + _INDENT). Works only when _WRAP = .T.

_tabs = [<1,N2,N3,...>]
Default: Null

Example: _tabs = "10,25,30"

Sets tab stops in the program/memo editor. The numbers N1, N2, N3... must be in ascending order.

_wrap = <.t./.f.>
Default: .F.

Example: _wrap = .t.

Toggles word wrapping on and off. When true, wraps ?/?? output between _LMARGIN and

_RMARGIN. Breaks lines between words or numbers.

 APPENDIX 6

The dBASE® Language Handbook 973 Back to CONTENTS

APPENDIX 6

COMMANDS AND FUNCTIONS

OMITTED FROM THIS EDITION

CLIPPER
EXTEND system assembly language interface functions

EXTEND system C interface functions

Functions added or documented too late to include:

BIN2I() I2BIN()

BIN2L() L2BIN()

BIN2W()

EXTEND.LIB functions without direct equivalents in other systems:

ACCEPTAT() LENNUM()

CURRENCY() SECS()

DAYS() STRZERO()

DIM2() TSTRING()

DUP_CHK() VALIDTIME()

ELAPTIME()

dBASE IV

SQL commands

 APPENDIX 6

The dBASE® Language Handbook 974 Back to CONTENTS

dBXL/QUICKSILVER DIAMOND RELEASE (1.2)
NetworkerPlus multiuser/multitasking/messaging commands and functions:

DIALOG MSGQUEUE()

EXECUTE() NEXECUTE

FLAG() NFLAG

NHALT SEND SCREEN

NRECSCR SEND TASK

NRESET SENSERANGE

NSENDMSG SET FLAG

NSENDTSK SET MSGBELL

NSET MSGBELL SET MSGQUEUE

NSET MSGQUEUE SET MSGWIN

NSET TASKQUEUE SET SENSERANGE

NSET SNOOP SET SNOOP ON

NSLEEP SET TASKQUE

NWHO USERNAME()

NWHOAMI USERCOUNT()

ON NETERROR WHOHASIT()

RECEIVE() WHOAMI()

RRECEIVE WHOSENTIT()

SEND MESSAGE

 GLOSSARY

The dBASE® Language Handbook 975 Back to CONTENTS

GLOSSARY

dBASE LANGUAGE GLOSSARY

APPLICATION—A group of integrated programs and database files designed to do a particular

job, such as accounting, point of sale, or client management.

COMMAND—A statement, either in a program or issued from a prompt, that initiates an action.

COMPILER—A program that translates programs from a form understandable by humans into

one executable by computers. For maximum efficiency, a compiler translates an entire program in

advance of execution. Examples of compiled languages are C, COBOL, and dBASE (using

Clipper, dBASE IV, or Quicksilver).

Strictly speaking, compilers produce "machine code" which a computer can execute directly.

Through popular usage, "compiler" also refers to programs that produce intermediate code

requiring further translation at runtime.

See also INTERPRETER.

CONDITION—An optional command clause that restricts the processing of records. The two

conditional clauses are:

WHILE <expL>

FOR <expL>

WHILE conditions process records consecutively, within the active scope, until the logical

expression <expL> becomes false. WHILE terminates even if other non-consecutive records

satisfy <expL>.

FOR conditions evaluate all records within the active scope, ignoring those that do not satisfy

<expL>. Processing continues until the end-of-file.

<expL> is sometimes called <condition>.

COORDINATES—The paired numbers representing points on the screen or on a printed report.

The coordinates are R and C, where R is a vertical <MI>row<D> position and C is a horizontal

<MI>column<D> position (left to right). Addressable rows on standard PC screens range from 0

(top) to 24 (bottom). Columns range from 0 (far left) to 79 (far right). In printed reports, the ranges

are limited to the actual page size. The R and C coordinates are designated as <coord>.

DATABASE FILE—A table containing information labeled by field name and record number.

dBASE data files have the extension DBF. A collection of database files is called a

<MI>database.<D>

 GLOSSARY

The dBASE® Language Handbook 976 Back to CONTENTS

See also FIELD and RECORD.

FIELD—A storage space in a database file for a single data item. The structure defines each field's

size and type. Sequential sets of fields are called records.

Fields are sometimes called columns.

See also RECORD.

FUNCTION—A command-like keyword that evaluates a number, string, or logical condition,

and returns a value in its place. Functions consist of a name followed by parentheses. The

parentheses may contain arguments.

Functions are evaluated like expressions. You may use one anywhere a constant may appear, as

long as it returns the proper data type.

In Clipper, you can begin a command line with a function. This lets you execute functions much

like commands, a benefit most noticeable with user defined functions.

See also USER DEFINED FUNCTION.

INDEX—A table of pointers that orders a database file according to a key expression. When the

index is activated, the database file appears in the defined order, although it is not reordered

physically as in a SORT. Index extensions vary:

Clipper: NTX (or NDX when you link NDX.OBJ)

dBASE III PLUS, dBXL, and Quicksilver: NDX

dBASE IV: NDX (or MDX for multiple index files)

FoxBASE+: IDX

See also command INDEX.

INTERPRETER—A program that translates programs from a form understandable by humans

into one executable by computers. An interpreter translates and executes programs one line at a

time. The most popular interpreter is the Microsoft (or GW) BASIC that comes with most PC's.

Examples of dBASE interpreters include dBASE III PLUS, dBXL, and FoxBASE+.

See also COMPILER.

KEYWORD—A function, command, or command option. Keywords are not case-sensitive. They

may be abbreviated to four characters.

dBASE does not generally reserve keywords, but their use in other contexts, such as in memory

variable names, is confusing and therefore inadvisable. Clipper (Summer '87 version) does reserve

 GLOSSARY

The dBASE® Language Handbook 977 Back to CONTENTS

words that confuse either the compiler or linker when used out of context. See Appendix 1 for a

list.

See also COMMAND and FUNCTION; Appendix 1: Clipper Summer '87 Reserved Words.

LINKER—A program that creates an executable program (EXE extension), letting you specify

object modules (OBJ), runtime libraries (LIB), and memory allocation. Linkers include Microsoft

LINK, Borland's TLINK, and Phoenix Technologies' PLINK86.

Linkers are also called linkage (link) editors.

MACRO—In dBASE, the use of a memory variable's value as if it had been typed directly. This

requires the & operator. For example, you could store the scope "NEXT 10" in memory variable

SEARCH, then use it in a command such as

LIST &SEARCH

In general, a "macro" is a series of commands that can be executed with a single reference. For

example, a keyboard

macro program assigns a series of commands to a single key.

MEMORY VARIABLE—A temporary holding place for data. Memory variables are created

explicitly by the commands PUBLIC, PRIVATE, and STORE, and by the equal sign operator.

Other commands, such as ACCEPT, INPUT, and SUM, create them automatically to hold results.

The AUTOMEM feature in dBXL and Quicksilver also creates memory variables.

A memory variable takes on the data type of the value stored in it. Types include logical, character,

date, and numeric. FoxBASE+ and Clipper also have array and screen data types. There is no

memo data type for variables.

Memory variables are accessible in the program in which they are given a value, and in all

subprograms it calls.

PRIVATE specifically limits the scope of memory variables to the current program and its

subprograms. This prevents name conflicts between subprograms (particularly library programs)

and their callers.

PUBLIC makes memory variables accessible throughout an application unless a PRIVATE

declaration masks them in a subprogram. See also the commands PRIVATE, PUBLIC, RELEASE,

and STORE.

PROGRAM—A list of commands that initiates a series of actions. The commands are stored in

an ASCII text file, and they execute sequentially. Programs may be interpreted or compiled.

Uncompiled dBASE programs generally have a PRG extension, the default. If you use a different

extension, you must specify it explicitly when issuing the DO <program name> command.

 GLOSSARY

The dBASE® Language Handbook 978 Back to CONTENTS

Groups of related programs form an application.

See also COMPILER and INTERPRETER.

RECORD—A sequential grouping of fields in a database file. APPENDing a record adds a

complete set of fields to the file and increases the record counter by one.

Records are sometimes called rows.

See also FIELD.

RECORD POINTER—A mechanism that indicates the current record in an open database file.

The pointer is not visible. Instead, you know where it is from the current record number. You can

access the current record's fields by name.

Pointers in multiple open files are independent, although you can link them using the SET

RELATION command. When no relation is set, moving the pointer in an open file does not affect

other pointers.

When you open a database file, the pointer starts at record 1. If you open a database file as an

index, the pointer starts at the record with the lowest key value.

If the pointer is at the first record, SKIP -1 moves it to the beginning-of-file (BOF). At BOF, the

BOF() function evaluates TRUE (.T.). The RECNO() function returns the first record number. In

an unindexed file, that number is always 1. In an indexed file, it is arbitrary because of the ordering

by key values rather than record numbers.

When the pointer is at the end-of-file, the EOF() function evaluates TRUE (.T.). RECNO() returns

a value one greater than the last record number. If a file has no records, EOF() and BOF() are

TRUE (.T.), and RECNO() returns 1.

Commands such as APPEND, GOTO, LIST, and SKIP move the pointer.

SCOPE—A clause you can add to many commands to specify a range of records to process.

Commands that allow scopes include AVERAGE, COPY, DELETE, DISPLAY, LIST, RECALL,

SORT, and SUM.

Scopes are:

ALL

NEXT <expN>

RECORD <expN>

REST*

(*REST is not available in Clipper versions before Summer '87. Substitute the condition WHILE

.T.)

 GLOSSARY

The dBASE® Language Handbook 979 Back to CONTENTS

ALL specifies all records. NEXT <expN> counts records starting with the current one to the End

of File. RECORD <expN> specifies a particlar record. REST means all records from the current

one to the end-of-file.

Scopes usually ignore records hidden by SET DELETED ON and SET FILTER TO. However,

NEXT <expN> always includes the current record, even if it is hidden. If, for example, the record

pointer rests at a hidden record, LIST NEXT 5 shows the current record, then the NEXT four

visible records, if any.

RECORD <expN> also accesses hidden records by moving directly to the specified record

number.

Note: In dBASE IV NEXT and RECORD <expN> ignore all records hidden by SET FILTER

ALL and REST move the record pointer consecutively through the file, stopping at the End of File.

TAG—The name of an index within a dBASE IV multiple index file.

WORK AREA—A logical division of the computer's memory into independent zones. Each one

can hold an open database file and its related index files. Simultaneous open files reside in separate

areas.

10 is the current standard for the number of work areas. The SELECT command can reference

areas by number, letter (A-J), or ALIAS. For example, to choose area 2 containing the open file

ACCOUNTS, you could issue any of the following commands:

SELECT 2

SELECT B

SELECT accounts

Work area 1 is the default. The open database file in the current area is called the <MI>active

database.

To access data in other areas, you must specify field names using the work area letter (A-J) or alias

name in the form LETTER->FIELDNAME or ALIAS->FIELDNAME.

Most commands and functions affect only the active file. For example, SKIP moves its pointer

forward one record. It does not affect any other file unless you first set a RELATION. Some

commands have options for processing data in unselected work areas.

USER DEFINED FUNCTION (UDF)—A function written by the application programmer for

use in Clipper, dBASE IV, dBXL, FoxBASE+, or Quicksilver. Clipper and Quicksilver allow

UDFs written in the dBASE language, C, and assembly language. FoxBASE+, dBASE IV, and

dBXL allow only dBASE language UDFs. You can use UDFs just about anywhere you can use an

internal function.

See also command FUNCTION.

